留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InSAR约束的青海门源Mw 6.7级地震同震断层滑动反演与三维形变场模拟

曾锐 蒋亚楠 燕翱翔 程燕 罗袆沅

曾锐, 蒋亚楠, 燕翱翔, 程燕, 罗袆沅. InSAR约束的青海门源Mw 6.7级地震同震断层滑动反演与三维形变场模拟[J]. 地质科技通报, 2024, 43(6): 212-225. doi: 10.19509/j.cnki.dzkq.tb20240004
引用本文: 曾锐, 蒋亚楠, 燕翱翔, 程燕, 罗袆沅. InSAR约束的青海门源Mw 6.7级地震同震断层滑动反演与三维形变场模拟[J]. 地质科技通报, 2024, 43(6): 212-225. doi: 10.19509/j.cnki.dzkq.tb20240004
ZENG Rui, JIANG Yanan, YAN Aoxiang, Cheng Yan, LUO Huiyuan. Coseismic slip distribution and 3D deformation field simulation of the Menyuan Mw 6.7 earthquake in Qinghai based on InSAR constraint[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 212-225. doi: 10.19509/j.cnki.dzkq.tb20240004
Citation: ZENG Rui, JIANG Yanan, YAN Aoxiang, Cheng Yan, LUO Huiyuan. Coseismic slip distribution and 3D deformation field simulation of the Menyuan Mw 6.7 earthquake in Qinghai based on InSAR constraint[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 212-225. doi: 10.19509/j.cnki.dzkq.tb20240004

InSAR约束的青海门源Mw 6.7级地震同震断层滑动反演与三维形变场模拟

doi: 10.19509/j.cnki.dzkq.tb20240004
基金项目: 

四川省重点研发计划 2023YFS0435

四川省重点研发计划 2023YFS0439

详细信息
    作者简介:

    曾锐, E-mail: 834765186@qq.com

    通讯作者:

    蒋亚楠, E-mail: jiangyanan@cdut.edu.cn

  • 中图分类号: P315.7;P237

Coseismic slip distribution and 3D deformation field simulation of the Menyuan Mw 6.7 earthquake in Qinghai based on InSAR constraint

  • 摘要:

    2022年1月8日, 青海省门源回族自治县发生Mw6.7地震, 地表破裂明显并导致兰新高铁停运。为研究门源地震的震源机制, 通过差分干涉测量技术(D-InSAR)处理Sentinel-1A升降轨SAR数据得到地震同震形变场, 并在InSAR形变约束下, 通过两步反演法获取了地震断层几何参数和精细同震滑动分布, 计算了同震静态库仑应力变化, 进一步分析讨论了发震构造及区域地震危险性。结果表明: InSAR LOS向同震形变场长轴呈WNW-ESE向, 初步判断具有左旋走滑的运动特征, 在其约束下的精细双断层滑动分布结果显示冷龙岭破裂段与托莱山破裂段均以高倾角左旋走滑为主; 为进一步阐明地震变形模式, 基于弹性位错模型及黏弹性分层介质模型分别模拟得到同震地表三维形变场, 考虑地壳分层结构模拟的三维形变更准确。同震库伦应力变化结果表明: 托莱山断裂西端、冷龙岭断裂东端及兰新高铁大梁隧道地震风险性增强, 未来发生破裂的风险仍较高。研究结果为进一步了解门源地震三维地壳形变及相关地震研究提供参考依据。

     

  • 图 1  2022年1月8日门源地震构造背景图[2]

    Figure 1.  Tectonic background of the Menyuan earthquake on January 8, 2022

    图 2  2022年门源Mw 6.7地震InSAR视线向同震形变场及形变剖面

    Figure 2.  InSAR line-of-sight coseismic deformation fields and deformation profiles of the Mw 6.7 Menyuan earthquake in 2022

    图 3  兰新高铁受灾段震后现场调查图片

    Figure 3.  Post-earthquake field investigation images of the affected section of the Lanzhou-Xinjiang high-speed railway

    图 4  均匀式滑动模型的拟合结果

    Figure 4.  Fitting results of the uniform slip model

    图 5  断层粗糙度与模型拟合残差折中曲线

    Figure 5.  Trade-off curve between the fault roughness and the model fitting residuals

    图 6  InSAR反演同震滑动分布图

    Figure 6.  InSAR inversion coseismic slip distribution

    图 7  分布式滑动分布模型拟合结果

    Figure 7.  Fitting results of distributed slip model

    图 8  不同地壳结构模型下的地表三维形变模拟及形变剖面

    a.弹性位错模型模拟东西向形变;b.弹性位错模型模拟南北向形变;c.弹性位错模型模拟竖直向形变;d.黏弹性分层模型模拟东西向形变;e.黏弹性分层模型模拟南北向形变;f.黏弹性分层模型模拟竖直向形变;g.不同地壳结构模型模拟东西向形变差;h.不同地壳结构模型模拟南北向形变差;i.不同地壳结构模型模拟竖直向形变差;j.形变剖面

    Figure 8.  Simulation and profiles of three-dimensional surface deformation under different crustal structural models

    图 9  升降轨LOS向同震形变场模拟值及残差值

    a.弹性位错模型升轨形变模拟值;b.弹性位错模型升轨残差值;c.弹性位错模型降轨形变模拟值;d.弹性位错模型降轨残差值;e.黏弹性分层模型升轨形变模拟值;f.黏弹性分层模型升轨残差值;g.黏弹性分层模型降轨形变模拟值;h.黏弹性分层模型降轨残差值

    Figure 9.  Simulated and residual values of line-of-sight coseismic deformation field from ascending and descending orbit

    图 10  门源地震引起的库仑应力变化

    a, b.门源地震造成的区域不同深度库仑应力变化;c, d.门源地震造成的兰新高铁不同深度库仑应力变化

    Figure 10.  Coulomb stress changes induced by the Menyuan earthquake

    表  1  2022年1月8日门源地震震源机制解

    Table  1.   Focal mechanism solution of the Menyuan earthquake on January 8, 2022

    来源 经度/(°) 纬度/(°) 深度/km 走向/(°) 倾角/(°) 滑动角/(°) 震级Mw
    USGS 101.278 37.815 13.0 104/13 88/75 15/178 6.6
    GCMT 101.31 37.800 14.8 104/14 82/89 1/172 6.7
    李振洪等[9] 5 104, 109 80, 80 0 6.7
    YANG等[10] 82 6.7
    LI等[8] 101.28 37.812 4 106, 89 86, 83 -5, -1 6.6
    许光煜等[11] 101.28 37.790 0.24 106.5 80.4 3.70 6.6
    于仪等[12] 101.28 37.780 5 109 86 0.79 6.6
    郑瑞等[13] 104.2 87.8 1 6.6
    周甜等[14] 101.28 37.790 4 109.23, 86.6 88.28, 84.16 - 6.62
    本研究双断层模型 101.28 37.800 4.48 109.61, 88.7 84.44, 82.16 -1.51, 1.83 6.65
    注:USGS.美国地质调查局(United States Geological Survey);GCMT.全球地震矩张量目录(global centroid-moment-tensor project);GCMT和USGS都有2个节面结果; 下同
    下载: 导出CSV

    表  2  SAR影像参数

    Table  2.   SAR image parameters

    卫星 震前日期 震后日期 时间间隔/d 基线间距/m 极化方式 模式 入射角/(°) 方位角/(°)
    Sentinel-1A 2022/01/05 2022/01/17 12 -36.00 vv 升轨 35.86 -13.29
    2021/12/29 2022/01/10 12 55.10 vv 降轨 38.48 193.28
    下载: 导出CSV

    表  3  均匀滑动模型反演参数

    Table  3.   Inversion parameters of the uniform slip model

    名称 长度/m 宽度/m 深度/m 倾角/(°) 走向/(°) X中点/m Y中点/m
    下限 15 000.0 1 000.0 1 000.0 0.00 0.00 -20 000.00 -20 000.00
    上限 30 000.0 20 000.0 20 000.0 90.00 180.00 20 000.00 20 000.00
    最优值 25 513.6 9 935.9 10 848.4 84.44 109.61 2 112.04 3 581.91
    置信度2.5% 24 343.5 7 699.6 8 745.7 84.50 109.60 2 117.99 3 609.28
    置信度97.5% 25 530.0 9 907.1 10 822.0 85.57 109.71 2 201.78 3 959.65
    下载: 导出CSV

    表  4  区域分层黏弹性模型参数

    Table  4.   Regional layered viscoelastic model parameters

    分层 厚度/km vp/(km·s-1) vs/(km·s-1) 密度/(km·m-3) ηk/(1018 Pa·s) ηm/(1019Pa·s)
    上地壳Ⅰ 0.22 3.51 1.63 2 110.0
    上地壳Ⅱ 18.49 6.03 3.50 2656.6
    中地壳 18.50 6.41 3.69 2719.3 5.0 1.0
    下地壳Ⅰ 16.75 7.41 4.23 2837.2 5.0 1.0
    下地壳Ⅱ 8.08 4.73 3375.4 5.0 1.0
    注:vp为纵波速度;vs为横波速度;ηk为代表短期变形的开尔文体瞬态黏滞系数;ηm为长期变形的麦克斯韦尔体稳态黏滞系数
    下载: 导出CSV
  • [1] 王辽, 谢虹, 袁道阳, 等. 结合野外考察的2022年门源Ms 6.9地震地表破裂带的高分七号影像特征[J]. 地震地质, 2023, 45(2): 401-421. doi: 10.3969/j.issn.0253-4967.2023.02.006

    WANG L, XIE H, YUAN D Y, et al. The surface rupture characteristics based on the GF-7 images interpretation and the field investigation of the 2022 Menyuan Ms 6.9 earthquake[J]. Seismology and Geology, 2023, 45(2): 401-421. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2023.02.006
    [2] FAN L P, LI B R, LIAO S R, et al. High-precision relocation of the aftershock sequence of the January 8, 2022, Ms 6.9 Menyuan earthquake[J]. Earthquake Science, 2022, 35(2): 138-145. doi: 10.1016/j.eqs.2022.01.021
    [3] 姜文亮, 李永生, 田云锋, 等. 冷龙岭地区2016年青海门源6.4级地震发震构造特征[J]. 地震地质, 2017, 39(3): 536-549. doi: 10.3969/j.issn.0253-4967.2017.03.007

    JIANG W L, LI Y S, TIAN Y F, et al. Research of seismogenic structure of the Menyuan Ms 6.4 earthquake on January 21, 2016 in Lenglongling area of NE Tibetan Plateau[J]. Seismology and Geology, 2017, 39(3): 536-549. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2017.03.007
    [4] 朱琳, 戴勇, 石富强, 等. 祁连-海原断裂带库仑应力演化及地震危险性[J]. 地震学报, 2022, 44(2): 223-236.

    ZHU L, DAI Y, SHI F Q, et al. Coulomb stress evolution and seismic hazards along the Qilian-Haiyuan fault zone[J]. Acta Seismologica Sinica, 2022, 44(2): 223-236. (in Chinese with English abstract)
    [5] GAUDEMER Y, TAPPONNIER P, MEYER B, et al. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the 'Tianzhu gap', on the western Haiyuan Fault, Gansu(China)[J]. Geophysical Journal International, 1995, 120(3): 599-645. doi: 10.1111/j.1365-246X.1995.tb01842.x
    [6] 董佳慧, 牛瑞卿, 亓梦茹, 等. InSAR技术和孕灾背景指标相结合的地灾隐患识别[J]. 地质科技通报, 2022, 41(2): 187-196. doi: 10.19509/j.cnki.dzkq.2022.0024

    DONG J H, NIU R Q, BIAN M R, et al. Identification of geological hazards based on the combination of InSAR technology and disaster background indications[J]. Bulletin of Geologic Science and Technology, 2022, 41(2): 187-196. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0024
    [7] 李志伟, 许文斌, 胡俊, 等. InSAR部分地学参数反演[J]. 测绘学报, 2022, 51(7): 1458-1475.

    LI Z W, XU W B, HU J, et al. Partial geoscience parameters inversion from InSAR observation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1458-1475. (in Chinese with English abstract)
    [8] LI Y S, JIANG W L, LI Y J, et al. Coseismic rupture model and tectonic implications of the January 7 2022, Menyuan Mw 6.6 earthquake constraints from InSAR observations and field investigation[J]. Remote Sensing, 2022, 14(9): 2111. doi: 10.3390/rs14092111
    [9] 李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下的2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, 47(6): 887-897.

    LI Z H, HAN B Q, LIU Z J, et al. Source parameters and slip distributions of the 2016 and 2022 Menyuan, Qinghai earthquakes constrained by InSAR observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897. (in Chinese with English abstract)
    [10] YANG H F, WANG D, GUO R M, et al. Rapid report of the 8 January 2022 MS 6.9 Menyuan earthquake, Qinghai, China[J]. Earthquake Research Advances, 2022, 2(1): 100113. doi: 10.1016/j.eqrea.2022.100113
    [11] 许光煜, 徐锡伟, 易亚宁, 等. 2022年青海门源Mw 6.6地震发震构造: 来自InSAR和高分影像约束[J]. 地球物理学报, 2022, 65(12): 4704-4724.

    XU G Y, XU X W, YI Y N, et al. Seismogenic structure of the 2022 Menyuan Mw 6.6 earthquake, Qinghai Province, constrained by InSAR and Gaofen-7 observation[J]. Chinese Journal of Geophysics, 2022, 65(12): 4704-4724. (in Chinese with English abstract)
    [12] 于仪, 李雪, 孙振, 等. 2022年青海门源地震震源机制与同震滑动分布研究[J]. 大地测量与地球动力学, 2023, 43(1): 46-51.

    YU Y, LI X, SUN Z, et al. Investigation on focal mechanism and coseismic slip distribution for Menyuan earthquake in 2022[J]. Journal of Geodesy and Geodynamics, 2023, 43(1): 46-51. (in Chinese with English abstract)
    [13] 郑瑞, 王琪, 邹蓉, 等. 2022年青海门源Mw 6.6地震InSAR同震形变场与震源特征[J]. 地球物理学报, 2023, 66(8): 3218-3229.

    ZHENG R, WANG Q, ZOU R, et al. InSAR coseismic deformation monitoring and source characteristics of the 2022 Qinghai Menyuan Mw 6.6 earthquake[J]. Chinese Journal of Geophysics, 2023, 66(8): 3218-3229. (in Chinese with English abstract)
    [14] 周甜, 朱武, 刘晓宇, 等. 2022年青海门源Mw 6.6地震InSAR三维同震形变估计及断层滑动分布反演[J]. 大地测量与地球动力学, 2024, 44(7): 725-731.

    ZHOU T, ZHU W, LIU X Y, et al. Estimation of three-dimensional coseismic deformation and inversion of fault slip distribution for the Menyuan, Qinghai Mw 6.6 earthquake in 2022 using InSAR[J]. Journal of Geodesy and Geodynamics, 2024, 44(7): 725-731. (in Chinese with English abstract)
    [15] LIU J H, HU J, LI Z W, et al. Three-dimensional surface displacements of the 8 January 2022 Mw 6.7 Menyuan earthquake, China from Sentinel-1 and ALOS-2 SAR observations[J]. Remote Sensing, 2022, 14(6): 1404.
    [16] MITSAKAKI C, RONDOYANNI T, ANASTASIOU D, et al. Static stress changes and fault interactions in Lefkada Island, western Greece[J]. Journal of Geodynamics, 2013, 67: 53-61.
    [17] GOLDSTEIN R M, ZEBKER H A, BARNETT T P. Remote sensing of ocean currents[J]. Science, 1989, 246(4935): 1282-1285.
    [18] HE X L, LI H B, WANG H, et al. A new insight into the influence of composition of fault rocks on aseismic and seismic fault slip[J]. Acta Geologica Sinica - English Edition, 2019, 93(3): 760-762.
    [19] 殷鹏程, 孙义贤, 庞于涛, 等. 考虑温度效应下冻土层对桥梁结构地震响应的影响[J]. 地质科技通报, 2023, 42(5): 27-35. doi: 10.19509/j.cnki.dzkq.tb20220505

    YIN P C, SUN Y X, PANG Y T, et al. Influence of frozen soil on the seismic response of bridge structures considering the effect of temperature[J]. Bulletin of Geologic Science and Technology, 2023, 42(5): 27-35. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220505
    [20] JÓNSSON S, ZEBKER H, SEGALL P, et al. Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1377-1389.
    [21] OKADA Y. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1992, 82(2): 1018-1040.
    [22] BAGNARDI M, HOOPER A. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: A Bayesian approach[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2194-2211.
    [23] ALBANO M, POLCARI M, BIGNAMI C, et al. Did anthropogenic activities trigger the 3 April 2017 Mw 6.5 Botswana earthquake?[J]. Remote Sensing, 2017, 9(10): 1028.
    [24] ZHAO D Z, QU C Y, CHEN H, et al. Tectonic and geometric control on fault Kinematics of the 2021 Mw 7.3 Maduo(China)earthquake inferred from interseismic, coseismic, and postseismic InSAR observations[J]. Geophysical Research Letters, 2021, 48(18): e2021GL095417.
    [25] WANG R J, DIAO F, HOECHNER A. SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry[C]//Anon. EGU General Assembly Conference Abstracts. [ S. l. ]: [s. n. ], 2013.
    [26] 潘家伟, 李海兵, CHEVALIER M, 等. 2022年青海门源Ms 6.9地震地表破裂带及发震构造研究[J]. 地质学报, 2022, 96(1): 215-231.

    PAN J W, LI H B, CHEVALIER M, et al. Coseismic surface rupture and seismogenic structure of the 2022 Ms 6.9 Menyuan earthquake, Qinghai Province, China[J]. Acta Geologica Sinica, 2022, 96(1): 215-231. (in Chinese with English abstract)
    [27] 袁道阳, 谢虹, 苏瑞欢, 等. 2022年1月8日青海门源Ms 6.9地震地表破裂带特征与发震机制[J]. 地球物理学报, 2023, 66(1): 229-244.

    YUAN D Y, XIE H, SU R H, et al. Characteristics of co-seismic surface rupture zone of Menyuan Ms 6.9 earthquake in Qinghai Province on January 8, 2022 and seismogenic mechanism[J]. Chinese Journal of Geophysics, 2023, 66(1): 229-244. (in Chinese with English abstract)
    [28] 张晁军, 石耀霖, 黄建平. 黏弹性分层和重力作用对地震形变场数值模拟的影响[J]. 西北地震学报, 2008, 30(3): 201-207.

    ZHANG C J, SHI Y L, HUANG J P. Influence of the role of visco-elastic stratification and gravity on numerical simulation of coseismic deformation field[J]. China Earthquake Engineering Journal, 2008, 30(3): 201-207. (in Chinese with English abstract)
    [29] WANG R J, LORENZO-MARTÍN F, ROTH F. PSGRN/PSCMP: A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers & Geosciences, 2006, 32(4): 527-541.
    [30] 邵志刚, 傅容珊, 薛霆虓, 等. 以Burgers体模型模拟震后黏弹性松弛效应[J]. 大地测量与地球动力学, 2007, 27(5): 31-37.

    SHAO Z G, FU R S, XUE T X, et al. Simulating postseismic viscoelastic deformation based on Burgers model[J]. Journal of Geodesy and Geodynamics, 2007, 27(5): 31-37. (in Chinese with English abstract)
    [31] HE J K, LU S J, WANG W M. Three-dimensional mechanical modeling of the GPS velocity field around the northeastern Tibetan Plateau and surrounding regions[J]. Tectonophysics, 2013, 584: 257-266.
    [32] 邵志刚, 傅容珊, 薛霆虓, 等. 昆仑山Ms 8.1级地震震后变形场数值模拟与成因机理探讨[J]. 地球物理学报, 2008, 51(3): 805-816.

    SHAO Z G, FU R S, XUE T X, et al. The numerical simulation and discussion on mechanism of postseismic deformation after Kunlun Ms 8.1 earthquake[J]. Chinese Journal of Geophysics, 2008, 51(3): 805-816. (in Chinese with English abstract)
    [33] 阎渊. 青海门源Ms 6.9地震同震破裂的隧道破坏效应与启示[J]. 地质力学学报, 2023, 29(6): 869-878.

    YAN Y. The tunnel damage effects and implications of the coseismic rupture of the Menyuan Ms 6.9 earthquake in Qinghai, China[J]. Journal of Geomechanics, 2023, 29(6): 869-878. (in Chinese with English abstract)
    [34] 石耀霖, 曹建玲. 库仑应力计算及应用过程中若干问题的讨论: 以汶川地震为例[J]. 地球物理学报, 2010, 53(1): 102-110.

    SHI Y L, CAO J L. Some aspects in static stress change calculation: Case study on Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2010, 53(1): 102-110. (in Chinese with English abstract)
    [35] KING G C P, STEIN R S, LIN J. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 1994, 84(3): 935-953.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  55
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-04
  • 录用日期:  2024-07-01
  • 修回日期:  2024-05-08

目录

    /

    返回文章
    返回