留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鲁中南典型地热区地热水氟分布特征及其驱动机制

李曼 张薇 廖煜钟 刘峰 魏帅超 何雨江

李曼, 张薇, 廖煜钟, 刘峰, 魏帅超, 何雨江. 鲁中南典型地热区地热水氟分布特征及其驱动机制[J]. 地质科技通报, 2024, 43(3): 36-47. doi: 10.19509/j.cnki.dzkq.tb20230706
引用本文: 李曼, 张薇, 廖煜钟, 刘峰, 魏帅超, 何雨江. 鲁中南典型地热区地热水氟分布特征及其驱动机制[J]. 地质科技通报, 2024, 43(3): 36-47. doi: 10.19509/j.cnki.dzkq.tb20230706
LI Man, ZHANG Wei, LIAO Yuzhong, LIU Feng, WEI Shuaichao, HE Yujiang. Characteristics and mechanisms of fluorine enrichment in the geothermal water of south central Shandong Province[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 36-47. doi: 10.19509/j.cnki.dzkq.tb20230706
Citation: LI Man, ZHANG Wei, LIAO Yuzhong, LIU Feng, WEI Shuaichao, HE Yujiang. Characteristics and mechanisms of fluorine enrichment in the geothermal water of south central Shandong Province[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 36-47. doi: 10.19509/j.cnki.dzkq.tb20230706

鲁中南典型地热区地热水氟分布特征及其驱动机制

doi: 10.19509/j.cnki.dzkq.tb20230706
基金项目: 

中国地质调查项目 DD20221676

详细信息
    作者简介:

    李曼, E-mail: liman@mail.cgs.gov.cn

    通讯作者:

    张薇, E-mail: weizhang@mail.cgs.gov.cn

  • 中图分类号: P641.3;P314.2

Characteristics and mechanisms of fluorine enrichment in the geothermal water of south central Shandong Province

More Information
  • 摘要:

    山东省鲁中南典型地热区主要包括沂沭断裂带地热区和鲁中隆起地热区, 为了探明研究区地热水氟分布特征及其富集规律, 综合运用水化学图解、地球化学模拟和主成分分析等方法, 分析沂沭断裂带地热区和鲁中隆起地热区地热水水化学数据。结果表明: 研究区地热水以Na-Ca-Cl型、Na-Ca-SO4-Cl型和Na-Cl-SO4型为主, 基本为弱碱性水, 优势阳离子为Na+, 氟质量浓度在0.38~4.5 mg/L之间, 富钠弱碱性环境有利于地热水中氟的富集。地热水中F-质量浓度与Na+、Cl-和总溶解固体(TDS)质量浓度呈显著正相关, 而沂沭断裂带地热水样中F-质量浓度还与K+、SO42-质量浓度呈显著正相关, 与Mg2+和HCO3质量浓度呈显著负相关; 鲁中隆起地热区地热水中阳离子交换作用较沂沭断裂带地热区更为强烈, Na+反应强度明显强于Mg2+。鲁中隆起地热区和沂沭断裂带地热区均为裂隙型热储, 热储岩性分别为石灰岩、灰岩热蚀变带和安山岩破碎带, 水岩作用强烈。研究区地热水中氟离子的物质来源主要为萤石等含氟矿物的溶解沉淀, 受控于阳离子交换等水岩相互作用影响, 最终形成高氟地热水, 其中高温和富钠对研究区地热水中氟离子富集影响较大。研究成果为地热资源开发利用提供了参考。

     

  • 图 1  研究区热储概念模型(a, b)[2]、地热水氟分布及采样点分布图(c)

    Figure 1.  Conceptual model of geothermal system (a, b), distribution of geothermal water fluorine distribution and sampling sites (c) in the study area

    图 2  鲁中南地区水样Piper三线图

    Figure 2.  Piper diagram of water samples in south central Shandong Province

    图 3  鲁中南地区水样Gibbs图

    Figure 3.  Gibbs diagram of water samples in south central Shandong Province

    图 4  不同类型地热水F-箱线图

    Figure 4.  Box diagram of fluorine in the geothermal water with different types

    图 5  地热水中ρ(F-)和水温T的关系

    Figure 5.  Relationship between fluorine concentration and water temperature in the geothermal water

    图 6  地热水中F-与Ca 2+(a)、Na+(b)、Cl-(c)、SO42-(d)、Mg2+(e)和HCO3-(f)质量浓度的关系

    Figure 6.  Relationship between fluorine concentration and Ca 2+(a), Na+(b), Cl-(c), SO42-(d), Mg2+(e), HCO3-(f) concentrations in the geothermal water

    图 7  地热水饱和指数与ρ(F-)的关系

    Figure 7.  Relationship between the saturation indices and fluorine concentration in the geothermal water

    图 8  样品中Na+/(Na++Ca2+)和ρ(F-)的关系图

    Figure 8.  Relationship between Na+/(Na++Ca2+) and F- concentration in water samples

    图 9  样品中Na+/Cl-当量比(a)和Na+/(Na++Ca2++Mg2+)当量比(b)与ρ(Cl-)关系图

    Figure 9.  Relationship between Na+/Cl- (a) and Na+/(Na++Ca2++Mg2+) (b) and Cl- concentration in water samples

    表  1  研究区地热水样水化学组分统计

    Table  1.   Hydrochemical component statistics of geothermal water samples in the study area

    含水介质类型 T/℃ pH值 F- Na+ Ca2+ K+ Mg2+ Cl- SO42- HCO3- NO3-
    ρB/(mg·L-1)
    鲁中隆起区地热水(样品数12) 平均值 51.18 7.51 3.01 443.98 240.46 34.75 24.71 470.39 891.22 162.18 4.76
    中位数 54.00 7.54 3.50 392.50 166.15 21.14 7.59 251.45 562.26 126.81 1.92
    最小值 25.00 6.75 0.51 45.70 72.95 2.21 1.86 26.57 156.50 59.53 0
    最大值 70.00 8.10 4.50 1 042.50 564.60 107.50 75.67 1 146.61 2 337.87 348.51 25.56
    沂沭断裂带地热水(样品数5) 平均值 49.27 7.49 2.66 448.79 196.48 24.39 10.50 780.48 239.26 193.51 25.40
    中位数 52.00 7.50 3.05 482.50 203.60 29.12 4.63 829.80 238.98 190.50 25.70
    最小值 23.00 7.20 0.38 79.45 148.20 1.57 1.89 192.40 164.20 92.17 10.94
    最大值 66.00 7.90 3.83 686.20 239.80 34.93 38.66 1 208.00 300.20 320.30 48.38
    下载: 导出CSV

    表  2  地热水ρ(F-)和pH值描述统计

    Table  2.   Description statistical of fluorine concentration and pH in geothermal water

    指标 含水介质类型 样品数 最小值 最大值 均值 标准偏差 标准偏差 方差
    pH值 鲁中隆起区地热水 12 6.75 8.10 7.51 0.142 29 0.492 92 0.243
    沂沭断裂带地热水 5 7.20 7.90 7.49 0.122 46 0.273 82 0.075
    总计 17 6.75 8.10 7.50 0.104 57 0.431 14 0.186
    ρ(F-)/ (mg·L-1) 鲁中隆起区地热水 12 0.51 4.50 3.01 0.384 78 1.332 92 1.777
    沂沭断裂带地热水 5 0.38 3.83 2.66 0.595 16 1.330 83 1.771
    总计 17 0.38 4.50 2.91 0.315 35 1.300 24 1.691
    下载: 导出CSV

    表  3  地热水中ρ(F-)与pH值、水温T以及其他离子质量浓度相关性分析

    Table  3.   Correlation analysis of fluorine concentration with pH, water temperature and other ions concentrations in the geothermanl water

    热储类型 F- pH值 Na+ Ca2+ Mg2+ K+ Cl- SO42- HCO3- TDS T
    鲁中隆起地热区 F- 1 0.102 0.811** 0.221 -0.040 0.527 0.720** 0.329 -0.076 0.624* 0.817**
    沂沭断裂带地热区 F- 1 0.459 0.984** 0.845 -0.970** 0.958* 0.951* 0.953* -0.957* 0.977** 0.86
    ** 在p=0.01级别(双尾),相关性显著; * 在p=0.05级别(双尾),相关性显著
    下载: 导出CSV

    表  4  研究区地热水主要离子主成分分析

    Table  4.   Principal component analysis of the major ions in the geothermal water in the study area

    参数 各主成分相关关系
    PC1 PC2 PC3
    Na+ 0.381 0.802 0.382
    Ca2+ 0.953 0.152 -0.05
    Mg2+ 0.96 -0.197 -0.185
    Cl- 0.018 0.921 0.191
    SO42- 0.939 0.043 0.12
    HCO3- 0.807 -0.292 -0.199
    F- 0.172 0.515 0.821
    偏硅酸 -0.369 0.826 0.087
    TDS 0.808 0.540 0.222
    pH值 -0.653 -0.223 0.678
    T -0.128 0.291 0.893
    特征值 4.868 3.979 1.197
    方差贡献率/% 44.253 36.173 10.886
    累计方差贡献率/% 44.253 80.426 91.312
    下载: 导出CSV
  • [1] 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937. doi: 10.3969/j.issn.0001-5717.2020.07.002

    WANG G L, LIN W J. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 2020, 94(7): 1923-1937. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2020.07.002
    [2] 牟林凯. 山东省地热水赋存特征及其形成模式研究[D]. 山东青岛: 山东科技大学, 2017.

    MOU L K. Study of occurrence characteristics and formation model of geothermal water in Shandong Province[D]. Qingdao Shandong: Shandong University of Science and Technology, 2017. (in Chinese with English abstract)
    [3] 朱喜, 张庆莲, 刘彦广. 基于热储法的鲁西平原地热资源评价[J]. 地质科技情报, 2016, 35(4): 172-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604027.htm

    ZHU X, ZHANG Q L, LIU Y G. Evaluation of the geothermal resources in the plain of West Shandong Province[J]. Geological Science and Technology Information, 2016, 35(4): 172-177. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604027.htm
    [4] 孟甲, 秦鹏, 史启朋, 等. 断陷盆地碳酸盐岩热储勘查及研究: 以鱼台凹陷为例[J]. 地质科技通报, 2022, 41(4): 38-45. doi: 10.19509/j.cnki.dzkq.2022.0035

    MENG J, QIN P, SHI Q P, et al. Exploration and study on carbonate thermal reservoirs in fault basins: A case from Yutai Sag[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 38-45. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0035
    [5] 蔡有兄, 钟秀燕. 山东省鲁中南地区典型地热田概述[J]. 山东国土资源, 2015, 31(5): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201505010.htm

    CAI Y X, ZHONG X Y. Brief introduction to typical geothermal field in south region of Shandong Province[J]. Shandong Land and Resources, 2015, 31(5): 24-30. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201505010.htm
    [6] 张林, 孙咏梅, 林春竹, 等. 地热水的开发利用与环境氟污染[J]. 农业环境与发展, 1996, 13(3): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ603.012.htm

    ZHANG L, SUN Y M, LIN C Z, et al. Development and utilization of geothermal water and environmental fluorine pollution[J]. Journal of Agricultural Resources and Environment, 1996, 13(3): 40-42. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ603.012.htm
    [7] GUO Q H, WANG Y X, LIU W. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China[J]. Journal of Volcanology and Geothermal Research, 2007, 166(3/4): 255-268.
    [8] 魏晓阳, 郭清海, 袁建飞, 等. 高温地热流体来源氟在环境中的分布特征: 以西藏羊八井热田为例[J]. 东华理工大学学报(自然科学版), 2009, 32(1): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200901009.htm

    WEI X Y, GUO Q H, YUAN J F, et al. Environmental migration and transformation of fluoride from high-temperature geothermal fluid: A case study at Yangbajing, Tibet, China[J]. Journal of East China Institute of Technology (Natural Science), 2009, 32(1): 38-44. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200901009.htm
    [9] 石维栋, 郭建强, 张森琦, 等. 贵德盆地高氟、高砷地下热水分布及水化学特征[J]. 水文地质工程地质, 2010, 37(2): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201002013.htm

    SHI W D, GUO J Q, ZHANG S Q, et al. The distribution and geochemistry of geothermal groundwater bearing F and As in the Guide Basin[J]. Hydrogeology & Engineering Geology, 2010, 37(2): 36-41. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201002013.htm
    [10] 李曼, 邢林啸, 王贵玲, 等. 冀中坳陷地区地下热水氟分布特征及其风险评估和开发利用建议[J]. 中国地质, 2023, 50(6): 1857-1870. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202306019.htm

    LI M, XING L X, WANG G L, et al. Distribution characteristics of fluorine in deep geothermal water in Jizhong Depression and its risk assessment and development utilization suggestions[J]. Geology in China, 2023, 50(6): 1857-1870. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202306019.htm
    [11] 宋晓光, 芦岩, 梁仕凯, 等. 张家口坝下地区高氟地下水成因分析与健康风险评价[J]. 地质科技通报, 2022, 41(1): 240-250. doi: 10.19509/j.cnki.dzkq.2021.0070

    SONG X G, LU Y, LIANG S K, et al. Analysis of high-fluoride groundwater formation mechanisms and assessment of health risk in Baxia region, Zhangjiakou[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 240-250. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0070
    [12] 潘欢迎, 邹常健, 毕俊擘, 等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报, 2021, 40(3): 194-203. doi: 10.19509/j.cnki.dzkq.2021.0312

    PAN H Y, ZOU C J, BI J B, et al. Hydrochemical characteristics and fluoride enrichment mechanisms of high-fluoride groundwater in a typical piedmont proluvial fan in Aksu area, Xinjiang, China[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 194-203. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0312
    [13] SHUPE J L, OLSON A E, PETERSON H B, et al. Fluoride toxicosis in wild ungulates[J]. Journal of the American Veterinary Medical Association, 1984, 185(11): 1295-1300.
    [14] 毛健全, 王伍军. 贵州温泉水氟研究[J]. 贵州工学院学报, 1991, 20(2): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GZGX199102004.htm

    MAO J Q, WANG W J. Study of the fluorine in hot spring in Guizhou[J]. Journal of Guizhou Institute of Technology, 1991, 20(2): 13-21. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GZGX199102004.htm
    [15] LOTTERMOSER B G, CLEVERLEY J S. Controls on the genesis of a high-fluoride thermal spring: Innot Hot Springs, North Queensland[J]. Australian Journal of Earth Sciences, 2007, 54(4): 597-607.
    [16] SRACEK O, WANKE H, NDAKUNDA N N, et al. Geochemistry and fluoride levels of geothermal springs in Namibia[J]. Journal of Geochemical Exploration, 2015, 148: 96-104.
    [17] 孙红丽, 马峰, 刘昭, 等. 西藏高温地热显示区氟分布及富集特征[J]. 中国环境科学, 2015, 35(1): 251-259. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201501045.htm

    SUN H L, MA F, LIU Z, et al. The distribution and enrichment characteristics of fluoride in geothermal active area in Tibet[J]. China Environmental Science, 2015, 35(1): 251-259. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201501045.htm
    [18] 原若溪, 王贵玲, 刘峰, 等. 冀东北地区中低温对流型地热系统的氟指示意义研究[J]. 地质论评, 2021, 67(1): 218-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202101022.htm

    YUAN R X, WANG G L, LIU F, et al. Study on the indication of fluorine of the low-medium temperature convective geothermal system in northeastern Hebei Province[J]. Geological Review, 2021, 67(1): 218-230. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202101022.htm
    [19] 欧浩, 卢国平, 胡晓农, 等. 广东省信宜-廉江地区地热水中氟的富集过程[J]. 环境化学, 2019, 38(5): 1128-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201905021.htm

    OU H, LU G P, HU X N, et al. Fluoride enrichment in geothermal waters in Xinyi-Lianjiang region, Guangdong[J]. Environmental Chemistry, 2019, 38(5): 1128-1138. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201905021.htm
    [20] 于晓静, 金兴, 尹斐. 济南市平阴氡地热水中氟的来源及赋存机理浅析[J]. 山东国土资源, 2017, 33(8): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201708008.htm

    YU X J, JIN X, YIN F. Primary analysis on the resource and occurrence mechanism of fluorine ion in radon geothermal water in Pingyin of Jinan City[J]. Shandong Land and Resources, 2017, 33(8): 46-50. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201708008.htm
    [21] 虞岚. 我国部分地下热水中氟的分布与成因探讨[D]. 北京: 中国地质大学(北京), 2007.

    YU L. A study of the occurrence and origin of fluoride in thermal groundwater in some areas of China[D]. Beijing: China University of Geosciences (Beijing), 2007. (in Chinese with English abstract)
    [22] 刘春华, 王威, 杨丽芝, 等. 山东省地下水氟富集规律及其驱动机制[J]. 地质学报, 2021, 95(6): 1962-1972. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202106020.htm

    LIU C H, WANG W, YANG L Z, et al. Driving mechanisms of fluorine ennrichment characteristics in groundwater, Shandong Province[J]. Acta Geologica Sinica, 2021, 95(6): 1962-1972. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202106020.htm
    [23] 刘帅, 马雪梅, 刘志涛, 等. 鲁北平原高氟深层地下水的探究[J]. 山东国土资源, 2017, 33(6): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201706006.htm

    LIU S, MA X M, LIU Z T, et al. Study on deep groundwater with high-flouride in Lubei Plain[J]. Shandong Land and Resources, 2017, 33(6): 30-37. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201706006.htm
    [24] 郝启勇, 徐晓天, 张心彬, 等. 鲁西北阳谷地区浅层高氟地下水化学特征及成因[J]. 地球科学与环境学报, 2020, 42(5): 668-677. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005008.htm

    HAO Q Y, XU X T, ZHANG X B, et al. Hydrochemical characteristics and genesis of high-fluorine shallow groundwater in Yanggu area of the northwestern Shandong, China[J]. Journal of Earth Sciences and Environment, 2020, 42(5): 668-677. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005008.htm
    [25] 厉愿. 山东省地热资源热成因机制分析[D]. 山东青岛: 山东科技大学, 2012.

    LI Y. Analysis of thermal genetic mechanism of geothermal resources in Shandong Province[D]. Qingdao Shandong: Shandong University of Science and Technology, 2012. (in Chinese with English abstract)
    [26] 朱其顺, 许光泉. 中国地下水氟污染的现状及研究进展[J]. 环境科学与管理, 2009, 34(1): 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ200901013.htm

    ZHU Q S, XU G Q. The current situation and research progress of ground water fluorine pollution, in China[J]. Environmental Science and Management, 2009, 34(1): 42-44. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ200901013.htm
    [27] 张威, 傅新锋, 张甫仁. 地下水中氟含量与温度、pH值、(Na++K+)/Ca2+的关系: 以河南省永城矿区为例[J]. 地质与资源, 2004, 13(2): 109-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200402007.htm

    ZHANG W, FU X F, ZHANG F R. The relationship between the high fluorine content of groundwater and the pH value, water temperature and the ratio of (Na++K+)/Ca2+: A case study of Yongcheng mine area[J]. Journal of Precious Metallic Geology, 2004, 13(2): 109-111. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200402007.htm
    [28] 陈国阶, 余大富. 环境中的氟[M]. 北京: 北京科技出版社, 1990.

    CHEN G J, YU D F. Fluorine in the environment[M]. Beijing: Beijing Science and Technology Press, 1990. (in Chinese)
    [29] 鲁孟胜, 韩宝平, 武凡, 等. 鲁西南地区高氟地下水特征及成因探讨[J]. 中国地质, 2014, 41(1): 294-302. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201401025.htm

    LU M S, HAN B P, WU F, et al. Characteristics and genesis of high-fluorine groundwater in southwestern Shandong Province[J]. Geology in China, 2014, 41(1): 294-302. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201401025.htm
    [30] GAO Z J, ZHU Z H, LIU X D, et al. The formation and model of high fluoride groundwater and in-situ dispelling fluoride assumption in Gaomi City of Shandong Province[J]. Journal of Groundwater Science and Engineering, 2014, 2(2): 34-39.
    [31] HANDA B K. Geochemistry and genesis of fluoride-containing ground waters in India[J]. Ground Water, 1975, 13(3): 275-281.
    [32] 乌丽罕. 衡水地区高氟地下水化学特征及其成因[D]. 北京: 中国地质大学(北京), 2015.

    WU L H. Characteristics and genesis of high-fluoride groundwater in Hengshui City, the North China Plain[D]. Beijing: China University of Geosciences (Beijing), 2015. (in Chinese with English abstract)
    [33] 姜凌. 干旱区绿洲地下水水化学成分形成及演化机制研究: 以阿拉善腰坝绿洲为例[D]. 西安: 长安大学, 2009.

    JIANG L. Study on hydrochemical composition formation and evolution mechanisms of the groundwater in oasis of arid areas: A case of Yaoba oasis in Alashan[D]. Xi'an: Chang'an University, 2009. (in Chinese with English abstract)
    [34] 孟祥玲, 王庆兵, 杨培杰. 山东省地热资源开发利用现状调查与问题分析[J]. 山东国土资源, 2021, 37(11): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202111006.htm

    MENG X L, WANG Q B, YANG P J. Investigation and problem analysis on development and utilization of geothermal resources in Shandong Province[J]. Shandong Land and Resources, 2021, 37(11): 36-42. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202111006.htm
    [35] 李肖兰, 杜炤伟, 张玲, 等. 山东省地热资源分布与开发利用研究[J]. 山东国土资源, 2021, 37(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202101005.htm

    LI X L, DU Z W, ZHANG L, et al. Distribution characteristics and present condition of exploitation and utilization of geothermal resources in Shandong Province[J]. Shandong Land and Resources, 2021, 37(1): 37-43. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202101005.htm
    [36] 中华人民共和国卫生部, 国家标准化管理委员会. 生活饮用水卫生标准: GB5749-2006[S]. 北京: 中国标准出版社, 2007.

    Ministry of Health of the People's Republic of China, Standardization Administration of the People's Republic of China. Standards for drinking water quality: GB5749-2006[S]. Beijing: Standards Press of China, 2007. (in Chinese)
    [37] 生态环境部, 国家市场监督管理总局. 农田灌溉水质标准: GB5084-2021[S]. 北京: 中国标准出版社, 2021.

    Ministry of Ecology and Environment, State Administration for Market Regulation. Standard of water quality for farmland irrigation: GB5084-2021[S]. Beijing: Standards Press of China, 2021. (in Chinese)
    [38] 国家环境保护局. 渔业用水标准: GB5084-89[S]. 北京: 中国标准出版社, 1989.

    State Department of Environmental Conservation. Water quality standard for fisheries: GB5084-89[S]. Beijing: Standards Press of China, 1989. (in Chinese)
    [39] 国家市场监督管理总局, 国家标准化管理委员会. 温泉服务温泉水质要求: GB/T41837-2022[S]. 北京: 中国标准出版社, 2022.

    State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Hot spring service: Hot spring water quality requirement: GB/T41837-2022[S]. Beijing: Standards Press of China, 2022. (in Chinese)
    [40] 余正艳, 郭清海, 曹耀武, 等. 阴离子黏土处理增强型地热系统返排液的研究[J]. 环境化学, 2018, 37(2): 335-346. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201802018.htm

    YU Z Y, GUO Q H, CAO Y W, et al. Treat of the fracturing fluid from enhanced geothermal systems by using selected anion clays[J]. Environmental Chemistry, 2018, 37(2): 335-346. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201802018.htm
    [41] 郑桂森, 李良景, 吕金波. 北京地热开采中的尾水氟处理方法[J]. 地质通报, 2019, 38(增刊1): 397-403. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2019Z1020.htm

    ZHENG G S, LI L J, LÜ J B. Research on method of processing tail water in geothermal exploration in Beijing[J]. Geological Bulletin of China, 2019, 38(S1): 397-403. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2019Z1020.htm
    [42] 王睿智, 刘建, 吴金辉, 等. 磁性纳米复合物的制备及其在地热水中F和As的去除性能研究[J]. 新型工业化, 2019, 9(6): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-XXHG201906018.htm

    WANG R Z, LIU J, WU J H, et al. Preparation of magnetic nanocomposite and their removal properties of F and As in geothermal water[J]. Journal of New Industrialization, 2019, 9(6): 82-85. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XXHG201906018.htm
    [43] 于波, 任桐, 都兴红, 等. 含氟废水处理工艺研究[J]. 中国资源综合利用, 2020, 38(11): 192-195. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS202011056.htm

    YU B, REN T, DU X H, et al. Study on the treatment process of fluorine-containing wastewater[J]. China Resources Comprehensive Utilization, 2020, 38(11): 192-195. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS202011056.htm
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  114
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-19
  • 录用日期:  2024-02-21
  • 修回日期:  2024-02-19

目录

    /

    返回文章
    返回