留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川东侏罗系凉高山组页岩沉积环境特征及有机质富集机理

郭战峰 舒逸 陈绵琨 刘皓天 彭伟 肖雄

郭战峰, 舒逸, 陈绵琨, 刘皓天, 彭伟, 肖雄. 川东侏罗系凉高山组页岩沉积环境特征及有机质富集机理[J]. 地质科技通报, 2024, 43(4): 62-74. doi: 10.19509/j.cnki.dzkq.tb20230727
引用本文: 郭战峰, 舒逸, 陈绵琨, 刘皓天, 彭伟, 肖雄. 川东侏罗系凉高山组页岩沉积环境特征及有机质富集机理[J]. 地质科技通报, 2024, 43(4): 62-74. doi: 10.19509/j.cnki.dzkq.tb20230727
GUO Zhanfeng, SHU Yi, CHEN Miankun, LIU Haotian, PENG Wei, XIAO Xiong. Characteristics of the shale sedimentary environment and organic matter enrichment mechanism in the Jurassic Lianggaoshan Formation in the East Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 62-74. doi: 10.19509/j.cnki.dzkq.tb20230727
Citation: GUO Zhanfeng, SHU Yi, CHEN Miankun, LIU Haotian, PENG Wei, XIAO Xiong. Characteristics of the shale sedimentary environment and organic matter enrichment mechanism in the Jurassic Lianggaoshan Formation in the East Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 62-74. doi: 10.19509/j.cnki.dzkq.tb20230727

川东侏罗系凉高山组页岩沉积环境特征及有机质富集机理

doi: 10.19509/j.cnki.dzkq.tb20230727
基金项目: 

中国石油化工股份有限公司“十条龙”科研项目“复兴侏罗系陆相页岩油气藏地质评价技术” P21078-2

中国石油化工股份有限公司科研项目“川东地区重点层系页岩气成藏条件与评价技术研究” P23077

详细信息
    作者简介:

    郭战峰, E-mail: guozf.jhyt@sinopec.com

    通讯作者:

    舒逸, E-mail: cugsy@sina.com

  • 中图分类号: P618.13

Characteristics of the shale sedimentary environment and organic matter enrichment mechanism in the Jurassic Lianggaoshan Formation in the East Sichuan Basin

More Information
  • 摘要:

    四川盆地东部复兴地区泰页1井和兴页L1井均在侏罗系凉高山组页岩段测试获得高产油气流, 试采效果好, 实现了川东侏罗系陆相页岩油气勘探重大突破。为进一步明确川东侏罗系凉高山组页岩油气勘探潜力及有机质富集机理, 选取复兴地区兴页X井、兴页Y井作为典型代表, 综合测录井、岩心资料和全岩X衍射、有机碳、主微量元素等分析测试方法研究表明: 凉二下亚段页岩沉积古气候处于暖湿型环境(中等风化条件), 不同单元地层沉积的古气候之间无明显差异, 处于淡水-微咸水沉积环境。通过镧-钴法计算古水深整体介于10.9~56.1 m之间, 属于半深湖-深湖沉积环境, 自下而上沉积水体深浅交替, 整体古生产力呈现增大的趋势, 页岩段总体上处于缺氧还原环境, 发育砂质纹层, 沉积速率相对砂岩段较小。通过不同沉积环境参数与w(TOC)相关性分析, 凉二下亚段页岩有机质富集主要受古水深、古氧化还原环境、沉积速率和古生产力等多因素耦合控制作用, 古盐度和古气候条件影响相对较小。沉积环境的差异控制了页岩纵向上非均质性特征, 其中⑥号单元页岩相形成于深水缺氧沉积环境, 具有低沉积速率、高古生产力及受陆源影响较小的特点, 为有机质的富集提供了有力条件, 为有利勘探目的层。

     

  • 图 1  复兴地区位置图(a)和侏罗系凉高山组地层划分示意图(b)

    Figure 1.  Location map of the Fuxing area(a) and stratigraphic division of the Jurassic Lianggaoshan Formation(b)

    图 2  兴页X井凉二下亚段岩心观察照片

    a.风暴沉积,2 606.7 m;b.浅湖沉积,2 605.5 m;c.浅湖沉积,2 605.3 m

    Figure 2.  Core observation photos of the Liang-2 lower submember in the Well Xingye Y

    图 3  复兴地区兴页X井凉二下亚段页岩岩心特征柱状图

    Figure 3.  Shale core characteristics of Liang-2 lower submember in the Well Xingye X of the Fuxing area

    图 4  复兴地区兴页Y井凉二下亚段沉积环境特征柱状图

    Figure 4.  Histogram of sedimentary environment characteristics of Liang-2 lower submember in the Well Xingye Y of the Fuxing area

    图 5  兴页Y井凉二下亚段不同单元地层古生产力与古气候参数分布图

    Figure 5.  Distribution of paleoproductivity and paleoclimate parameters in different units of the Liang-2 lower submember in the Well Xingye Y

    图 6  兴页Y井凉二下亚段不同单元地层古氧相与古盐度参数分布图

    Figure 6.  Distribution of the paleo-oxygen phase and paleo-salinity parameters in different units of the Liang-2 lower submember in the Well Xingye Y

    图 7  复兴地区兴页Y井凉二下亚段古水深与古沉积速率特征柱状图

    Figure 7.  Column diagram of the paleowater depth and paleo-deposition rate of the Liang-2 lower submember in the Well Xingye Y of the Fuxing area

    图 8  兴页Y井凉二下亚段不同单元地层古水深(a)与古沉积速率(b)分布图

    Figure 8.  Distribution map of palaeowater depth(a) and palaeodeposition rate(b) in different units of the Liang-2 lower submember in the Well Xingye Y

    图 9  兴页Y井凉二下亚段沉积环境参数与w(TOC)相关性图

    Figure 9.  Correlation diagram between sedimentary environment parameters and organic carbon content of the Liang-2 lower submember in the Well Xingye Y

    图 10  兴页Y井凉二下亚段古氧相(a)和古生产力(b)与w(TOC)相关性图

    Figure 10.  Distribution map of palaeowater depth(a) and palaeodeposition rate(b) in different units of the Liang-2 lower submember in the Well Xingye Y

    表  1  兴页Y井凉二下亚段不同单元地层主量元素

    Table  1.   Main element statistics of different units of the Liang-2 lower submember in the Well Xingye Y

    小层 Al2O3 Fe2O3 K2O MgO CaO MnO Na2O TiO2
      ⑦ 16.1 6.3 2.1 1.6 1.9 0.11 1.6 0.78
      ⑥ 17.4 7.3 3.4 1.9 0.9 0.1 0.97 0.82
      ⑤ 16.1 5.2 2.3 1.6 1 0.2 1.45 0.78
      ④ 17.7 6.9 3.2 1.98 1.3 0.07 1.09 0.83
      ③  wB/% 17.1 6.4 2.0 1.97 1.6 0.08 1.54 0.83
      ② 16.4 6.5 2.7 1.7 0.9 0.07 0.94 0.86
      ① 16.4 4.9 2.8 1.5 0.9 0.03 0.54 0.99
    样品均值 17.0 6.6 2.9 1.8 1.1 0.08 1.06 0.84
      上地壳 15.4 5.04 2.8 2.48 3.59 0.1 3.59 0.64
    样品/上地壳 1.10 1.31 1.04 0.73 0.31 0.80 0.30 1.31
    下载: 导出CSV

    表  2  兴页Y井凉二下亚段不同单元地层微量元素

    Table  2.   Statistics of trace elements in different units of the Liang-2 lower submember in the Well Xingye Y

    小层 Ba Co Cr Sr V Cu Ni Zn
      ⑦ 571 14.7 114 259 100 28 36 121
      ⑥ 868 18.1 99 290 144 52 54 138
      ⑤ 513 13.3 111 262 111 48 40 111
      ④ 649 17.8 101 230 150 46 51 136
      ③  wB/% 450 14.1 88 190 111 36 40 126
      ② 564 18.1 105 163 150 46 49 133
      ① 518 15.9 138 140 157 37 50 109
    样品均值 646 17.1 104 221 142 45 49 131
      上地壳 628 17.3 92 320 97 28 47 67
    样品/上地壳 1.03 0.99 1.13 0.69 1.46 1.61 1.04 1.96
    下载: 导出CSV
  • [1] 金之钧, 王冠平, 刘光祥, 等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报, 2021, 42(7): 821-835. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107001.htm

    JIN Z J, WANG G P, LIU G X, et al. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica, 2021, 42(7): 821-835. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107001.htm
    [2] 杨雷, 金之钧. 全球页岩油发展及展望[J]. 中国石油勘探, 2019, 24(5): 553-559. doi: 10.3969/j.issn.1672-7703.2019.05.002

    YANG L, JIN Z J. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5): 553-559. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-7703.2019.05.002
    [3] U.S. Energy Information Administration. Drilling productivity report: For key tight oil and shale gas regions[R]. Washington, D C: EIA Independent Statistics & Analysis, 2020.
    [4] EIA. Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formation in 41 countries outside the United States[R]. Washington, D C: U.S. Energy Information Administration, 2013.
    [5] 黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004004.htm

    LI M W, JIN Z J, DONG M Z, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology & Experiment, 2019, 42(4): 489-505. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004004.htm
    [6] 刘惠民, 于炳松, 谢忠怀, 等. 陆相湖盆富有机质页岩微相特征及对页岩油富集的指示意义: 以渤海湾盆地济阳坳陷为例[J]. 石油学报, 2018, 39(12): 1328-1343. doi: 10.7623/syxb201812002

    LIU H M, YU B S, XIE Z H, et al. Characteristics and implications of micro-lithofacies in lacustrine-basin organic-rich shale: A case study of Jiyang Depression, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2018, 39(12): 1328-1343. (in Chinese with English abstract) doi: 10.7623/syxb201812002
    [7] 付金华, 刘显阳, 李士祥, 等. 鄂尔多斯盆地三叠系延长组长7段页岩油勘探发现与资源潜力[J]. 中国石油勘探, 2021, 26(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202105001.htm

    FU J H, LIU X Y, LI S X, et al. Discovery and resource potential of shale oil of Chang 7 Member, Triassic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2021, 26(5): 1-11. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202105001.htm
    [8] 何文渊, 蒙启安, 冯子辉, 等. 松辽盆地古龙页岩油原位成藏理论认识及勘探开发实践[J]. 石油学报, 2022, 43(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202201001.htm

    HE W Y, MENG Q A, FENG Z H, et al. In-situ accumulation theory and exploration & development practice of Gulong shale oil in Songliao Basin[J]. Acta Petrolei Sinica, 2022, 43(1): 1-14. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202201001.htm
    [9] 林晓慧, 詹兆文, 邹艳荣, 等. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境意义[J]. 地球化学, 2019, 48(1): 67-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201901006.htm

    LIN X H, ZHAN Z W, ZOU Y R, et al. Element geochemical characteristics and sedimentary environment significance of Lusaogou Formation oil shale, southeast margin of Junggar Basin[J]. Geochimica, 2019, 48(1): 67-78. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201901006.htm
    [10] 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm

    JIN Z J, BAI Z R, GAO B, et al. Is the shale revolution coming to China?[J]. Oil & Gas Geology, 2019, 40(3): 451-458. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm
    [11] ZOU C N, PAN S Q, HAO Q. On the connotation, challenge and significance of China's "energy independence" strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 449-462. doi: 10.1016/S1876-3804(20)60062-3
    [12] 赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发, 2020, 47(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001002.htm

    ZHAO W Z, HU S Y, HOU L H, et al. Types, resource potential and boundary between continental shale oil and tight oil in China[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001002.htm
    [13] 万晓樵, 吴怀春, 席党鹏, 等. 中国东北地区白垩纪温室时期陆相生物群与气候环境演化[J]. 地学前缘, 2017, 24(1): 18-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201701003.htm

    WAN X Q, WU H C, XI D P, et al. Terrestrial biota and climatic environment evolution during the Cretaceous Greenhouse Period in Northeast China[J]. Earth Science Frontiers, 2017, 24(1): 18-31. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201701003.htm
    [14] 王峰, 刘玄春, 邓秀芹, 等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报, 2017, 35(6): 1265-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201706017.htm

    WANG F, LIU X C, DENG X Q, et al. Geochemical characteristics of trace elements in Zhifang Formation of Ordos Basin and its implications for sedimentary environment[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1265-1273. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201706017.htm
    [15] LIANG C, CAO Y C, JIANG Z X, et al. Shale oil potential of lacustrine black shale in the Eocene Dongying Depression: Implications for geochemistry and reservoir characteristics[J]. AAPG Bulletin, 2017, 101(11): 1835-1858.
    [16] WANG Y X, XU S, HAO F, et al. Geochemical and petrographic characteristics of Wufeng implications for geochemistry and reservoir characteristics[J]. Marine and Petroleum Geology, 2017, 101(11): 1835-1858.
    [17] LIANG C, JIANG Z X, CAO Y C, et al. Sedimentary characteristics and origin of lacustrine organic-rich shales in the salinized Eocene Dongying Depression[J]. GSA Bulletin, 2018, 130(1/2): 154-174.
    [18] ZHANG T S, HU S Y, BU Q Y, et al. Effects of lacustrine depositional sequences on organic matter enrichment in the Chang 7 Shale, Ordos Basin, China[J]. Marine and Petroleum Geology, 2021, 124: 104778.
    [19] 郑一丁, 雷裕红, 张立强, 等. 鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J]. 天然气地球科学, 2015, 26(7): 1395-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507023.htm

    ZHENG Y D, LEI Y H, ZHANG L Q, et al. Element geochemistry, paleosedimentary environment evolution characteristics and petroleum geological significance of Zhangjiatan Shale, southeast Ordos Basin[J]. Natural Gas Geoscience, 2015, 26(7): 1395-1404. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507023.htm
    [20] 何文渊, 蒙启安, 付秀丽, 等. 松辽盆地古龙凹陷青山口组页岩沉积环境特征及其有机质富集机理[J/OL]. 沉积学报, 2022, https://doi.org/10.14027/j.issn.1000-0550.2022.128.

    HE W Y, MENG Q A, FU X L, et al. Sedimentary environment characteristics and organic matter enrichment mechanism of Qingshankou Formation shale in Gulong Sag, Songliao Basin[J/OL]. Acta Sedimentologica Sinica, 2022, https://doi.org/10.14027/J.ISSN.1000-0550.202.128. (in Chinese with English abstract)
    [21] 罗锦昌, 田继军, 马静辉, 等. 吉木萨尔凹陷吉页1井区二叠系芦草沟组沉积环境及有机质富集机理[J]. 岩性油气藏, 2022, 34(5): 73-85. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202205006.htm

    LUO J C, TIAN J J, MA J H, et al. Sedimentary environment and organic matter enrichment mechanism of Permian Lucaogou Formation in Jiye-1 well area, Jimsar Sag[J]. Lithologic Reservoirs, 2002, 34(5): 73-85. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202205006.htm
    [22] LEI W Z, CHEN D X, LIU Z Y, et al. Paleoenvironment-driven organic matter accumulation in lacustrine shale mixed with shell bioclasts: A case study from the Jurassic Da'anzhai member, Sichuan Basin (China)[J]. Journal of Petroleum Science and Engineering, 2023, 220: 111178.
    [23] XIAO Z L, CHEN S J, ZHANG S M, et al. Sedimentary environment and model for lacustrine organic matter enrichment: Lacustrine shale of the Early Jurassic Da'anzhai Formation, central Sichuan Basin, China[J]. Journal of Palaeogeography, 2021, 10(4): 584-601.
    [24] 付小平, 杨滔. 川东北地区下侏罗统自流井组陆相页岩储层孔隙结构特征[J]. 石油实验地质, 2021, 43(4): 589-598. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202104005.htm

    FU X P, YANG T. Pore structure characteristics of Lower Jurassic Ziliujing Formation continental shale reservoir in northeast Sichuan[J]. Experimental Petroleum Geology, 2021, 43(4): 589-598. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202104005.htm
    [25] 曹香妮, 姜振学, 朱德宇, 等. 川东北地区自流井组陆相页岩岩相类型及储层发育特征[J]. 天然气地球科学, 2019, 30(12): 1782-1793. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912012.htm

    CAO X N, JIANG Z X, ZHU D Y, et al. Lithofacies types and reservoir development characteristics of continental shale in Ziliujing Formation, northeast Sichuan[J]. Natural Gas Geoscience, 2019, 30(12): 1782-1793. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912012.htm
    [26] 张水昌, 张宝民, 边立曾, 等. 中国海相烃源岩发育控制因素[J]. 地学前缘, 2005, 12(3): 39-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503006.htm

    ZHANG S C, ZHANG B M, BIAN L Z, et al. Factors controlling the development of marine source rocks in China[J]. Earth Science Frontiers, 2005, 12(3): 39-48. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503006.htm
    [27] 陈代钊, 汪建国, 严德天, 等. 扬子地区古生代主要烃源岩有机质富集的环境动力学机制与差异[J]. 地质科学, 2011, 46(1): 5-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201101004.htm

    CHEN D Z, WANG J G, YAN D T, et al. Environmental dynamic mechanism and difference of organic matter accumulation in major source rocks of Paleozoic in Yangtze region[J]. Chinese Journal of Geology, 2011, 46(1): 5-26. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201101004.htm
    [28] NESBITT H W, YOUNG G M, McLennan S M, et al. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. The Journal of Geology, 1996, 104(5): 525-542.
    [29] MCLENNAN S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303.
    [30] BAI Y Y, LIU Z J, SUN P C, et al. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale-and coal-bearing layers of the Meihe Basin, Northeast China[J]. Journal of Asian Earth Sciences, 2015, 97: 89-101.
    [31] KATZ B J. Factors controlling the development of lacustrine petroleum source rocks: An update[C]//HUC A T. Paleogeography, paleoclimate, and source rocks. Tulsa: American Association of Petroleum Geologists, 1995: 61-79.
    [32] DING X J, LIU G D, ZHA M, et al. Geochemical characterization and depositional environment of source rocks of small fault basin in Erlian Basin, northern China[J]. Marine and Petroleum Geology, 2016, 69: 231-240.
    [33] 王鹏万, 张磊, 李昌, 等. 黑色页岩氧化还原条件与有机质富集机制: 以昭通页岩气示范区A井五峰组-龙马溪组下段为例[J]. 石油与天然气地质, 2017, 38(5): 933-943. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705012.htm

    WANG P W, ZHANG L, LI C, et al. REDOX conditions and organic matter enrichment mechanism of black shale: A case study of Wufeng Formation and lower member of Longmaxi Formation in Well A, Zhaotong Shale Gas Demonstration Zone[J]. Oil & Gas Geology, 2017, 38(5): 933-943. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705012.htm
    [34] TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
    [35] THOMSON J, JARVIS I, GREEN D R H, et al. Oxidation fronts in Madeira Abyssal Plain turbidites: Persistence of early diagenetic trace-element enrichments during burial, Site 950[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 157: 559-571.
    [36] CHEN C, MU C L, ZHOU K K, et al. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China[J]. Marine and Petroleum Geology, 2016, 76: 159-175.
    [37] 冯子辉, 方伟, 李振广, 等. 松辽盆地陆相大规模优质烃源岩沉积环境的地球化学标志[J]. 中国科学(地球科学), 2011, 41(9): 1253-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201109005.htm

    FENG Z H, FANG W, LI G Z, et al. Geochemical markers of sedimentary environment of large-scale high-quality source rocks in the Songliao Basin[J]. Science in China (Earth Science), 2011, 41(9): 1253-1267. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201109005.htm
    [38] WALKER C T, PRICE N P. Departure curves for computing paleosalinity from boron in illites and shales[J]. AAPG Bulletin, 1963, 47(5): 833-841.
    [39] 鹿坤, 左银辉, 梅冰, 等. 东濮凹陷古沉积环境及其对有机质丰度的影响[J]. 地质与勘探, 2013, 49(3): 589-594. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201303025.htm

    LU K, ZUO Y H, MEI B, et al. Paleo-sedimentary environment and its influence on organic matter abundance in Dongpu Depression[J]. Geology and Exploration, 2013, 49(3): 589-594. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201303025.htm
    [40] CHIVAS A R, DE DECKKER P, SHELLEY J M G. Strontium content of ostracods indicates lacustrine palaeosalinity[J]. Nature, 1985, 316: 251-253.
    [41] CAO J, YANG R F, YIN W, et al. Mechanism of organic matter accumulation in residual bay environments: The Early Cretaceous Qiangtang Basin, Tibet[J]. Energy & Fuels, 2018, 32(2): 1024-1037.
    [42] MURRAY R W, BUCHHOLTZ TEN BRINK M R, GERLACH D C, et al. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1875-1895.
    [43] 杜庆祥, 郭少斌, 沈晓丽, 等. 渤海湾盆地南堡凹陷南部古近系沙河街组一段古水体特征[J]. 古地理学报, 2016, 18(2): 173-183. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201602004.htm

    DU Q X, GUO S B, SHEN X L, et al. Palaeo-water characteristics of the Member 1 of the Paleogene Shahejie Formation in the southern Nanpu Sag, Bohai Bay Basin[J]. Journal of Palaeogeography, 2016, 18(2): 173-183. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201602004.htm
    [44] JIANG Y H, HOU D J, LI H, et al. Impact of the paleoclimate, paleoenvironment, and algae bloom: Organic matter accumulation in the lacustrine Lucaogou Formation of Jimsar Sag, Junggar Basin, NW China[J]. Energies, 2020, 13(6): 1488.
    [45] ZHANG W Z, YANG W W, XIE L Q. Controls on organic matter accumulation in the Triassic Chang 7 lacustrine shale of the Ordos Basin, central China[J]. International Journal of Coal Geology, 2017, 183: 38-51.
    [46] 周立宏, 陈长伟, 甘华军, 等. 歧口凹陷沙一下亚段页岩形成环境及页岩油潜力综合评价[J]. 地质科技通报, 2022, 41(5): 19-30. doi: 10.19509/j.cnki.dzkq.2022.0233

    ZHOU L H, CHEN C W, GAN Huajun, et al. Comprehensive evaluation of shale formation environment and shale oil potential in Shaxia sub-member of Qikou Sag[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 19-30. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0233
    [47] 梁霄, 马韶光, 李郭琴, 等. 上斜坡区筇竹寺组沉积环境及其页岩气勘探潜力: 以四川盆地威远地区威207井为例[J]. 地质科技通报, 2022, 41(5): 68-82. doi: 10.19509/j.cnki.dzkq.2022.0159

    LIANG X, MA S G, LI G Q, et al. Sedimentary environment and shale gas exploration potential of Qiongzhusi Formation in the upslope area: A case study on Well W-207, Weiyuan area, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 68-82. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0159
    [48] 赵文智, 朱如凯, 胡素云, 等. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义[J]. 石油勘探与开发, 2020, 47(6): 1079-1089. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006003.htm

    ZHAO W Z, ZHU R K, HU S Y, et al. Differences in hydrocarbon Accumulation between continental organic-rich shales and mudstones and their significance in shale oil evaluation[J]. Petroleum Exploration and Development, 2020, 47(6): 1079-1089. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006003.htm
    [49] PARRISH J T. Paleogeography of Corg-rich rocks and the preservation versus production controversy[C]//HUC A Y. Paleogeography, paleoclimate, and source rocks. Tulsa: American Association of Petroleum Geologists, 1995: 1-20.
    [50] CALVERT S E, PEDERSEN T F, NAIDU P D, et al. On the organic carbon maximum on the continental slope of the eastern Arabian Sea[J]. Journal of Marine Research, 1995, 53(2): 269-296.
    [51] DEMAISON G J, MOORE G T. Anoxic environments and oil source bed genesis[J]. Organic Geochemistry, 1980, 2(1): 9-31.
    [52] TYSON R V, PEARSON T H. Modern and ancient continental shelf anoxia: An overview[J]. Geological Society, London, Special Publications, 1991, 58(1): 1-24.
    [53] INGALL E, JAHNKE R. Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis[J]. Marine Geology, 1997, 139(1/2/3/4): 219-229.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  280
  • PDF下载量:  520
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-20
  • 录用日期:  2023-07-30
  • 修回日期:  2023-07-28

目录

    /

    返回文章
    返回