留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土壤因子对三氯乙烯土-气分配系数的影响

王兴华 李小倩 谢晓涵 何宁洁 喻涵雨

王兴华, 李小倩, 谢晓涵, 何宁洁, 喻涵雨. 土壤因子对三氯乙烯土-气分配系数的影响[J]. 地质科技通报, 2024, 43(5): 272-278. doi: 10.19509/j.cnki.dzkq.tb20240028
引用本文: 王兴华, 李小倩, 谢晓涵, 何宁洁, 喻涵雨. 土壤因子对三氯乙烯土-气分配系数的影响[J]. 地质科技通报, 2024, 43(5): 272-278. doi: 10.19509/j.cnki.dzkq.tb20240028
WANG Xinghua, LI Xiaoqian, XIE Xiaohan, HE Ningjie, YU Hanyu. Impact of soil factors on soil-gas partition coefficient of trichloroethylene[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 272-278. doi: 10.19509/j.cnki.dzkq.tb20240028
Citation: WANG Xinghua, LI Xiaoqian, XIE Xiaohan, HE Ningjie, YU Hanyu. Impact of soil factors on soil-gas partition coefficient of trichloroethylene[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 272-278. doi: 10.19509/j.cnki.dzkq.tb20240028

土壤因子对三氯乙烯土-气分配系数的影响

doi: 10.19509/j.cnki.dzkq.tb20240028
基金项目: 

国家重点研发计划项目 2020YFC1807101

详细信息
    作者简介:

    王兴华, E-mail: wangxinghua910@163.com

    通讯作者:

    李小倩, E-mail: lixiaoqian@cug.edu.cn

  • 中图分类号: X53

Impact of soil factors on soil-gas partition coefficient of trichloroethylene

More Information
  • 摘要:

    土壤-空气(简称土-气)分配是影响挥发性有机污染物环境归宿的重要环节,是形成呼吸暴露风险的重要过程。以黄土、红土、黑土和砂土4种典型土壤为研究对象,识别了影响三氯乙烯土-气分配的土壤因子,并通过单因素控制批实验定量探究了三氯乙烯在土-气界面的分配行为,构建了三氯乙烯土-气分配系数与土壤因子的定量关系。结果表明,4种典型土壤原样的三氯乙烯土-气分配系数存在显著差异(黑土>红土>砂土>黄土),黑土分配系数的影响因子主要是土壤粒径、含水率、有机质含量,其他3种土壤分配系数的影响因子主要是土壤粒径、含水率。黑土中三氯乙烯的土-气分配系数(KSA)与土壤影响因子的关系可定量表示为:KSA=-0.744X1-0.224X2+0.704X3; 而在砂土中为:KSA=-0.724X1-0.222X2;在黄土中为:KSA=-0.291X1-0.268X2;在红土中为:KSA=-0.589X1-0.338X2(X1为土壤含水率;X2为粒径;X3为有机质含量)。研究成果有利于深入认识三氯乙烯在我国典型土壤中土-气界面上的分配行为及土壤因子对其产生影响的规律,为土-气分配过程中多因素耦合影响量化和健康风险评估提供理论依据。

     

  • 图 1  实验反应装置示意图

    Figure 1.  Schematic diagram of experimental reaction device

    图 2  TCE吸附动力学曲线

    Figure 2.  Adsorption kinetic curve of TCE

    图 3  典型土壤的TCE土-气分配系数(KSA)

    Figure 3.  Soil-gas partition coefficient (KSA) of TCE in typical soil

    图 4  土壤粒径(a)、含水率(b)与TCE土-气分配系数的关系

    Figure 4.  Relationship between soil particle size(a), moisture(b) and soil-gas partition coefficient of TCE

    图 5  黑土KSA与有机质含量的关系及拟合曲线图

    Figure 5.  Relationship between the soil-gas partition coefficient of TCE the organic matter content of black soil and the fitting curve

    表  1  土壤物理化学指标

    Table  1.   Physical and chemical indicators of soil

    土壤物理化学性质指标 黄土 砂土 红土 黑土
    有机质wB/% 0.016 5 0.396 0.155 18.354
    土壤最大持水能力/% 44.8 41.0 52.5 130.1
    平均粒度/μm 19.04 8.61 8.69 36.96
    BET比表面积/(m2·g-1) 19.10 11.38 45.27 1.72
    矿物种类和质量分数/% 蒙脱石 1.20 2.65
    伊利石 6.90 17.20 4.95 14.20
    角闪石 0.80 1.20
    高岭石 4.35
    绿泥石 12.10 11.05 8.50
    石英 38.30 43.55 39.90 41.90
    钾长石 3.65 3.35 0.80 3.10
    斜长石 16.00 21.00 2.80 32.30
    方解石 21.40 1.45
    三水铝石 29.25
    锐钛矿 1.40
    白云石 0.85
    赤铁矿 13.90
    注:表中“—”表示未检出
    下载: 导出CSV
  • [1] CABRERIZO A, DACHS J, MOECKEL C, et al. Factors influencing the soil-air partitioning and the strength of soils as a secondary source of polychlorinated biphenyls to the atmosphere[J]. Environmental Science & Technology, 2011, 45(11): 4785-4792.
    [2] WU J G. Soil-air partition coefficients of persistent organic pollutants decline from climate warming: A case study in Yantai County, Shandong Province, China[J]. Water, Air, & Soil Pollution, 2020, 231(7): 371.
    [3] HAGEMAN K J, BOGDAL C, SCHERINGER M. Long-range and regional atmospheric transport of POPs and implications for global cycling[M]//Anon. Persistent organic pollutants(POPs): Analytical techniques, environmental fate and biological effects. Amsterdam: Elsevier, 2015: 363-387.
    [4] HE X, CHEN S, QUAN X, et al. Temperature-dependence of soil/air partition coefficient for polychlorinated biphenyls at subzero temperatures[J]. Chemosphere, 2009, 77(10): 1427-1433. doi: 10.1016/j.chemosphere.2009.09.001
    [5] RIAZ R, MALIK R N, DE WIT C A. Soil-air partitioning of semivolatile organic compounds in the Lesser Himalaya region: Influence of soil organic matter, atmospheric transport processes and secondary emissions[J]. Environmental Pollution, 2021, 291: 118006. doi: 10.1016/j.envpol.2021.118006
    [6] HIPPELEIN M, MCLACHLAN M S. Soil/air partitioning of semivolatile organic compounds: 1. Method development and influence of physical chemical properties[J]. Environmental Science & Technology, 1998, 32(2): 310-316.
    [7] HIPPELEIN M, MCLACHLAN M S. Soil/air partitioning of semivolatile organic compounds: 2. Influence of temperature and relative humidity[J]. Environmental Science & Technology, 2000, 34(16): 3521-3526.
    [8] MEIJER S N, SHOEIB M, JONES K C, et al. Air-soil exchange of organochlorine pesticides in agricultural soils: 2. Laboratory measurements of the soil-air partition coefficient[J]. Environmental Science & Technology, 2003, 37(7): 1300-1305.
    [9] MOECKEL C, GASIC B, MACLEOD M, et al. Estimation of the source strength of polybrominated diphenyl ethers based on their diel variability in air in Zurich, Switzerland[J]. Environmental Science & Technology, 2010, 44(11): 4225-4231.
    [10] DEGRENDELE C, AUDY O, HOFMAN J, et al. Diurnal variations of air-soil exchange of semivolatile organic compounds(PAHs, PCBs, OCPs, and PBDEs)in a central European receptor area[J]. Environmental Science & Technology, 2016, 50(8): 4278-4288.
    [11] AHN J, RAO G Y, MAMUN M, et al. Soil-air partitioning of volatile organic compounds into soils with high water content[J]. Environmental Chemistry, 2020, 17(8): 545-557. doi: 10.1071/EN20032
    [12] ZHANG Y P, BI E P, CHEN H H. Soil-air partitioning of polychlorinated biphenyls and total dichloro-diphenyl-trichloroethanes[J]. Journal of Earth Science, 2014, 25(4): 741-748. doi: 10.1007/s12583-014-0450-6
    [13] 何欣, 赵慧敏, 陈硕, 等. 温度对三氯乙烯在土壤中土/气分配系数的影响[J]. 环境化学, 2007, 26(3): 298-301. doi: 10.3321/j.issn:0254-6108.2007.03.006

    HE X, ZHAO H M, CHEN S, et al. Influence of temperature on soil/air partitioning of trichloroethylene in soil in the northeast of China[J]. Environmental Chemistry, 2007, 26(3): 298-301. (in Chinese with English abstract) doi: 10.3321/j.issn:0254-6108.2007.03.006
    [14] 朱辉, 叶淑君, 吴吉春, 等. 中国典型有机污染场地土层岩性和污染物特征分析[J]. 地学前缘, 2021, 28(5): 26-34.

    ZHU H, YE S J, WU J C, et al. Characteristics of soil lithology and pollutants in typical contamination sites in China[J]. Earth Science Frontiers, 2021, 28(5): 26-34. (in Chinese with English abstract)
    [15] LASH L H, PUTT D A, HUANG P, et al. Modulation of hepatic and renal metabolism and toxicity of trichloroethylene and perchloroethylene by alterations in status of cytochrome P450 and glutathione[J]. Toxicology, 2007, 235(1/2): 11-26.
    [16] 朱鸿鹄. 工程地质界面: 从多元表征到演化机理[J]. 地质科技通报, 2023, 42(1): 1-19. doi: 10.19509/j.cnki.dzkq.tb20220661

    ZHU H H. Engineering geological interface: From multivariate characterization to evolution mechanism[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 1-19. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220661
    [17] 倪进治, 骆永明, 张长波. 长江三角洲地区土壤环境质量与修复研究: Ⅲ. 农业土壤不同粒径组分中菲和苯并[a]芘的分配特征[J]. 土壤学报, 2006, 43(5): 717-722. doi: 10.3321/j.issn:0564-3929.2006.05.002

    NI J Z, LUO Y M, ZHANG C B. Soil environmental quality and remediation in Yangtze River Delta region: Ⅲ. Distribution characteristics of phenanthrene and benzo[a]pyrene in particle-size separates of agricultural soils[J]. Acta Pedologica Sinica, 2006, 43(5): 717-722. (in Chinese with English abstract) doi: 10.3321/j.issn:0564-3929.2006.05.002
    [18] 张菁菁. 六氯苯在土壤不同粒径级份上的吸附行为研究[J]. 环境科学与技术, 2011, 34(8): 49-53.

    ZHANG J J. Detailed sorption isotherms of HCB on soil different particle-size fractions[J]. Environmental Science & Technology, 2011, 34(8): 49-53. (in Chinese withEnglish abstract)
    [19] 王楠. 低分子量有机酸对土壤不同粒径组分吸附PAHs的影响[D]. 南京: 南京农业大学, 2012.

    WANG N. Low-molecular-weight organic acids influence the sorption of pahs by different particle size fractions of soils[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract)
    [20] GOSS K U, BUSCHMANN J, SCHWARZENBACH R P. Adsorption of organic vapors to air-dry soils: Model predictions and experimental validation[J]. Environmental Science & Technology, 2004, 38(13): 3667-3673.
    [21] REICHMAN R, ROLSTON D E, YATES S R, et al. Diurnal variation of diazinon volatilization: Soil moisture effects[J]. Environmental Science & Technology, 2011, 45(6): 2144-2149.
    [22] DIAMOND M L, MELYMUK L, CSISZAR S A, et al. Estimation of PCB stocks, emissions, and urbanfate: Will our policies reduce concentrations and exposure?[J]. Environmental Science & Technology, 2010, 44(8): 2777-2783.
    [23] ANDREASEN N, JACKSON R, RUDRA A, et al. From land to sea: Provenance, composition, and preservation of organic matter in a marine sediment record from the north-east Greenland shelf spanning the Younger Dryas-Holocene[J]. Boreas, 2023, 52(4): 459-475. doi: 10.1111/bor.12630
    [24] ISLAM M N, HUANG L D, SICILIANO S D. Inclusion of molecular descriptors in predictive models improves pesticide soil-air partitioning estimates[J]. Chemosphere, 2020, 248: 126031. doi: 10.1016/j.chemosphere.2020.126031
    [25] YADAV I C, DEVI N L, LI J, et al. Polychlorinated biphenyls in Nepalese surface soils: Spatial distribution, air-soil exchange, and soil-air partitioning[J]. Ecotoxicology and Environmental Safety, 2017, 144: 498-506. doi: 10.1016/j.ecoenv.2017.06.057
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  64
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-22
  • 录用日期:  2024-05-06
  • 修回日期:  2024-04-29

目录

    /

    返回文章
    返回