FDEM simulation study on deterioration characteristics of weak-hard interbedded strata landslide-anti-slide pile system under wetting-drying cycles
-
摘要: 【目的】三峡库区秭归盆地广泛分布以软硬相间地层为主的易滑地层,在长期的库水浸泡冲刷、降雨等作用下,地层岩土体发生劣化损伤,成为降低滑坡稳定和影响工程安全的重要内因。【方法】以软硬相间地层岩土体为研究对象,采用有限-离散元法(FDEM)对不同干湿循环作用下软硬相间地层中硬岩和软岩的力学参数进行标定,然后通过改进的泰森多边形程序进行网格重划分,实现零厚度黏聚力单元的嵌入功能,提出并建立软硬相间地层滑坡-抗滑桩体系FDEM数值计算模型,最后对不同干湿循环作用下滑坡裂纹的形成过程和抗滑桩的嵌固机理进行研究。【结果】研究结果表明:①滑坡模拟裂纹数量随着干湿循环次数的增加而增多,裂纹宽度也逐渐增大,并与马家沟滑坡现场裂缝进行对比,模拟结果与现场基本一致;②滑坡-抗滑桩体系的模拟裂纹呈现两种演化模式,一是裂纹从桩顶侧岩土体沿着桩身向下扩展,二是裂纹从抗滑桩周围逐渐向滑体内部延伸,与横向裂纹和竖向裂纹连通,最终形成大型的贯通裂纹;③当干湿循环次数增加时,抗滑桩桩身水平位移、弯矩和剪力也随之增加;④抗滑桩嵌固段的软硬相间地层基岩内的裂纹具有局部化发育特征,而且随干湿循环次数的增加,区域内的应力逐渐减小,位移和应变则逐渐增大,相应的裂纹也愈发密集。【结论】本研究成果可为不同干湿循环作用下软硬相间地层滑坡防治提供支撑。Abstract: [Objective]In Zigui Basin of the Three Gorges Reservoir region, prone-sliding strata mainly composed of weak-hard interbedded strata are widely distributed. Under the action of long-term reservoir water immersion, erosion and rainfall, the formation rock and soil bodies deteriorate and become an important internal cause of reducing landslide stability and affecting project safety. [Methods]Taking rock and soil mass of weak-hard interbedded strata as the research object, fi-nite discrete element method (FDEM) is used to calibrate the mechanical properties of hard and soft rocks in the weak-hard interbedded strata under different wetting-drying cycles. Then the mesh is redivided by the improved Tyson poly-gon program, and the embedding function of zero thickness cohesive force unit is realized. The FDEM numerical model of landslide-anti-slide pile system in weak-hard interbedded strata formation is proposed and established. Finally, the formation process of landslide cracks and the embedding mechanism of anti-slide piles under different wetting-drying cycles are studied. [Results]The results show that: ① The number of simulated landslide cracks increases with the in-crease of the number of wetting-drying cycles, and the cracks width also increases gradually. The results of simulation are basically consistent with those of the site of Majiagou landslide; ② The simulated cracks of the landslide-anti-slide pile system show two evolutionary patterns: one is that the cracks spread downward from the rock mass on the top side of the pile along the pile body; the other is that the cracks gradually extend from around the anti-slide pile to the inside of the slide body, connecting with the transverse cracks and vertical cracks, and finally forming large through cracks; ③ When the number of wetting-drying cycles increases, the horizontal displacement, bending moment and shear force of anti-slide pile also increase; ④ The cracks in the weak-hard interbedded strata bedrock of the anti-slide pile have the characteristics of localized development, and with the increase of the number of wetting-drying cycles, the stress in the region gradually decreases, the displacement and strain gradually increase, and the corresponding cracks become more and more intensive. [Conclusion]The results of this study can provide support for the prevention and control of land-slide in weak-hard interbedded strata under different wetting-drying cycles.
点击查看大图
计量
- 文章访问数: 179
- PDF下载量: 25
- 被引次数: 0