-
摘要:
页岩油微运移是指石油由页岩层系中的富有机质层产生, 并向其紧邻且孔渗性较好的贫有机质层发生短距离运移的现象。勘探实践显示, 微运移可有效改善贫有机质层含油性及其品质, 甚至优于部分富有机质页岩层系, 是页岩油勘探突破的重要层段。因此, 对页岩油微运移现象进行系统研究具有必要性。在回顾国内外已有研究基础之上, 首先明确了页岩油微运移的示踪主要包括岩石热解参数、烃组分、生物标志化合物、非烃化合物、同位素等指标, 基本原理是根据运移烃与滞留烃地球化学性质分异进行判别。分析表明, 微运移会导致贫有机质页岩层系生烃活化能分散状分布, 生烃门限偏早, 且轻组分以游离态在贫有机质层中的聚集可进一步增加生油层和储油层烃组分分异程度, 进而影响页岩含油性与可动性特征。基于油气运移及其地质色层效应, 揭示了微运移贯穿油气生成、排出和滞留全过程, 是连接页岩层系各个油气聚集要素的桥梁, 影响了页岩油的差异富集。综合地球化学和地球物理方法是未来开展页岩层系中微运移精细识别的有效途径, 将为揭示陆相页岩油动态差异富集提供新视角。
Abstract:Significance The micromigration of shale oil refers to the phenomenon in which oil is generated in organic-rich layers and expelled at short distances to adjacent, preferable porous and permeable, organic-lean layers in shale systems. Micromigration can effectively improve the oil content and quality of organic-lean layers, even surpassing some organic-rich shale layers based on the exploration practices. Therefore, it is necessary to conduct a systematic study on the micromigration phenomenon of shale oil.
Progress Based on the current research progress, this paper first identifies the main tracers of shale oil micromigration, which include rock pyrolysis parameters, hydrocarbon components, biomarkers, NSO compounds, as well as isotopes. The fundamental principle relies on fractionation between migrated hydrocarbons and retained hydrocarbons based on their geochemical properties. Analysis revealed that micromigration can lead to a dispersed distribution of hydrocarbon generation activation energy in organic-lean shale layers, resulting in an earlier hydrocarbon generation threshold. Moreover, the accumulation of light hydrocarbons in a free state in organic-lean layers can further increase the difference of hydrocarbon components between generative units and in-source reservoirs, thereby affecting the oil-bearing and mobility characteristics of shale. Based on the effects of petroleum migration and geological zonation, this paper reveals that micromigration occurs throughout the entire process of hydrocarbon generation, expulsion, and retention. It serves as a bridge connecting all elements of petroleum accumulation within shale systems, influencing the differential enrichment of shale oil.
Conclusions and Prospects Comprehensive geochemical and geophysical methods are effective ways to identify micromigration in shale systems and will provide a new perspective for revealing the dynamic differential enrichment of lacustrine shale oil.
-
Key words:
- shale oil /
- micromigration tracing /
- geochemistry /
- enrichment of shale oil
-
图 1 页岩源内微运移过程示意(据文献[30])
Figure 1. Schematic diagram of the micromigration process in shale
图 2 抽提前后岩石热解图谱随时间的变化曲线(据文献[32])
Tmax.最大热解峰温,下同
Figure 2. Rock-eval traces before and after extraction as a function of time
图 3 阿拉斯加北斜坡盆地三叠系舒布利克组页岩有机碳和岩石热解数据在剖面上的变化(据文献[38]修改)
w(TOC).总有机碳质量分数;HI.氢指数;S2.热解烃;S1.游离烃;OSI.含油饱和度指数(S1/w(TOC)×100);PI.生产率指数(S1/(S1+S2));下同
Figure 3. Variations in total organic carbon and rock-eval pyrolysis data on a profile for the Triassic Shublek Formation shale in the Northern Slope Basin of Alaska
图 5 鄂尔多斯盆地长7段页岩各层段内族组分以及正构烷烃相对质量分数的分布(据文献[46])
Figure 5. Relative content of chemical composition and distribution of n-alkanes content in each interval of the Chang 7 Member shale in the Ordos Basin
图 6 Wolfcamp页岩中干湿指数(C1/C1-5)、含油指标(C4+5/C1-5)和有机质类型指标(iC5/nC5)在富有机质硅质泥页岩(黄色)、钙质泥页岩(红色)和贫有机质碳酸岩(蓝色)剖面上的演化(据文献[21])
Figure 6. Evolution of dryness, oil content index, and organic matter type in the Wolfcamp shale on the profile of organic-rich siliceous shale, calcareous shale, and organic-poor carbonate rock
图 7 南襄盆地泌阳凹陷核桃园组3段生物标志化合物关系图(数据来源于文献[30])
Figure 7. Relationship diagram of biomarker compounds in the 3rd Member of the Hetaoyuan Formation in the Biyang Sag, Nanxiang Basin
图 8 Barnett页岩层系中非烃化合物(a)和部分N1O1、N1O2类化合物(b)的相对含量在烃源单元与储层单元中的分布(据文献[57]修改)
红色填充的矩形代表储层单元,绿色填充的三角形代表烃源单元、红色三角形代表烃源单元和储层单元之间的过渡层;R代表烷基的个数[CH2]R(R=0, 1, 2, 3…)
Figure 8. istribution of NSO compound contents in the Barret Shale source(a) and distribution of compounds of N1O1 and N1O2 in the source and reservoir sections(b)
图 9 南襄盆地核桃园组3种页岩类型的碳同位素分布图(据文献[5])
Figure 9. Carbon isotope distribution maps of three shale types in the Hetaoyuan Formation of the Nanxiang Basin
图 10 江汉盆地潜江组某盐间页岩代表性岩心样品估算的活化能分布直方图(据文献[35])
Figure 10. Histogram of the estimated activation energy distribution for representative core samples of a salt shale in the Qianjiang Formation of the Jianghan Basin
图 11 江汉盆地潜江组某盐间页岩代表性岩心样品的生烃演化史曲线(据文献[35])
Figure 11. Hydrocarbon generation and evolution history curve of representative core samples of a salt shale in the Qianjiang Formation of the Jianghan Basin
图 12 激光共聚焦原油轻质、重质组分分布图(据文献[64])
a, b.纹层状页岩共聚焦扫描及有机质三维建模;c~f.纹层状页岩共聚焦扫描,以及轻质、重质组分及其叠合显示
Figure 12. Distribution of light and heavy components of crude oil from laser confocal scanning
图 13 鄂尔多斯盆地Z22井长7段页岩地球化学参数柱状图(据文献[69]修改)
Figure 13. Geochemical parameters column of the seventh Member of the Yanchang Formation of Well Z22 in the Ordos Basin
-
[1] 金之钧, 王冠平, 刘光祥, 等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报, 2021, 42(7): 821-835. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107001.htmJIN Z J, WANG G P, LIU G X, et al. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica, 2021, 42(7): 821-835. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107001.htm [2] 黄志龙, 马剑, 吴红烛, 等. 马朗凹陷芦草沟组页岩油流体压力与初次运移特征[J]. 中国石油大学学报(自然科学版), 2012, 36(5): 7-11. doi: 10.3969/j.issn.1673-5005.2012.05.002HUANG Z L, MA J, WU H Z, et al. Fluid pressure and primary migration characteristics of shale oil of Lucaogou Formation in Malang Sag[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(5): 7-11. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-5005.2012.05.002 [3] LIANG C, CAO Y C, LIU K Y, et al. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: Implications for hydrocarbon migration and accumulation[J]. Geochimica et Cosmochimica Acta, 2018, 229: 112-128. doi: 10.1016/j.gca.2018.03.017 [4] MA X X, LI M W, PANG X Q, et al. Paradox in bulk and molecular geochemical data and implications for hydrocarbon migration in the inter-salt lacustrine shale oil reservoir, Qianjiang Formation, Jianghan Basin, central China[J]. International Journal of Coal Geology, 2019, 209: 72-88. doi: 10.1016/j.coal.2019.05.005 [5] HU S Z, LI S F, XIA L W, et al. On the internal oil migration in shale systems and implications for shale oil accumulation: A combined petrological and geochemical investigation in the Eocene Nanxiang Basin, China[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106493. doi: 10.1016/j.petrol.2019.106493 [6] SANDVIK E I, YOUNG W A, CURRY D J. Expulsion from hydrocarbon sources: The role of organic absorption[J]. Organic Geochemistry, 1992, 19(1/3): 77-87. [7] 赵悦, 蔡进功, 谢奥博, 等. 淡水和咸水湖相泥质烃源岩不同赋存态有机质的地球化学特征[J]. 石油实验地质, 2018, 40(5): 705-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201805015.htmZHAO Y, CAI J G, XIE A B, et al. Geochemical investigation of organic matter of various occurrences released via sequential treatments of two argillaceous source rock samples from fresh and saline lacustrine environments[J]. Petroleum Geology&Experiment, 2018, 40(5): 705-715. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201805015.htm [8] ZHANG W, FENG Q H, WANG S, et al. Oil diffusion in shale nanopores: Insight of molecular dynamics simulation[J]. Journal of Molecular Liquids, 2019, 290: 111183. doi: 10.1016/j.molliq.2019.111183 [9] 王森, 冯其红, 查明, 等. 页岩有机质孔缝内液态烷烃赋存状态分子动力学模拟[J]. 石油勘探与开发, 2015, 42(6): 772-778. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506011.htmWANG S, FENG Q H, ZHA M, et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and fractures of shale organic matter[J]. Petroleum Exploration and Development, 2015, 42(6): 772-778. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506011.htm [10] CUI R H, FENG Q H, CHEN H W, et al. Multiscale random pore network modeling of oil-water two-phase slip flow in shale matrix[J]. Journal of Petroleum Science and Engineering, 2019, 175: 46-59. doi: 10.1016/j.petrol.2018.12.026 [11] VALVATNE P H, BLUNT M J. Predictive pore-scale modeling of two-phase flow in mixed wet media[J]. Water Resources Research, 2004, 40(7): W07406. [12] RAOOF A, HASSANIZADEH S M. Saturation-dependent solute dispersivity in porous media: Pore-scale processes[J]. Water Resources Research, 2013, 49(4): 1943-1951. doi: 10.1002/wrcr.20152 [13] WANG S, FENG Q H, DONG Y L, et al. A dynamic pore-scale network model for two-phase imbibition[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 118-129. doi: 10.1016/j.jngse.2015.06.005 [14] LUCENA S M P, GOMES V A, GONÇALVES D V, et al. Molecular simulation of the accumulation of alkanes from natural gas in carbonaceous materials[J]. Carbon, 2013, 61: 624-632. doi: 10.1016/j.carbon.2013.05.046 [15] 黄涛, 程林松, 曹仁义, 等. 页岩油在无机矿物表面赋存运移特征的分子动力学模拟[J]. 西安石油大学学报(自然科学版), 2022, 37(4): 42-48. doi: 10.3969/j.issn.1673-064X.2022.04.006HUANG T, CHENG L S, CAO R Y, et al. Molecular dynamics simulation of occurrence and migration characteristics of shale oil on inorganic mineral surface[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2022, 37(4): 42-48. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-064X.2022.04.006 [16] 胡钦红, 刘惠民, 黎茂稳, 等. 东营凹陷沙河街组页岩油储集层润湿性、孔隙连通性和流体-示踪剂运移[J]. 石油学报, 2018, 39(3): 278-289. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201803003.htmHU Q H, LIU H M, LI M W, et al. Wettability, pore connectivity and fluid-tracer migration in shale oil reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China[J]. Acta Petrolei Sinica, 2018, 39(3): 278-289. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201803003.htm [17] JARVIE D M. Shale resource systems for oil and gas: Part 2: Shale-oil resource systems[M]. [S. l. ]: AAPG Memoir, 2012: 89-119. [18] 张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价[J]. 地学前缘, 2012, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htmZHANG J C, LIN L M, LI Y X, et al. Classification and evaluation of shale oil[J]. Earth Science Frontiers, 2012, 19(5): 322-331. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htm [19] 姜在兴, 张文昭, 梁超, 等. 页岩油储层基本特征及评价要素[J]. 石油学报, 2014, 35(1): 184-196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401027.htmJIANG Z X, ZHANG W Z, LIANG C, et al. Characteristics and evaluation elements of shale oil reservoir[J]. Acta Petrolei Sinica, 2014, 35(1): 184-196. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401027.htm [20] 聂海宽, 张培先, 边瑞康, 等. 中国陆相页岩油富集特征[J]. 地学前缘, 2016, 23(2): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602009.htmNIE H K, ZHANG P X, BIAN R K, et al. Oil accumulation characteristics of China continental shale[J]. Earth Science Frontiers, 2016, 23(2): 55-62. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602009.htm [21] ZHANG T W, FU Q L, SUN X, et al. Meter-scale lithofacies cycle and controls on variations in oil saturation, Wolfcamp A, Delaware and Midland Basins[J]. AAPG Bulletin, 2021, 105(9): 1821-1846. doi: 10.1306/01152120065 [22] 黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004004.htmLI M W, JIN Z J, DONG M Z, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology&Experiment, 2020, 42(4): 489-505. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004004.htm [23] 柳波, 迟亚奥, 黄志龙, 等. 三塘湖盆地马朗凹陷二叠系油气运移机制与页岩油富集规律[J]. 石油与天然气地质, 2013, 34(6): 725-730. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201306003.htmLIU B, CHI Y A, HUANG Z L, et al. Migration mechanism of the Permian hydrocarbon and shale oil accumulation in Malang Sag, the Santanghu Basin[J]. Oil&Gas Geology, 2013, 34(6): 725-730. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201306003.htm [24] 胡素云, 白斌, 陶士振, 等. 中国陆相中高成熟度页岩油非均质地质条件与差异富集特征[J]. 石油勘探与开发, 2022, 49(2): 224-237. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202020.htmHU S Y, BAI B, TAO S Z, et al. Heterogeneous geological conditions and differential enrichment of medium and high maturity continental shale oil in China[J]. Petroleum Exploration and Development, 2022, 49(2): 224-237. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202020.htm [25] 周立宏, 陈长伟, 甘华军, 等. 歧口凹陷沙一下亚段页岩形成环境及页岩油潜力综合评价[J]. 地质科技通报, 2022, 41(5): 19-30. doi: 10.19509/j.cnki.dzkq.2022.0233ZHOU L H, CHEN C W, GAN H J, et al. Shale formation environment and comprehensive evaluation of shale oil potential of the Lower First Member of Shahejie Formation in Qikou Sag[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 19-30. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0233 [26] RAJI M, GRÖCKE D R, GREENWELL H C, et al. The effect of interbedding on shale reservoir properties[J]. Marine and Petroleum Geology, 2015, 67: 154-169. doi: 10.1016/j.marpetgeo.2015.04.015 [27] 刘惠民, 李政, 包友书, 等. 渤海湾盆地济阳坳陷高产页岩油井BYP5页岩地质特征[J]. 石油与天然气地质, 2023, 44(6): 1405-1417. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202306006.htmLIU H M, LI Z, BAO Y S, et al. Geology of shales in prolific shale-oil well BYP5 in the Jiyang Depression, Bohai Bay Basin[J]. Oil&Gas Geology, 2023, 44(6): 1405-1417. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202306006.htm [28] 胡涛, 姜福杰, 庞雄奇, 等. 页岩油微运移识别、评价及其石油地质意义[J]. 石油勘探与开发, 2024, 51(1): 114-126. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202401010.htmHU T, JIANG F J, PANG X Q, et al. Identification and evaluation of shale oil micro-migration and its petroleum geological significance[J]. Petroleum Exploration and Development, 2024, 51(1): 114-126. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202401010.htm [29] 郭芪恒, 李士祥, 金振奎, 等. 鄂尔多斯盆地延长组长73亚段页岩油特征及勘探方向[J]. 石油勘探与开发, 2023, 50(4): 767-781. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202304009.htmGUO Q H, LI S X, JIN Z K, et al. Characteristics and exploration targets of Chang 7 shale oil in Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(4): 767-781. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202304009.htm [30] 朱景修. 泥页岩不同介质中可溶有机质组成差异性及对页岩油富集的意义[J]. 石油实验地质, 2016, 38(4): 429-437. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201604003.htmZHU J X. Composition difference of soluble organic matter in different media in mudstones and its significance for shale oil enrichment[J]. Petroleum Geology&Experiment, 2016, 38(4): 429-437. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201604003.htm [31] 王鑫, 刘惠民, 张顺, 等. 济阳坳陷博兴洼陷页岩油微运移特征[J]. 地质论评, 2023, 69(增刊1): 270-272. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2023S1103.htmWANG X, LIU H M, ZHANG S, et al. Micro-migration characteristics of shale oil in Boxing Subsag of Jiyang Depression[J]. Geological Review, 2023, 69(S1): 270-272. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2023S1103.htm [32] ZOU C N, PAN S Q, HORSFIELD B, et al. Oil retention and intrasource migration in the organic-rich lacustrine Chang 7 shale of the Upper Triassic Yanchang Formation, Ordos Basin, central China[J]. AAPG Bulletin, 2019, 103(11): 2627-2663. doi: 10.1306/01301917052 [33] HAN Y J, MAHLSTEDT N, HORSFIELD B. The Barnett Shale: Compositional fractionation associated with intraformational petroleum migration, retention, and expulsion[J]. AAPG Bulletin, 2015, 99(12): 2173-2202. doi: 10.1306/06231514113 [34] HAN Y J, HORSFIELD B, MAHLSTEDT N, et al. Factors controlling source and reservoir characteristics in the Niobrara shale oil system, Denver Basin[J]. AAPG Bulletin, 2019, 103(9): 2045-2072. doi: 10.1306/0121191619717287 [35] LI M W, CHEN Z H, CAO T T, et al. Expelled oils and their impacts on Rock-Eval data interpretation, Eocene Qianjiang Formation in Jianghan Basin, China[J]. International Journal of Coal Geology, 2018, 191: 37-48. doi: 10.1016/j.coal.2018.03.001 [36] HACKLEY P C, ZHANG T W, JUBB A M, et al. Organic petrography of Leonardian (Wolfcamp A) mudrocks and carbonates, Midland Basin, Texas: The fate of oil-prone sedimentary organic matter in the oil window[J]. Marine and Petroleum Geology, 2020, 112: 104086. doi: 10.1016/j.marpetgeo.2019.104086 [37] GUO Q L, YAO Y, HOU L H, et al. Oil migration, retention, and differential accumulation in "sandwiched" lacustrine shale oil systems from the Chang 7 member of the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. International Journal of Coal Geology, 2022, 261: 104077. doi: 10.1016/j.coal.2022.104077 [38] YURCHENKO I A, MOLDOWAN J M, PETERS K E, et al. Source rock heterogeneity and migrated hydrocarbons in the Triassic Shublik Formation and their implication for unconventional resource evaluation in Arctic Alaska[J]. Marine and Petroleum Geology, 2018, 92: 932-952. doi: 10.1016/j.marpetgeo.2018.03.033 [39] GAO G, YANG S R, REN J L, et al. Geochemistry and depositional conditions of the carbonate-bearing lacustrine source rocks: A case study from the Early Permian Fengcheng Formation of Well FN7 in the northwestern Junggar Basin[J]. Journal of Petroleum Science and Engineering, 2018, 162: 407-418. doi: 10.1016/j.petrol.2017.12.065 [40] HUNT J M. Petroleum geochemistry and geology[M]. 2nd Edition. New York: Freeman, 1988. [41] HAN Y J, HORSFIELD B, WIRTH R, et al. Oil retention and porosity evolution in organic-rich shales[J]. AAPG Bulletin, 2017, 101(6): 807-827. doi: 10.1306/09221616069 [42] 周杰, 庞雄奇. 一种生、排烃量计算方法探讨与应用[J]. 石油勘探与开发, 2002, 29(1): 24-27. doi: 10.3321/j.issn:1000-0747.2002.01.006ZHOU J, PANG X Q. A method for calculating the quantity of hydrocarbon generation and expulsion[J]. Petroleum Exploration and Development, 2002, 29(1): 24-27. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0747.2002.01.006 [43] GAO G, ZHANG W W, XIANG B L, et al. Geochemistry characteristics and hydrocarbon-generating potential of lacustrine source rock in Lucaogou Formation of the Jimusaer Sag, Junggar Basin[J]. Journal of Petroleum Science and Engineering, 2016, 145: 168-182. doi: 10.1016/j.petrol.2016.03.023 [44] LAFARGUE E, ESPITALIE J, JACOBSEN T, et al. Experimental simulation of hydrocarbon expulsion[J]. Organic Geochemistry, 1990, 16(1/3): 121-131. [45] JARVIE D M. Components and processes affecting producibility and commerciality of shale resource systems[J]. Geologica Acta, 2014, 12(4): 307-325. [46] CHEN Y Y, LIN S H, BAI B, et al. Effects of petroleum retention and migration within the Triassic Chang 7 Member of the Ordos Basin, China[J]. International Journal of Coal Geology, 2020, 225: 103502. doi: 10.1016/j.coal.2020.103502 [47] PAN S Q, ZOU C N, LI J, et al. Unconventional shale systems: A comparative study of the "in-source sweet spot" developed in the lacustrine Chang 7 Shale and the marine Barnett Shale[J]. Marine and Petroleum Geology, 2019, 100: 540-550. doi: 10.1016/j.marpetgeo.2018.12.015 [48] 代波, 李二党, 王小军, 等. 基于烃源岩地化参数评价页岩油运聚规律[J]. 油气藏评价与开发, 2021, 11(4): 506-513. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202104005.htmDAI B, LI E D, WANG X J, et al. Evaluation of shale oil migration and accumulation rules based on geochemical parameters of source rocks[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 506-513. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202104005.htm [49] ZHANG T W, SUN X, MILLIKEN K L, et al. Empirical relationship between gas composition and thermal maturity in Eagle Ford Shale, South Texas[J]. AAPG Bulletin, 2017, 101(8): 1277-1307. doi: 10.1306/09221615209 [50] 赵靖舟, 孟选刚, 韩载华. 近源成藏: 来自鄂尔多斯盆地延长组湖盆东部"边缘"延长组6段原油的地球化学证据[J]. 石油学报, 2020, 41(12): 1513-1526. doi: 10.7623/syxb202012006ZHAO J Z, MENG X G, HAN Z H. Near-source hydrocarbon accumulation: Geochemical evidence of lacustrine crude oil from the Member 6 of Yanchang Formation, eastern margin of Ordos Basin[J]. Acta Petrolei Sinica, 2020, 41(12): 1513-1526. (in Chinese with English abstract) doi: 10.7623/syxb202012006 [51] KONG X X, JIANG Z X, HAN C, et al. Organic matter enrichment and hydrocarbon accumulation models of the marlstone in the Shulu Sag, Bohai Bay Basin, northern China[J]. International Journal of Coal Geology, 2020, 217: 103350. doi: 10.1016/j.coal.2019.103350 [52] HAN Y J, HORSFIELD B, CURRY D J. Control of facies, maturation and primary migration on biomarkers in the Barnett Shale sequence in the Marathon 1 Mesquite well, Texas[J]. Marine and Petroleum Geology, 2017, 85: 106-116. doi: 10.1016/j.marpetgeo.2017.04.018 [53] LUO Q Y, GEORGE S C, XU Y H, et al. Organic geochemical characteristics of the Mesoproterozoic Hongshuizhuang Formation from northern China: Implications for thermal maturity and biological sources[J]. Organic Geochemistry, 2016, 99: 23-37. doi: 10.1016/j.orggeochem.2016.05.004 [54] YUAN M, PAN S Q, JING Z H, et al. Geochemical distortion on shale oil maturity caused by oil migration: Insights from the non-hydrocarbons revealed by FT-ICR MS[J]. International Journal of Coal Geology, 2023, 266: 104142. doi: 10.1016/j.coal.2022.104142 [55] ESEME E, LITTKE R, KROOSS B M, et al. Experimental investigation of the compositional variation of petroleum during primary migration[J]. Organic Geochemistry, 2007, 38(8): 1373-1397. doi: 10.1016/j.orggeochem.2007.03.003 [56] LEYTHAEUSER D, RADKE M, WILLSCH H. Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae field area, North Sea. Ⅱ: Molecular composition of alkylated naphthalenes, phenanthrenes, benzo-and dibenzothiophenes[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2879-2891. doi: 10.1016/0016-7037(88)90155-X [57] HAN Y J, POETZ S, MAHLSTEDT N, et al. Fractionation and origin of NyOx and Ox compounds in the Barnett Shale sequence of the Marathon 1 Mesquite well, Texas[J]. Marine and Petroleum Geology, 2018, 97: 517-524. doi: 10.1016/j.marpetgeo.2018.07.031 [58] HAN Y J, POETZ S, MAHLSTEDT N, et al. Fractionation of pyrrolic nitrogen compounds compounds during primary migration of petroleum within the Barnett Shale sequence of Marathon 1 Mesquite well, Texas[J]. Energy&Fuels, 2018, 32(4): 4638-4650. [59] YUE H W, VIETH-HILLEBRAND A, HAN Y J, et al. Unravelling the impact of lithofacies on the composition of NSO compounds in residual and expelled fluids of the Barnett, Niobrara and Posidonia formations[J]. Organic Geochemistry, 2021, 155: 104225. doi: 10.1016/j.orggeochem.2021.104225 [60] CLAYTON J L, BOSTICK N H. Temperature effects on kerogen and on molecular and isotopic composition of organic matter in Pierre Shale near an igneous dike[J]. Organic Geochemistry, 1986, 10(1/3): 135-143. [61] HAN Y J, HORSFIELD B, MAHLSTEDT N, et al. Compositional fractionation of petroleum from reservoir to wellhead in the Niobrara shale oil play[J]. International Journal of Coal Geology, 2018, 198: 156-166. doi: 10.1016/j.coal.2018.09.006 [62] CHEN Z H, LI M W, CAO T T, et al. Hydrocarbon generation kinetics of a heterogeneous source rock system: Example from the lacsutrine Eocene-Oligocene Shahejie Formation, Bohai Bay Basin, China[J]. Energy&Fuels, 2017, 31(12): 13291-13304. [63] 马晓潇, 黎茂稳, 蒋启贵, 等. 陆相页岩含油性的化学动力学定量评价方法[J]. 油气地质与采收率, 2019, 26(1): 137-152. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901015.htmMA X X, LI M W, JIANG Q G, et al. Chemical kinetic model for quantitative evaluation on oil-bearing property of lacustrine shale[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 137-152. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901015.htm [64] 柳波, 孙嘉慧, 张永清, 等. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发, 2021, 48(3): 521-535. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103009.htmLIU B, SUN J H, ZHANG Y Q, et al. Reservoir space and enrichment model of shale oil in the First Member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 521-535. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103009.htm [65] GAO Z Y, DUAN L F, JIANG Z X, et al. Using laser scanning confocal microscopy combined with saturated oil experiment to investigate the pseudo in-situ occurrence mechanism of light and heavy components of shale oil in sub-micron scale[J]. Journal of Petroleum Science and Engineering, 2023, 220: 111234. doi: 10.1016/j.petrol.2022.111234 [66] 辛红刚, 田杨, 冯胜斌, 等. 鄂尔多斯盆地典型夹层型页岩油地质特征及潜力评价: 以宁228井长7段为例[J]. 地质科技通报, 2023, 42(3): 114-124. doi: 10.19509/j.cnki.dzkq.tb20220224XIN H G, TIAN Y, FENG S B, et al. Geological characteristics and potential evaluation of typical interlayer shale oil in the Ordos Basin: A case study of the Chang 7 Member of Well Ning228[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 114-124. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220224 [67] JUBB A M, HACKLEY P C, HATCHERIAN J J, et al. Nanoscale molecular fractionation of organic matter within unconventional petroleum source beds[J]. Energy&Fuels, 2019, 33(10): 9759-9766. [68] LI Q Q, CHEN F L, WU S Q, et al. A simple and effective evaluation method for lacustrine shale oil based on mass balance calculation of Rock-Eval data[J]. Applied Geochemistry, 2022, 140: 105287. doi: 10.1016/j.apgeochem.2022.105287 [69] HU T, LIU Y, JIANG F J, et al. A novel method for quantifying hydrocarbon micromigration in heterogeneous shale and the controlling mechanism[J]. Energy, 2024, 288: 129712. doi: 10.1016/j.energy.2023.129712