留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西湖凹陷平北斜坡带平湖组层序构型差异及控砂模式

徐东浩 秦兰芝 李峻颉 蔡坤 谢晶晶

徐东浩, 秦兰芝, 李峻颉, 蔡坤, 谢晶晶. 西湖凹陷平北斜坡带平湖组层序构型差异及控砂模式[J]. 地质科技通报, 2024, 43(4): 154-166. doi: 10.19509/j.cnki.dzkq.tb20240027
引用本文: 徐东浩, 秦兰芝, 李峻颉, 蔡坤, 谢晶晶. 西湖凹陷平北斜坡带平湖组层序构型差异及控砂模式[J]. 地质科技通报, 2024, 43(4): 154-166. doi: 10.19509/j.cnki.dzkq.tb20240027
XU Donghao, QIN Lanzhi, LI Junjie, CAI Kun, XIE Jingjing. Sequence stratigraphic architectures and sand-body distribution models of the Pinghu Formation in the Pingbei slope belt of the Xihu Depression[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 154-166. doi: 10.19509/j.cnki.dzkq.tb20240027
Citation: XU Donghao, QIN Lanzhi, LI Junjie, CAI Kun, XIE Jingjing. Sequence stratigraphic architectures and sand-body distribution models of the Pinghu Formation in the Pingbei slope belt of the Xihu Depression[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 154-166. doi: 10.19509/j.cnki.dzkq.tb20240027

西湖凹陷平北斜坡带平湖组层序构型差异及控砂模式

doi: 10.19509/j.cnki.dzkq.tb20240027
基金项目: 

中海石油(中国)有限公司上海分公司生产性科研项目“西湖凹陷古近系区域沉积体系研究及规模岩性圈闭勘探方向” 

中国海洋石油集团“十四五”重大科技项目“弧后盆地深层/超深层油气成藏条件与成藏机制研究——西湖凹陷” KJGG2022-0402

详细信息
    通讯作者:

    徐东浩, E-mail: xudh6@cnooc.com.cn

  • 中图分类号: P618.13

Sequence stratigraphic architectures and sand-body distribution models of the Pinghu Formation in the Pingbei slope belt of the Xihu Depression

More Information
  • 摘要:

    平北斜坡带是西湖凹陷岩性油气藏勘探的重点区带之一, 但实际勘探过程中存在岩性砂体厚度小、横向变化大等问题, 亟需开展不同构造单元内地层发育样式、沉积中心变迁、砂体发育机制等构造-沉积响应研究。基于最新钻井、测井及覆盖全区的高精度三维地震资料, 开展了平北斜坡带平湖组三级层序-体系域高精度层序地层研究。基于古地貌、断裂体系的差异, 划分了平北斜坡带构造-沉积单元, 分析了不同单元内层序构型下断裂组合样式、地层接触关系、沉积充填样式的差异, 探讨了不同层序构型差异的控制因素和控砂模式。研究表明, 平北斜坡带可以划分为断裂陡坡型、对向断阶型、反向断阶型、顺向断阶型4种层序构型, 层序构型差异受物源供给强弱变化、断裂体系活动差异、微古地貌转换调节、基准旋回迁移变化等控制, 形成了4种砂体发育模式。通过不同构造单元层序构型差异和控砂机制研究, 对于推动西湖凹陷平北斜坡带岩性油气藏领域勘探进程意义重大。

     

  • 图 1  区域构造特征(a)、研究区断裂、剖面与井位分布(b)及地貌单元特征(c)

    Figure 1.  Regional tectonic characteristics (a), fault, profile and well location distributions (b), and geomorphological characteristics (c)

    图 2  西湖凹陷新生代地层综合柱状图以及平湖组三级层序地层单元

    Figure 2.  Comprehensive column of Cenozoic strata and third-order sequence stratigraphic unit of the Pinghu Formation in the Xihu Depression

    图 3  西湖凹陷平北地区B-5井平湖组层序界面综合识别

    HST. 高位体系域; TST. 海侵体系域; LST. 低位体系域

    Figure 3.  Comperhensive identification of the Pinghu Formation sequence in Well B-5 in the Pingbei area, Xihu Depression

    图 4  西湖凹陷平北斜坡带A区地震层序地层特征

    Figure 4.  Seismic sequence stratigraphic characteristics of area A of the Pingbei slope belt, Xihu Depression

    图 5  西湖凹陷平北斜坡带B区和C区地震层序地层特征

    Figure 5.  Seismic sequence stratigraphic characteristics of areas B and C of the Pingbei slope belt, Xihu Depression

    图 6  西湖凹陷平北斜坡带D区地震层序地层特征

    Figure 6.  Seismic sequence stratigraphic characteristics of area D of the Pingbei slope belt, Xihu Depression

    图 7  A-1-A-2-A-3井钻井层序连井剖面

    Figure 7.  Sequence stratigraphic correlation section of wells A-1, A-2 and A-3

    图 8  D-1-D-2-D-4-D-3-D-6井钻井层序连井剖面

    Figure 8.  Sequence stratigraphic correlation sections of wells D-1, D-2, D-4, D-3 and D-6

    图 9  西湖凹陷平北斜坡平湖组层序平面分布图

    Figure 9.  Distribution map of the Pinghu Formation stratigraphic sequence in the Pingbei slope of the Xihu Depression

    图 10  西湖凹陷平北地区断裂陡坡型层序构型

    Figure 10.  Sequence stratigraphic architecture of steep fault slope type in the Pingbei area, Xihu Depression

    图 11  西湖凹陷平北地区对向断阶型层序构型

    Figure 11.  Sequence stratigraphic architecture of opposite fault step type in the Pingbei area, Xihu Depression

    图 12  西湖凹陷平北地区反向断阶型层序构型

    Figure 12.  Sequence stratigraphic architecture of reversal step fault type in the Pingbei area, Xihu Depression

    图 13  西湖凹陷平北地区顺向断阶型层序构型

    Figure 13.  Sequence stratigraphic architecture of forward step fault type in the Pingbei area, Xihu Depression

    图 14  西湖凹陷平北地区差异层序构型下控砂模式图

    Figure 14.  Sand-body distribution models under different sequence configurations in the Pingbei area, Xihu Depression

  • [1] EXON N F, BURGER D. Sedimentary cycles in the Surat Basin and global changes of sea level[J]. BMR Journal of Australian Geology & Geophysics, 1981, 6: 153-159.
    [2] CROSS T A, LESSENGER M A. High-resolution stratigraphic correlation from the perspective of base-level cycles and sediment accommodation[C]//Anon. Proceeding of Northwestern European Sequence Stratigraphy Congress. [S. l.]: [s. n.], 1994: 105-123.
    [3] AITKEN J F. FLINTS S. The application of high-resolution stratigraphy to fluvial: A case study from the Upper Carboniferous Breathitt Group, eastern Kentucky, USA[J]. Sedimentilogy, 1995, 42: 3-30. doi: 10.1111/j.1365-3091.1995.tb01268.x
    [4] BURGESS P M, GURNIS M, MORESI, L. Formation of sequence in the cratonic interior of North America by inter-action between mantle, eustatic, and stratigraphic processes[J]. Geological Society of America Bulletin, 1997, 109(12): 1515-1535. doi: 10.1130/0016-7606(1997)109<1515:FOSITC>2.3.CO;2
    [5] CATUNEANU O. Principles of sequence stratigraphy[M]. Amsterdam: Elsevier, 2006.
    [6] ESCALONA A, MANN P. Sequence-stratigraphic analysis of Eocene clastic foreland basin deposits in Central Lake Maracaibo using high-resolution well correlation and 3-D seismic data[J]. AAPG Bulletin, 2006, 90(4): 581-623. doi: 10.1306/10130505037
    [7] 吴和源. 朝向层序地层学标准化: 层序地层学研究的一个重要科学命题[J]. 沉积学报, 2017, 35(3): 425-435. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201703001.htm

    WU H Y, Towards the standardization of sequence stratigraphy: An important scientific proposition of sequence stratigraphy[J]. Acta Sedimentology Sinica, 2017, 35(3): 425-435. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201703001.htm
    [8] 李峰峰, 郭睿, 余义常. 层序地层划分方法进展及展望. 地质科技情报[J], 2019, 38(4): 215-224.

    LI F F, GUO R, YU Y C. Progress and prospect of the division of sequence stratigraphy[J]. Geological Science and Technology Information, 2019, 38(4): 215-224. (in Chinese with English abstract)
    [9] 衡立群, 张青青, 王健, 等. "V-C"层序地层学方法及其在油田开发中后期的应用[J]. 中国海上油气, 2020, 32(5): 82-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202005010.htm

    HENG L Q, ZHANG Q Q, WANG J, et al. "V-C" sequence stratigraphic analysis method and its application in the middle-late stages of oilfield development[J]. China Offshore Oil and Gas, 2020, 32(5): 82-90. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202005010.htm
    [10] 张自力, 朱筱敏, 张锐锋, 等. 典型箕状断陷湖盆层序划分及层序结构样式: 以霸县凹陷古近系为例[J]. 地球科学, 2020, 45(11): 4218-4235. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202011026.htm

    ZHANG Z L, ZHU X M, ZHANG R F, et al. Sequence framework and sequence filling style in lacustrine rift basin: Taking Paleogene in Baxian Sag as an example[J]. Earth Science, 2020, 45(11): 4218-4235. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202011026.htm
    [11] 邓宏文, 王洪亮, 李熙喆. 层序地层基准面的识别与对比技术及应用[J]. 石油与天然气地质, 1996. 17(3): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT603.001.htm

    DENG H W, WANG H L, LI X Z. Identification and correlation techniques of sequence stratigraphic base-levels and their application[J]. Oil & Gas Geology, 1996, 17(3): 177-184. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT603.001.htm
    [12] 郑荣才, 尹世民, 彭军. 基准面旋回结构与叠加样式的沉积动力学分析[J]. 沉积学报, 2000, 18(3): 369-375. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200003007.htm

    ZHENG R C, YIN S M, PENG J. Sedimentary dynamic analysis of sequence structure and stacking pattern of base-level cycle[J]. Acta Sedimantologica Sinica, 2000, 18(3): 369-375. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200003007.htm
    [13] 郑荣才, 彭军, 彭光明, 等. 高分辨率层序分析在油藏开发工程中的应用: 以百色盆地仑35块那二段油藏为例[J]. 沉积学报, 2003, 21(4): 654-662. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200304017.htm

    ZHENG R C, PENG J, PENG G M, et al. Analysis of high-resolution sequence stratigraphy of the Second Member of Nadu Formation in Lun-35 Block of Baise Basin and its application in development of oil reservoir[J]. Acta Sedimentologica Sinica, 2003, 21(4): 654-662. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200304017.htm
    [14] 高志勇, 郑荣才, 罗平. 陆相高分辨率层序地层中洪泛面特征研究[J]. 成都理工大学学报(自然科学版), 2007, 34(1): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200701007.htm

    GAO Z Y, ZHENG R C, LUO P. A study of the flooding surface in the high-resolution stratigraphic sequence of continental deposit[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2007, 34(1): 47-56. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200701007.htm
    [15] 朱红涛, 李敏, 刘强虎, 等. 陆内克拉通盆地层序地层构型及其控制因素[J]. 地球科学, 2010, 35(6): 1035-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201006015.htm

    ZHU H T, LI M, LIU Q H, et al. Sequence stratigraphic architectures of intra-cratonic basin and its controlling factors[J]. Earth Science, 2010, 35(6): 1035-1040. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201006015.htm
    [16] 朱红涛, 刘可禹, 朱筱敏, 等. 陆相盆地层序构型多元化体系[J]. 地球科学, 2018, 43(3): 770-785.

    ZHU H T, LIU K Y, ZHU X M, et al. Varieties of sequence stratigraphic configurations in continental basins[J]. Earth Science, 2018, 43(3): 770-785. (in Chinese with English abstract)
    [17] 年涛, 姜在兴, 刘惠民, 等. 东营凹陷孔一段"红-灰"岩层旋回沉积记录: 以王家岗地区王46井为例[J]. 地质科技通报, 2022, 41(3): 32-43. doi: 10.19509/j.cnki.dzkq.2021.0072

    NIAN T, JIANG Z X, LIU H M, et al. Cyclic sedimentary record of "red-greyish green" beds in the First Member of Eocene Kongdian Formation, Dongying Sag: An example from the Well Wang 46 in Wangjiagang area[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 32-43. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0072
    [18] 吴嘉鹏, 张兰, 万丽芬, 等. 西湖凹陷平湖组物源分析[J]. 中国石油勘探, 2017, 22(2): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201702006.htm

    WU J P, ZHANG L, WAN L F, et al. Provenance analysis of Pinghu Formation in Xihu Sag[J]. China Petroleum Exploration, 2017, 22(2): 50-57. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201702006.htm
    [19] XU F H, XU G S, LIU Y, et al. Factors controlling the development of tight sandstone reservoirs in the Huagang Formation of the central inverted structural belt in Xihu Sag, East China Sea Basin[J]. Petroleum Exploration and Development, 2020, 47(1): 101-113. doi: 10.1016/S1876-3804(20)60009-X
    [20] 陈忠云, 张建培, 张涛, 等. 西湖凹陷层序划分及海平面变化响应[J]. 海洋地质前沿, 2013, 29(9): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201309004.htm

    CHEN Z Y, ZHANG J P, ZHANG T, et al. Stratigraphic sequence in Xihu Sag and their response to sea level changes[J]. Marine Geology Frontiers, 2013, 29(9): 15-20. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201309004.htm
    [21] 蔡华, 张建培. 东海西湖凹陷平湖斜坡带断层特征及其封闭性[J]. 海洋地质前沿, 2013, 29(4): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201304006.htm

    CAI H, ZHANG J P. Characteristics of faults on the Pinghu Slope of Xihu Sag, The East China Sea Shelf Basin and their sealing capacity[J]. Marine Geology Frontiers, 2013, 29(4): 20-26. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201304006.htm
    [22] WANG W L, CHENG Y Z, XIAN G, et al. Effect of burial history on diagenetic and reservoir-forming process of the Oligocene sandstone in Xihu Sag, East China Sea Basin[J]. Marine and Petroleum Geology, 2020, 112: 1-23.
    [23] 刘洋. 东海盆地西湖凹陷沉积记录的天文旋回响应[J]. 地质科技通报, 2020, 39(3): 120-128. doi: 10.19509/j.cnki.dzkq.2020.0313

    LIU Y. Response to astronomical forcing of sedimentary record in Xihu Depression, East China Sea Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 120-128. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0313
    [24] ZHAO Q, ZHU H T, ZHOU X H, et al. Tidal sand ridges seismic identification and its application in the Xihu Depression, East China Sea Shelf Basin: Enlightenment to hydrocarbon exploration[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110246.
    [25] 蔡华, 张建培, 唐贤君. 西湖凹陷断裂系统特征及其控藏机制[J]. 天然气工业, 2014, 34(10): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201410004.htm

    CAI H, ZHANG J P, TANG X J. Characteristics of the fault systems and their control on hydrocarbon accumulation in the Xihu Sag, East China Sea Shelf Basin[J]. Nature Gas Industry, 2014, 34(10): 18-26. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201410004.htm
    [26] 周心怀, 高顺莉, 高伟中, 等. 东海陆架盆地西湖凹陷平北斜坡带海陆过渡型岩性油气藏形成与分布预测[J]. 中国石油勘探, 2019, 24(2): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201902003.htm

    ZHOU X H, GAO S L, GAO W Z, et al. Formation and distribution of marine-continental transitional lithologic reservoirs in Pingbei slope belt, Xihu Sag, East China Sea Shelf Basin[J]. China Petroleum Exploration, 2019, 24(2): 153-164. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201902003.htm
    [27] 蔡华, 秦兰芝, 刘英辉. 西湖凹陷平北斜坡带海陆过渡相源-汇系统差异性及其耦合模式[J]. 地球科学, 2019, 44(3): 880-897. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903016.htm

    CAI H, QIN L Z, LIU Y H. Differentiation and the coupling model of source-to-sink systems with transitional facies in the Pingbei slope of the Xihu Sag, East China Sea[J]. Earth Science, 2019, 44(3): 880-897. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903016.htm
    [28] 蒋一鸣, 邵龙义, 李帅, 等. 西湖凹陷平湖构造带平湖组沉积体系及层序地层研究[J]. 现代地质, 2020, 34(1): 141-153. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202001013.htm

    JIANG Y M, SHAO L Y, LI S, et al. Deposition system and stratigraphy of Pinghu Formation in Pinghu Tectonic Belt, Xihu Sag[J]. Geoscience, 2020, 34(1): 141-153. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202001013.htm
    [29] 赵军, 唐贤君, 蒋一鸣, 等. 东海盆地西湖凹陷西北缘中始新世构造变革厘定及成因探讨[J]. 地质科技通报, 2020, 39(3): 58-67. doi: 10.19509/j.cnki.dzkq.2020.0307

    ZHAO J, TANG X J, JIANG Y M, et al. Confirmation and genesis of the Middle Eocene tectonic transformation in northwestern margin of Xihu Depression, East China Sea Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 58-67. doi: 10.19509/j.cnki.dzkq.2020.0307
  • 加载中
图(14)
计量
  • 文章访问数:  232
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-20
  • 录用日期:  2024-03-14
  • 修回日期:  2024-03-07

目录

    /

    返回文章
    返回