Method study of calculating the permeability coefficient of fractured rock mass with dense sections
-
摘要:
裂隙岩体渗流具有非均匀性和各向异性,其复杂性体现在单裂隙的密度、产状和迹长等参数上以及裂隙网络的连通性上,而裂隙网络的连通性是三维裂隙岩体渗流参数计算的一个难题。目前三维裂隙岩体渗流参数的计算方法因其模型的不同而各有优缺点。为分析裂隙岩体水力各向异性及其渗透系数,基于降维思路,提出了三维裂隙岩体密集切面求解渗透系数的新方法。该方法在三维裂隙网络模拟的基础上,通过不同方向密集切面逼近裂隙岩体,将三维裂隙网络分解成多个连续的二维切面裂隙网络,对切面裂隙网络使用图论法分析裂隙水力的连通性和渗透路径,设置水头边界条件计算渗透系数,通过空间上线、面、体的关系,将二维空间上的渗透系数计算结果表达三维空间上的方向性,构建三维裂隙岩体网络的渗透张量。将切面渗透系数视为渗透椭圆计算切面等效渗透系数,给出了一种新的岩体等效渗透张量的求解公式。同时讨论了尺度效应和裂隙岩体渗透各向异性的表征方式,通过构建三维和二维裂隙网络,截取不同大小的单元体计算渗透系数,得出典型单元体的边长为20 m,并通过野外现场钻孔压水实验验证了方法的可行性。研究成果可以为求解不同尺度、非均质裂隙岩体各方向渗透系数提供参考。
Abstract:Objective The seepage of fractured rock masses has non-uniformity and anisotropy, and its complexity is reflected in parameters such as density, orientation, and trace length of individual fractures, as well as the connectivity of fracture networks. The connectivity of fracture networks is a difficult problem in calculating the seepage parameters of three-dimensional fractured rock masses. At present, the calculation methods for seepage parameters of three-dimensional fractured rock masses have their own advantages and disadvantages due to different models. To analyze the hydraulic anisotropy and permeability coefficient of fractured rock masses, a new method for solving the permeability coefficient of three-dimensional fractured rock mass dense sections based on dimensionality reduction is proposed.
Methods This method, founded on the simulation of three-dimensional fracture networks, approximates the fractured rock masses through dense sections in different directions, decomposing the three-dimensional fracture network into multiple continuous two-dimensional sectional fracture networks, using graph theory to analyze the hydraulic connectivity and permeability paths, and water head boundary conditions are set to calculate the permeability coefficient. Through the relationship between lines, surfaces, and volumes in space, the calculated permeability coefficient in two-dimensional space is expressed as the directionality in three-dimensional space, and the permeability tensor of the three-dimensional fractured rock mass network is constructed.
Results By treating the section permeability coefficient as a permeability ellipse, the new method calculates the equivalent permeability coefficient of the section and provides a solution formula for the equivalent permeability tensor of the rock mass. It also discusses the scale effect and the representation of anisotropy in the rock mass. By constructing three-dimensional and two-dimensional fracture networks, different sizes of unit cells were intercepted to calculate the permeability coefficient, and the side length of a typical unit cell was determined to be 20m. The feasibility of the method was verified through field drilling water pressure experiments.
Conclusion This method offers a reference for solving the permeability coefficients in different directions of heterogeneous fractured rock masses of various scales.
-
图 1 切面法求解裂隙岩体渗透系数流程图
$K^y_{yz}. $yz平面的切面上沿y轴方向的渗透系数;$K^z_{yz}. $yz平面的切面上沿z轴方向的渗透系数;$K^x_{xz}. $xz平面的切面上沿x轴方向的渗透系数;$K^z_{xz}. $xz平面的切面上沿z轴方向的渗透系数;$K^x_{xy}. $xy平面的切面上沿x轴方向的渗透系数;$K^y_{xy}. $xy平面的切面上沿y轴方向的渗透系数;Kx. 三维坐标轴上沿x轴的渗透张量;Ky. 三维坐标轴上沿y轴的渗透张量;Kz. 三维坐标轴上沿z轴的渗透张量;下同
Figure 1. Flowchart for the determination of permeability coefficient of fractured rock mass by section method
表 1 裂隙统计及数值模拟基本参数
Table 1. Basic parameters for fracture statistics and numerical simulation
钻孔 裂隙组 倾向/
(°)标准差/
(°)倾角/
(°)标准差/
(°)密度/
(条·m−3)迹长/
mZK01 1 91 10.83 44 16.14 0.17 4.6 2 257 9.10 43 16.46 0.12 5.8 3 290 6.28 41 17.09 0.09 6.7 ZK02 1 231 12.19 63 15.98 0.17 4.7 2 75 15.83 78 17.64 0.15 4.1 3 312 12.52 62 13.18 0.12 6.4 4 2 1.2 64 12.79 0.06 4.6 5 170 6.12 87 13.12 0.06 5.9 表 2 数据结果分析
Table 2. Analysis of Data Results
绝对误差 相对误差/% ZK01 ZK02 ZK01 ZK02 0.00099 0.000693 27.58 70.21 0.00305 0.003058 49.43 844.75 0.01372 0.00005 80.71 1.22 0.01337 0.001783 90.34 1007.34 0.00191 0.001587 8.84 745.07 0.00043 0.002838 13.44 5415.27 0.004538 0.00084 4905.41 30.43 0.00301 0.00037 3781.91 4.48 0.002201 0.002139 1583.45 6991.50 0.00072 0.001519 36.18 3714.18 0.00207 0.003366 65.09 7597.52 0.001738 0.00009 186.48 3.81 0.00015 0.00244 14.02 59.08 0.004887 1212.66 0.001545 753.66 0.003349 2080.12 0.000879 336.78 0.00018 79.34 0.002415 1123.26 -
[1] 陈刚,徐世光,刘春学,等. 岩体单裂隙渗流研究进展[J]. 人民黄河,2019,41(增刊2):64-66.CHEN G,XU S G,LIU C X,et al. Research progress on rock mass single fracture seepage[J]. Yellow River,2019,41(S2):64-66. (in Chinese with English abstract [2] 段玲玲,邓华锋,熊雨,等. 岩体裂隙面形貌特征对其渗流特性的影响研究[J]. 防灾减灾工程学报,2021,41(1):110-117.DUAN L L,DENG H F,XIONG Y,et al. Study on the influence of morphology of rock mass fracture surface on its seepage characteristics[J]. Journal of Disaster Prevention and Mitigation Engineering,2021,41(1):110-117. (in Chinese with English abstract [3] 鲁俊杰. 花岗岩裂隙等效水力隙宽表征及渗透特性研究[D]. 南京:南京大学,2019.LU J J. Research on the characterization of equivalent hydraulic aperture and permeability in fractures of granite[D]. Nanjing:Nanjing University,2019. (in Chinese with English abstract [4] BAGHBANAN A,JING L R. Hydraulic properties of fractured rock masses with correlated fracture length and aperture[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(5):704-719. doi: 10.1016/j.ijrmms.2006.11.001 [5] 王晋丽,陈喜,黄远洋,等. 岩体裂隙网络随机生成及连通性研究[J]. 水文地质工程地质,2013,40(2):30-35.WANG J L,CHEN X,HUANG Y Y,et al. A study of stochastic generation and connectivity of fracture network in rock mass[J]. Hydrogeology & Engineering Geology,2013,40(2):30-35. (in Chinese with English abstract [6] WILSON C R,WITHERSPOON P A. Steady state flow in rigid networks of fractures[J]. Water Resources Research,1974,10(2):328-335. doi: 10.1029/WR010i002p00328 [7] WITTKE W,SYKES T B R. Rock mechanics:Theory and applications with case histories[M]. Berlin:Springer-Verlag,1990. [8] 张俊,盛建龙,黄涛,等. 二维裂隙网络渗透特性及连通性研究[J]. 化工矿物与加工,2020,49(7):6-10.ZHANG J,SHENG J L,HUANG T,et al. Research on permeability and connectivity of 2D fracture network[J]. Industrial Minerals & Processing,2020,49(7):6-10. (in Chinese with English abstract [9] 方涛,柴军瑞,胡海浪,等. Monte Carlo方法在岩体裂隙结构面模拟中的应用[J]. 露天采矿技术,2007,22(1):7-9. doi: 10.3969/j.issn.1671-9816.2007.01.003FANG T,CHAI J R,HU H L,et al. Application of Monte Carlo method to simulating the fracture interconnectivioy of rock mass[J]. Opencast Mining Technology,2007,22(1):7-9. (in Chinese with English abstract doi: 10.3969/j.issn.1671-9816.2007.01.003 [10] 张亚,彭乐文. 基于Monte-Carlo的岩体三维裂隙网络模型研究[J]. 甘肃科学学报,2020,32(2):124-131.ZHANG Y,PENG L W. Study on the three-dimensional crack network model of rock mass based on Monte-Carlo[J]. Journal of Gansu Sciences,2020,32(2):124-131. (in Chinese with English abstract [11] 祝云华,刘新荣,梁宁慧,等. 裂隙岩体渗流模型研究现状与展望[J]. 工程地质学报,2008,16(2):178-183. doi: 10.3969/j.issn.1004-9665.2008.02.006ZHU Y H,LIU X R,LIANG N H,et al. Current research and prospects in modeling seepage field in fractured rock mass[J]. Journal of Engineering Geology,2008,16(2):178-183. (in Chinese with English abstract doi: 10.3969/j.issn.1004-9665.2008.02.006 [12] 郭金喜,易远. 裂隙土渗流模型研究进展综述[J]. 土工基础,2017,31(6):721-724.GUO J X,YI Y. Review of seepage models in fissured soils[J]. Soil Engineering and Foundation,2017,31(6):721-724. (in Chinese with English abstract [13] WARREN J E,ROOT P J. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal,1963,3(3):245-255. doi: 10.2118/426-PA [14] 年庚乾,陈忠辉,周子涵,等. 基于双重介质模型的裂隙岩质边坡渗流及稳定性分析[J]. 煤炭学报,2020,45(增刊2):736-746.NIAN G Q,CHEN Z H,ZHOU Z H,et al. Seepage and stability analysis of fractured rock slope based on dual medium model[J]. Journal of China Coal Society,2020,45(S2):736-746. (in Chinese with English abstract [15] SNOW D T. Anisotropie permeability of fractured media[J]. Water Resources Research,1969,5(6):1273-1289. doi: 10.1029/WR005i006p01273 [16] 汪旭涛,刘杰,郑德斌. 等效连续介质模型在某裂隙岩质边坡渗流稳定性分析中的应用[J]. 工程勘察,2012,40(6):27-30.WANG X T,LIU J,ZHENG D B. Application of equivalent continuum model to the seepage and stability analysis of certain fractured rock slope[J]. Geotechnical Investigation & Surveying,2012,40(6):27-30. (in Chinese with English abstract [17] 高瑜,叶咸,夏强. 基于等效连续介质模型的单裂隙渗流数值模拟研究[J]. 地下水,2016,38(5):40-43. doi: 10.3969/j.issn.1004-1184.2016.05.016GAO Y,YE X,XIA Q. Study on numerical simulation of single fracture seepage based on equivalent continuum model[J]. Ground Water,2016,38(5):40-43. (in Chinese with English abstract doi: 10.3969/j.issn.1004-1184.2016.05.016 [18] 何忱,姚池,杨建华,等. 基于等效离散裂隙网络的三维裂隙岩体渗流模型[J]. 岩石力学与工程学报,2019,38(增刊1):2748-2759.HE C,YAO C,YANG J H,et al. A 3D model for flow in fractured rock mass based on the equivalent discrete fracture network[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(S1):2748-2759. (in Chinese with English abstract [19] 李睿冉,张国玉. 裂隙岩体离散裂隙网络介质模型研究[J]. 山东农业大学学报(自然科学版),2010,41(2):279-282. doi: 10.3969/j.issn.1000-2324.2010.02.024LI R R,ZHANG G Y. The model studr of the discrete network media of fractured rock[J]. Journal of Shandong Agricultural University (Natural Science Edition),2010,41(2):279-282. (in Chinese with English abstract doi: 10.3969/j.issn.1000-2324.2010.02.024 [20] 王晋丽,陈喜,张志才,等. 基于离散裂隙网络模型的裂隙水渗流计算[J]. 中国岩溶,2016,35(4):363-371.WANG J L,CHEN X,ZHANG Z C,et al. Computation of fracture water flow based on discrete fracture network model[J]. Carsologica Sinica,2016,35(4):363-371. (in Chinese with English abstract [21] 李树文,高轲,王若男. 基于非连续裂隙介质网络流的线素法模型研究[J]. 河北工程大学学报(自然科学版),2013,30(4):73-77.LI S W,GAO K,WANG R N. Research of the line element method model based on discontinuous fracture media network flow[J]. Journal of Hebei University of Engineering (Natural Science Edition),2013,30(4):73-77. (in Chinese with English abstract [22] 王恩志. 岩体裂隙的网络分析及渗流模型[J]. 岩石力学与工程学报,1993,12(3):214-221.WANG E Z. Network analysis and seepage flow model of fractured rockmass[J]. Chinese Journal of Rock Mechanics and Engineering,1993,12(3):214-221. (in Chinese with English abstract [23] 彭国华. 三维离散裂隙网络模型确定岩体渗透张量的研究[J]. 水利规划与设计,2016,55(9):70-73.PENG G H. Research on determining rock mass permeability tensor using three-dimensional discrete fracture network model[J]. Water Resources Planning and Design,2016,55(9):70-73. (in Chinese with English abstract [24] RONG G,PENG J,WANG X J,et al. Permeability tensor and representative elementary volume of fractured rock masses[J]. Hydrogeology Journal,2013,21(7):1655-1671. doi: 10.1007/s10040-013-1040-x [25] HE C,YAO C,JIANG Q H,et al. A new semi-analytical method for estimation of anisotropic hydraulic conductivity of three-dimensional fractured rock masses[J]. Journal of Hydrology,2022,612:128056. doi: 10.1016/j.jhydrol.2022.128056 [26] ZHENG J,WANG X H,QING L,et al. A new determination method for the permeability tensor of fractured rock masses[J]. Journal of Hydrology,2020,585:124811. doi: 10.1016/j.jhydrol.2020.124811 [27] 王俊奇,董晔,李鹏宇. 三维离散裂隙网络管单元模型确定岩体渗透张量的尝试[J]. 水利与建筑工程学报,2016,14(3):47-54.WANG J Q,DONG Y,LI P Y. Attempts of pipe element model to determine rock mass permeability tensor for three dimensional discrete fracture network[J]. Journal of Water Resources and Architectural Engineering,2016,14(3):47-54. (in Chinese with English abstract [28] LI S C,XU Z H,MA G W. A Graph-theoretic Pipe Network Method for water flow simulation in discrete fracture networks:GPNM[J]. Tunnelling and Underground Space Technology,2014,42:247-263. doi: 10.1016/j.tust.2014.03.012 [29] JING Y,ARMSTRONG R T,MOSTAGHIMI P. Image-based fracture pipe network modelling for prediction of coal permeability[J]. Fuel,2020,270:117447. doi: 10.1016/j.fuel.2020.117447 [30] WANG J Q,WANG Z Y,WEI X T. The seepage tensor of the multiparameter model of pipe element in fractured rock mass[J]. Frontiers in Built Environment,2022,8:927100. doi: 10.3389/fbuil.2022.927100 [31] 王恩志,杨成田. 裂隙网络地下水流数值模型及非连通裂隙网络水流的研究[J]. 水文地质工程地质,1992,19(1):12-14.WANG E Z,YANG C T. Numerical model of groundwater flow in fracture networks and water flow in disconnected fracture networks[J]. Hydrogeology & Engineering Geology,1992,19(1):12-14. (in Chinese with English abstract [32] 兰志广. 复杂结构裂隙岩体三维统计连通率研究:以广西大藤峡泄水闸坝基岩体为例[D]. 长春:吉林大学,2020.LAN Z G. Determination of three-dimensional statistical discontinuity persistence for a rock mass characterized by non-persistent fractures:A case study of the rock mass of the sluice gate of Datengxia Hydropower Station in Guangxi[D]. Changchun:Jilin University,2020. (in Chinese with English abstract [33] 李露露,李牧阳,周志超,等. 基于统计均质区方法的裂隙几何及渗流特性评价[J]. 地质科技通报,2023,42(4):288-298.LI L L,LI M Y,ZHOU Z C,et al. Assessment of fractures geometries and seepage characteristics based on statistical homogeneous zone method[J]. Bulletin of Geological Science and Technology,2023,42(4):288-298. (in Chinese with English abstract [34] 杜玉芳. 基于Monte Carlo方法的岩体三维裂隙网络建模研究[D]. 石家庄:河北地质大学,2021.DU Y F. Modeling 3D fracture network in rock masses based on Monte Carlo method[D]. Shijiazhuang:Hebei GEO University,2021. (in Chinese with English abstract [35] 赵红亮,陈剑平. 裂隙岩体三维网络流的渗透路径搜索[J]. 岩石力学与工程学报,2005,24(4):622-627. doi: 10.3321/j.issn:1000-6915.2005.04.013ZHAO H L,CHEN J P. Searching for seepage path of 3D network in fractured rock masses[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(4):622-627. (in Chinese with English abstract doi: 10.3321/j.issn:1000-6915.2005.04.013 [36] 刘华梅,王明玉. 三维裂隙网络渗流路径识别算法及其优化[J]. 中国科学院研究生院学报,2010,27(4):463-470.LIU H M,WANG M Y. Algorithms and their optimization for identification of the connected flow paths for 3D fracture networks in fractured rocks[J]. Journal of the Graduate School of the Chinese Academy of Sciences,2010,27(4):463-470. (in Chinese with English abstract [37] 刘日成,蒋宇静,李博,等. 岩体裂隙网络非线性渗流特性研究[J]. 岩土力学,2016,37(10):2817-2824.LIU R C,JIANG Y J,LI B,et al. Nonlinear seepage behaviors of fluid in fracture networks[J]. Rock and Soil Mechanics,2016,37(10):2817-2824. (in Chinese with English abstract [38] YU L Y,ZHANG J,LIU R C,et al. Estimation of the representative elementary volume of three-dimensional fracture networks based on permeability and trace map analysis:A case study[J]. Engineering Geology,2022,309:106848. doi: 10.1016/j.enggeo.2022.106848 [39] 谭龙. 烟台某地下水封洞库裂隙岩体结构面对围岩稳定性及水封条件影响研究[D]. 武汉:中国地质大学(武汉),2021.TAN L. Study on the influence of fractured rock mass structure on the stability of surrounding rock and water seal condition of an underground water sealed cavern in Yantai[D]. Wuhan:China University of Geosciences(Wuhan),2021. (in Chinese with English abstract [40] 董晓飞,胡成,曹孟雄,等. 裂隙介质渗透性的升尺度转换研究[J]. 地质科技通报,2023,42(4):259-267.DONG X F,HU C,CAO M X,et al. Study on the upscaling transformation of hydraulic conductivity in fractured media[J]. Bulletin of Geological Science and Technology,2023,42(4):259-267. (in Chinese with English abstract -