留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络的板墙组合式固化土地基承载力计算方法与优化设计

周灵刚 胡奕挺 陈欣蔚 屠锋 吴朝峰 于洋 王彦兵 满银 李维朝

周灵刚, 胡奕挺, 陈欣蔚, 屠锋, 吴朝峰, 于洋, 王彦兵, 满银, 李维朝. 基于神经网络的板墙组合式固化土地基承载力计算方法与优化设计[J]. 地质科技通报, 2024, 43(6): 102-113. doi: 10.19509/j.cnki.dzkq.tb20230720
引用本文: 周灵刚, 胡奕挺, 陈欣蔚, 屠锋, 吴朝峰, 于洋, 王彦兵, 满银, 李维朝. 基于神经网络的板墙组合式固化土地基承载力计算方法与优化设计[J]. 地质科技通报, 2024, 43(6): 102-113. doi: 10.19509/j.cnki.dzkq.tb20230720
ZHOU Linggang, HU Yiting, CHEN Xinwei, TU Feng, WU Zhaofeng, YU Yang, WANG Yanbing, MAN Yin, LI Weichao. Calculation of capacity and optimization design-composite slab wall soil solidification foundation based on neural network[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 102-113. doi: 10.19509/j.cnki.dzkq.tb20230720
Citation: ZHOU Linggang, HU Yiting, CHEN Xinwei, TU Feng, WU Zhaofeng, YU Yang, WANG Yanbing, MAN Yin, LI Weichao. Calculation of capacity and optimization design-composite slab wall soil solidification foundation based on neural network[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 102-113. doi: 10.19509/j.cnki.dzkq.tb20230720

基于神经网络的板墙组合式固化土地基承载力计算方法与优化设计

doi: 10.19509/j.cnki.dzkq.tb20230720
基金项目: 

国家电网依托工程科技项目 11CJ01

详细信息
    作者简介:

    周灵刚, E-mail: 31558565@qq.com

    通讯作者:

    于洋, E-mail: yang-yu@zju.edu.cn

  • 中图分类号: TU470

Calculation of capacity and optimization design-composite slab wall soil solidification foundation based on neural network

More Information
  • 摘要:

    软土固化技术在地基处理中应用广泛, 为发挥其空间可塑性优势, 板墙组合式固化土地基逐步在工程中得到应用。然而, 板墙组合式固化土地基承载力尚无可靠计算方法, 叠加固化土与软土力学参数不确定性, 导致板墙组合式固化土地基优化设计困难, 需要提出一种板墙组合式固化土地基承载力计算及优化设计方法。以浙江省台州市经纬110 kV滨海变电站场地为研究对象, 测试固化土与软土力学参数, 建立数值模型计算板墙组合式地基承载力, 以此为基础训练神经网络模型, 作为板墙组合式固化土地基承载力计算模型, 为工程应用提供便利。引入岩土工程鲁棒性设计理论, 采用蒙特卡洛模拟处理固化土与软土力学参数不确定性, 以标准差作为鲁棒性评价指标评估不确定性对设计的影响, 以固化土地基截面面积近似表征工程造价, 实现考虑经济性和鲁棒性的固化土地基优化设计。将设计方法应用于工程实例, 得到最优设计方案为固化板厚度P=2 m、固化墙深度W=3 m、固化墙厚度D=1.5 m、固化墙净间距S=1 m, 为工程设计提供参考。本研究提出的板墙组合式固化土地基承载力计算模型及优化设计方法为相关工程计算和设计提供新思路和新方法。

     

  • 图 1  工程地理位置

    Figure 1.  Position of the study area

    图 2  场地地层分布图

    Figure 2.  Stratigraphic distribution of the study site

    图 3  板墙组合式固化土地基示意图

    W.固化墙深度;P.固化板厚度;B.上部基础宽度;D.固化墙厚度;S.固化墙净间距;下同

    Figure 3.  Diagram of composite slab wall soil solidification foundation

    图 4  板墙组合式固化土地基数值模型与计算结果

    a.数值模型; b.基础底面压力变化曲线;○表示只限制了法向位移;△表示限制了xy 2个方向的位移

    Figure 4.  Numerical model and calculation results of composite slab wall soil solidification foundation

    图 5  神经网络结构示意图

    Figure 5.  Schematic of the neural network structure

    图 6  帕累托前沿和关节点示意图

    Figure 6.  Schematic of Pareto front and knee point

    图 7  板墙组合式固化土地基设计流程图

    Figure 7.  Design flowchart of composite slab wall soil solidification foundation

    图 8  神经网络拟合结果

    Figure 8.  Fitting results of neural network

    图 9  不同噪声因素组数对30个噪声因素集合的变异系数(COV)的影响

    Figure 9.  Influence of the number of noise factors on the coefficient of variation for 30 collections of noise factors

    图 10  地基承载力分布直方图

    Figure 10.  Distribution histogram of bearing capability of foundations

    图 11  板墙组合式固化土地基鲁棒性设计的帕累托前沿及关节点

    Figure 11.  Pareto front and knee point of the robust design for the composite slab wall soil solidification foundation

    图 12  土体参数不确定性变化后的帕累托前沿和关节点

    Figure 12.  Pareto front and knee points for variation in the uncertainties of soil parameters

    图 13  Case 1、Case 2和Case 3的帕累托前沿和关节点

    Figure 13.  Pareto front and knee point for Case 1, Case 2 and Case 3

    表  1  土体物理力学参数

    Table  1.   Physical and mechanical parameters of soil

    地层 重度γ/ (kN·m-3) 压缩摸量Es/MPa 黏聚力c/kPa 内摩擦角φ(°) 渗透系数k/(cm·s-1)
    冲填土(吹填土) 17.3 2.6 12.3 10.2 1.18 × 10-5
    淤泥质粉质黏土 17.7 3.0 13.7 12.1 8.47 × 10-6
    淤泥质黏土 17.0 2.3 12.1 9.5 5.26 × 10-6
    粉质黏土 17.9 3.4 22.3 13.3 9.62 × 10-6
    黏土 17.7 3.4 24.4 13.3 6.47 × 10-6
    粉质黏土 19.2 5.8 36.5 18.0 7.33 × 10-6
    固化土 18.0 4.26 50.0 31.6 1.54 × 10-4
    下载: 导出CSV

    表  2  神经网络训练样本输入参数的取值

    Table  2.   Input parameters of the neural network training samples

    参数 最小值 平均值 最大值
    基础宽度B/m 2 4 6
    固化墙深度W/m 4 6 8
    固化板厚度P/m 2 4 6
    固化墙厚度D/m 0.5 1.0 1.5
    固化墙净间距S/m 1 2 3
    固化土黏聚力c1/kPa 30 40 50
    固化土内摩擦角φ1/(°) 21 28 35
    软土黏聚力c2/kPa 10 15 20
    软土内摩擦角φ2/(°) 9 12 15
    下载: 导出CSV

    表  3  设计参数取值

    Table  3.   Design parameters values

    设计参数 取值
    基础宽度B/m 4
    固化墙深度W/m 3,4,5,6,7,8
    固化板厚度P/m 2,3,4,5,6
    固化墙厚度D/m 1.0,1.5
    固化墙净间距S/m 1,2,3
    下载: 导出CSV

    表  4  不确定性参数取值情况

    Table  4.   Noise factors values

    土体种类 参数 统计量 取值 分布形式
    下伏软土 黏聚力c2 均值/kPa 13.7 对数正态分布
    变异系数COV 0.3
    内摩擦角φ2 均值/(°) 12.1
    变异系数COV 0.3
    固化土 黏聚力c1 均值/kPa 50.0
    变异系数COV 0.1
    内摩擦角φ1 均值/(°) 31.6
    变异系数COV 0.1
    下载: 导出CSV

    表  5  帕累托前沿上各设计点鲁棒性和工程造价归一化结果及到乌托邦点的距离

    Table  5.   Distance between the normalized robustness, the normalized cost of the design and knee point on the Pareto front

    序号 设计参数 归一化 距离
    B/m P/m W/m S/m D/m SNR C/m2 SNR C
    1 4 2 3 3 1 3.260 31 0.000 0.000 1.000
    2 4 2 3 2 1 3.342 32 0.149 0.017 0.852
    3 4 2 3 2 1.5 3.422 34 0.294 0.050 0.708
    4 4 2 3 1 1 3.437 35 0.322 0.066 0.682
    5 4 2 3 1 1.5 3.521 35.5 0.475 0.074 0.531
    6 4 3 4 1 1.5 3.541 49.5 0.511 0.306 0.577
    7 4 4 5 1 1.5 3.631 63.5 0.675 0.537 0.628
    8 4 5 6 1 1 3.636 77 0.682 0.760 0.824
    9 4 5 6 1 1.5 3.700 77.5 0.799 0.769 0.794
    10 4 6 7 1 1 3.711 91 0.818 0.992 1.008
    11 4 6 7 1 1.5 3.811 91.5 1.000 1.000 1.000
    注: C.工程造价(固化土面积); SNR.鲁棒性(信噪比)
    下载: 导出CSV

    表  6  参数不确定性变化情况

    Table  6.   Variation in the uncertainties of soil parameters

    组别 下伏软土 固化土 分布形式
    黏聚力c2 内摩擦角φ2 黏聚力c1 内摩擦角φ1
    均值/kPa COV 均值/(°) COV 均值/kPa COV 均值/(°) COV
    Case 1 0.2 0.2 0. 05 0. 05 对数正态分布
    Case 2 13.7 0.3 12.1 0.3 50. 0 0. 10 31. 6 0. 10
    Case 3 0.4 0.4 0. 15 0. 15
    下载: 导出CSV

    表  7  Case 1、Case 2和Case 3的最优设计的设计参数、鲁棒性和工程造价

    Table  7.   Design parameters, design robustness and cost of optimal design for Case 1, Case 2 and Case3

    组别 设计参数 鲁棒性(信噪比SNR) 工程造价(固化土面积C)/m2
    B/m P/m W/m S/m D/m
    Case 1 4 2 3 1 1.5 4.124 35.5
    Case 2 4 2 3 1 1.5 3.521 35.5
    Case 3 4 2 3 1 1.5 3.268 35.5
    下载: 导出CSV
  • [1] 蔡强. 滨海深厚软土加固变形机理及工程运用[D]. 安徽淮南: 安徽理工大学, 2018.

    CAI Q. Deformation mechanism and engineering application of the strengthened deep soft soil in the coastal[D]. Huainan Anhui: Anhui University of Science and Technology, 2018. (in Chinese with English abstract)
    [2] 王冲, 郝金山, 张迎, 等. 天津滨海地区软土固化地基承载性状分析[J]. 勘察科学技术, 2015(2): 1-4.

    WANG C, HAO J S, ZHANG Y, et al. Analysis on bearing behavior of soft soil solidified foundation in Tianjin coastal area[J]. Site Investigation Science and Technology, 2015(2): 1-4. (in Chinese with English abstract)
    [3] 张吉, 赵丹禄. 天津滨海地区软土固化技术现场试验研究[J]. 珠江水运, 2023(9): 104-106.

    ZHANG J, ZHAO D L. Field test study on soft soil solidification technology in coastal area of Tianjin[J]. Pearl River Water Transport, 2023(9): 104-106. (in Chinese with English abstract)
    [4] 刘曦. 带肋梁硬壳层软土地基应力分布与承载力研究[D]. 沈阳: 沈阳建筑大学, 2013.

    LIU X. Research on the stress distribution and bearing capacity of the hard shell foundation with rib beam[D]. Shenyang: Shenyang Architecture University, 2013. (in Chinese with English abstract)
    [5] 王玉梅. 带肋梁硬壳层软土地基应力与变形的研究[D]. 沈阳: 沈阳建筑大学, 2013.

    WANG Y M. Research on the stress and deformation of the hard shell foundation with rib beam[D]. Shenyang: Shenyang Architecture University, 2013. (in Chinese with English abstract)
    [6] LIU X Q, ZHANG H Q, YAN Z, et al. Research on bearing characteristics of grid composite foundation based on silt solidification[J]. Journal of Performance of Constructed Facilities, 2021, 35(5): 04021070. doi: 10.1061/(ASCE)CF.1943-5509.0001611
    [7] 曹文庚, 潘登, 徐郅杰, 等. 河南省滑坡灾害易发性制图研究: 多种机器学习模型的对比[J/OL]. 地质科技通报: 1-11(2023-12-28)[2024-09-02]. doi: 10.19509/j.cnki.dzkq.tb20230338.

    CAO W G, PAN D, XU Z J, et al. Landslide disaster vulnerability mapping study in Henan Province: Comparison of different machine learning models[J/OL]. Bulletin of Geological Science and Technology: 1-11(2023-12-28)[2024-09-02]. doi: 10.19509/j.cnki.dzkq.tb20230338.(in Chinese with English abstract)
    [8] 宋宜祥, 张晓波, 黄达. 基于SSA-Adam-BP神经网络模型的堰塞坝稳定性预测[J]. 地质科技通报, 2022, 41(2): 130-138. doi: 10.19509/j.cnki.dzkq.2022.0040

    SONG Y X, ZHANG X B, HUANG D. Stability prediction of landslide dams based on SSA-Adam-BP neural network model[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 130-138. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0040
    [9] 邓日朗, 张庆华, 刘伟, 等. 基于改进两步法采样策略和卷积神经网络的崩塌易发性评价[J]. 地质科技通报, 2024, 43(2): 186-200. doi: 10.19509/j.cnki.dzkq.tb20220535

    DENG R L, ZHANG Q H, LIU W, et al. Collapse susceptibility evaluation based on an improved two-step sampling strategy and a convolutional neural network[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 186-200. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220535
    [10] 郭衍昊, 窦杰, 向子林, 等. 基于优化负样本采样策略的梯度提升决策树与随机森林的汶川同震滑坡易发性评价[J]. 地质科技通报, 2024, 43(3): 251-265. doi: 10.19509/j.cnki.dzkq.tb20230037

    GUO Y H, DOU J, XIANG Z L, et al. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 251-265. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230037
    [11] 宋居正, 刘思位, 吴云山. 基于前馈神经网络的外挂物投放分离预测[J]. 弹道学报, 2023, 35(3): 33-38.

    SONG J Z, LIU S W, WU Y S. External store separation prediction based on feedforward neural network[J]. Journal of Ballistics, 2023, 35(3): 33-38. (in Chinese with English abstract)
    [12] 路晓宇. 大连海相软土固化强度试验研究及其神经网络预测[D]. 辽宁大连: 大连理工大学, 2021.

    LU X Y. Experimental study on solidification strength of Dalian marine soft soil and its neural network prediction[D]. Dalian Liaoning: Dalian University of Technology, 2021. (in Chinese with English abstract)
    [13] 王才进, 武猛, 杨洋, 等. 基于生物地理优化的人工神经网络模型预测软土的固结系数[J]. 岩土力学, 2023, 44(10): 3022-3030.

    WANG C J, WU M, YANG Y, et al. Prediction of consolidation coefficient of soft soil using an artificial neural network models with biogeography-based optimization[J]. Rock and Soil Mechanics, 2023, 44(10): 3022-3030. (in Chinese with English abstract)
    [14] 丁建文, 魏霞, 高鹏举, 等. 基于GA-BP神经网络的软土路基运营期沉降预测[J]. 东南大学学报(自然科学版), 2023, 53(4): 585-591.

    DING J W, WEI X, GAO P J, et al. Prediction of settlement of soft soil subgrade during operation based on GA-BP neural network[J]. Journal of Southeast University (Natural Science Edition), 2023, 53(4): 585-591. (in Chinese with English abstract)
    [15] JUANG C H, LIU Z F, ATAMTURKTUR H S. Reliability-based robust geotechnical design of retaining walls[C]//Anon. Sound Geotechnical Research to Practice. San Diego, California, USA. Reston, VA: American Society of Civil Engineers, 2013: 514-524.
    [16] JUANG C H, WANG L, LIU Z F, et al. Robust geotechnical design of drilled shafts in sand: New design perspective[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12): 2007-2019. doi: 10.1061/(ASCE)GT.1943-5606.0000956
    [17] JUANG C H, WANG L, HSIEH H S, et al. Robust geotechnical design of braced excavations in clays[J]. Structural Safety, 2014, 49: 37-44. doi: 10.1016/j.strusafe.2013.05.003
    [18] 胡海晨. 基于BP神经网络优化超声波测距的多功能除雪车远程监控系统研究与开发[D]. 沈阳: 东北大学, 2022.

    HU H C. Research and development of remote monitoring system for multifunctional snow removal vehicle based on BP neural network to optimize ultrasonic ranging[D]. Shenyang: Northeastern University, 2022. (in Chinese with English abstract)
    [19] 吴选蓉. 基于GA-BP神经网络的煤岩组合破坏预警方法研究[D]. 重庆: 重庆大学, 2022.

    WU X R. Research on early warning method of coal and rock combination failure based on GA-BP neural network[D]. Chongqing: Chongqing University, 2022. (in Chinese with English abstract)
    [20] DAI X Q, SHI H B, LI Y S, et al. Artificial neural network models for estimating regional reference evapotranspiration based on climate factors[J]. Hydrological Processes, 2009, 23(3): 442-450. doi: 10.1002/hyp.7153
    [21] KHOSHNEVISAN S, GONG W P, WANG L, et al. Robust design in geotechnical engineering: An update[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2014, 8(4): 217-234.
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  127
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 录用日期:  2024-08-05
  • 修回日期:  2024-08-03

目录

    /

    返回文章
    返回