Hydrochemical analysis and pollution assessment of the Anjiang underground river system in central Guizhou
-
摘要:
为给黔中安江地下河系统污染防治及乌江流域生态保护提供科学支撑, 在水文地质调查和样品采集测试的基础上, 综合运用水文地质条件分析、舒卡列夫分类法和派铂三线图、正态性检验和Grubbs检验法、污染指数法等方法, 对安江地下河系统边界及水文地质特征、水化学成分及主要离子来源、背景值、污染现状及污染成因等进行了系统研究。研究结果表明, 安江地下河系统面积约18.91 km2, 其地下水化学类型为HCO3·SO4-Ca型水、HCO3-Ca·Mg型水、HCO3·SO4-Ca·Mg型水和SO4-Ca型水等4类, 各类型占比大致相等, 其地下水主控离子主要来源为娄山关组白云岩、栖霞组-茅口组灰岩等碳酸盐岩与龙潭组含硫矿物的溶解和沉淀; 安江地下河系统已受到污染, 污染程度最严重指标为总磷, 其次为氟化物, 再次为硫酸盐; 栖霞组-茅口组灰岩含水岩组污染程度等级远高于娄山关组白云岩含水岩组。研究证明了安江地下河系统岩溶管道主要发育于栖霞组-茅口组, 其次为娄山关组; 含总磷、氟化物和硫酸根等无机污染物的地下水经岩溶管道向北东方径流迁移, 污染安江地下河系统, 并最终通过S50地下河出口排泄于乌江。本研究对于岩溶区地下河系统污染防治具有理论指导意义。
Abstract:Objective This study aims to establish a scientific framework for managing pollution in the Anjiang underground river system in central Guizhou and maintaining the ecological integrity of the Wujiang River basin.
Methods The approach involves comprehensive hydrogeological surveys and analytical testing of water samples. We analyze hydrogeological conditions, apply the Shukarev classification system, utilize Piper's trilinear diagrams, conduct normality and Grubbs' tests, and calculate pollution indices. This investigation methodically examines the hydrogeological context, hydrochemical profiles, sources of major ions, background concentrations, and current pollution levels, and identifies the factors driving pollution in the Anjiang underground river system.
Results The Anjiang underground river system covers approximately 18.91 square kilometers. The hydrochemical composition is classified into four types: HCO3·SO4-Ca, HCO3-Ca·Mg, HCO3·SO4-Ca·Mg, and SO4-Ca, each constituting roughly equal proportions. The predominant ions mainly originate from the dissolution of carbonate rocks, specifically dolomite from the Loushanguan Formation and limestone from the Qixia Formation-Maokou Formation, as well as sulfur-bearing minerals from the Longtan Formation. The pollution levels are significant, with total phosphorus, fluoride, and sulfate being the most crucial contaminants. Notably, the limestone aquifer of the Qixia Formation-Maokou Formation has higher pollution level than the dolomite aquifer of the Loushanguan Formation. This study confirms that the karst conduit network in the Anjiang underground river system has developed primarily within the Qixia Formation-Maokou Formation, with substantial secondary development in the Loushanguan Formation. The groundwater, enriched with inorganic pollutants such as total phosphorus, fluoride, and sulfate ions, flows northeast through karst conduits, contaminating the Anjiang underground river system. This polluted water eventually discharges into the Wujiang River via the S50 underground river outlet.
Conclusion Our findings provide crucial theoretical support for the management and mitigation of pollution in karstic underground river systems.
-
Key words:
- karst area /
- underground river system /
- system boundary /
- hydrochemistry /
- pollution characteristics /
- central Guizhou
-
图 1 水文地质图及采样布置图
1.纯碳酸盐岩含水岩组(富水性强); 2.纯碳酸盐岩含水岩组(富水性中等); 3.碳酸盐岩与非碳酸盐岩互层含水岩组(富水性弱); 4.碎屑岩含水岩组; 5.下降泉; 6.地下河出口及管道; 7.钻孔; 8.有水落水洞; 9.干落水洞; 10.岩溶洼地; 11.安江地下河系统边界; 12.地下水流向; 13.剖面及编号; 14.采样点; T1-2j4.中下三叠统嘉陵江组四段; T1-2j3.中下三叠统嘉陵江组三段; T1-2j2.中下三叠统嘉陵江组二段; T1-2j1.中下三叠统嘉陵江组一段; T1y3.下三叠统夜郎组三段; T1y2.下三叠统夜郎组二段; T1y1.下三叠统夜郎组一段; P3c.二叠系乐平统长兴组; P3l.二叠系乐平统龙潭组; P2q-m.二叠系阳新统栖霞组-茅口组; P2l.二叠系阳新统梁山组; ∈3-4O1l.寒武系芙蓉统-下奥陶统娄山关组; C1jj.下石炭统九架炉组; 下同
Figure 1. Hydrogeology map and distribution map of sampling points
表 1 安江地下河系统的基本特征及主要离子毫克当量百分比
Table 1. Basic characteristics and percentage of milligram equivalent of main ions for Anjiang underground river system
采样点 pH值 K+ Na+ Ca2+ Mg2+ HCO3- NO3- Cl- SO42- 矿化度/
(mg·L-1)水化学类型 离子毫克当量百分比/% S75 7.35 0.29 20.89 57.84 20.99 46.63 4.96 1.14 47.28 582.77 HCO3·SO4-Ca S163 7.51 0.40 13.50 52.59 33.51 78.74 0.68 19.93 0.65 328.74 HCO3-Ca·Mg CK1 7.70 0.21 1.51 60.69 37.60 62.80 1.59 1.59 34.02 535.50 HCO3·SO4-Ca·Mg CK2 7.30 1.57 6.22 74.07 18.14 39.85 3.00 21.91 35.24 481.39 HCO3·SO4-Ca CK4 7.52 0.36 17.29 66.49 15.86 19.69 3.84 9.35 67.12 1 305.51 SO4-Ca ZK15 7.47 0.62 1.29 66.95 31.14 58.54 2.45 3.03 35.98 303.83 HCO3·SO4-Ca·Mg ZK16 6.98 0.47 2.25 66.23 31.04 69.20 4.51 2.65 23.63 442.51 HCO3-Ca·Mg 表 2 污染指标等级划分
Table 2. Pollution index grade classification
序号 污染等级 污染指数Pki值 1 未污染(Ⅰ级) ≤0 2 轻污染(Ⅱ级) (0, 0.2] 3 中污染(Ⅲ级) (0.2, 0.6] 4 较重污染(Ⅳ级) (0.6, 1.0] 5 严重污染(Ⅴ级) (1.0, 1.5] 6 极重污染(Ⅵ级) >1.5 表 3 娄山关组及栖霞组-茅口组的6项指标监测数据的正态性检验结果
Table 3. Normality test results of monitoring data of 6 indices in Loushanguan Formation and Qixia Formation-Maokou Formation
含水岩组 指标 Shapiro-Wilk法 偏度检验 峰度检验 统计 自由度 显著性 统计 标准误差 Z-score 统计 标准误差 Z-score 娄山关组
白云岩SO42- 0.922 22 0.082 0.652 0.491 1.33 -0.615 0.953 -0.65 NO3- 0.924 22 0.093 0.670 0.491 1.36 -0.605 0.953 -0.63 总矿化度 0.976 22 0.841 0.186 0.491 0.38 -0.116 0.953 -0.12 总硬度(CaCO3) 0.966 22 0.615 -0.491 0.491 -1.00 -0.199 0.953 -0.21 耗氧量 0.936 22 0.167 0.822 0.491 1.67 0.543 0.953 0.57 氟化物 0.920 22 0.075 0.841 0.491 1.71 0.665 0.953 0.70 栖霞组-
茅口组
灰岩SO42- 0.948 17 0.431 0.810 0.550 1.47 1.780 1.063 1.67 NO3- 0.931 17 0.223 0.841 0.550 1.53 0.599 1.063 0.56 总矿化度 0.969 17 0.792 -0.296 0.550 -0.54 -0.567 1.063 -0.53 总硬度(CaCO3) 0.941 17 0.333 -0.473 0.550 -0.86 -0.669 1.063 -0.63 耗氧量 0.911 17 0.104 0.526 0.550 0.96 -0.926 1.063 -0.87 氟化物 0.916 17 0.128 0.629 0.550 1.14 -0.385 1.063 -0.36 表 4 娄山关组含水岩组监测数据Grubbs检验的统计量G计算结果
Table 4. Statistical G calculation results of Grubbs test for monitoring data of Loushanguan Formation
编号 SO42- NO3- TDS 总硬度 耗氧量 氟化物 编号 SO42- NO3- TDS 总硬度 耗氧量 氟化物 S217 0.430 0.589 0.318 0.895 0.564 0.303 S590 1.150 0.066 1.668 1.877 0.832 0.303 S258 0.161 0.002 0.506 0.801 0.161 1.111 S614 1.173 0.553 1.806 2.097 1.092 0.303 S331 0.796 1.193 0.205 0.229 0.491 0.079 S617 1.195 0.329 0.837 1.073 0.863 1.492 S359 0.634 0.841 0.302 0.082 1.142 0.729 S633 0.951 0.561 0.882 0.726 0.471 0.303 S362 0.227 0.776 0.079 0.608 1.060 0.954 S701 0.867 1.202 0.161 0.144 1.484 0.595 S363 0.098 0.134 0.349 0.679 0.564 2.390 S719 0.169 1.478 0.020 0.167 0.429 0.595 S379 0.881 0.829 0.024 0.141 0.564 1.447 CK3 0.464 2.190 1.747 1.443 0.429 0.146 S439 0.959 0.724 0.557 0.337 0.564 0.303 ZK16 1.806 0.519 1.241 1.276 0.192 0.303 S447 0.105 0.982 0.443 0.249 1.340 1.537 ZK23 1.969 1.014 1.266 1.583 0.812 0.303 S571 1.262 0.577 1.278 1.362 1.309 0.303 ZK30 1.663 1.558 2.010 0.493 0.316 0.819 S573 0.659 1.286 0.452 0.691 0.739 0.146 KYZK2 0.160 0.925 0.501 0.179 2.600 1.941 表 5 栖霞组-茅口组含水岩组监测数据Grubbs检验的统计量G计算结果
Table 5. Statistical G calculation results of Grubbs test for monitoring data of Qixia Formation-Maokou Formation
编号 SO42- NO3- TDS 总硬度 耗氧量 氟化物 编号 SO42- NO3- TDS 总硬度 耗氧量 氟化物 S7 0.564 1.376 0.022 0.218 0.198 0.736 S464 0.067 0.791 0.438 0.661 0.872 1.222 S242 1.250 0.692 0.566 0.085 1.591 1.819 S683 0.009 0.008 0.315 0.639 0.619 0.614 S256 0.889 0.367 1.054 1.368 0.577 0.371 S706 0.071 0.061 0.268 0.411 0.581 1.332 S365 0.510 2.202 1.084 1.217 0.977 0.127 S708 0.489 1.397 0.847 0.693 1.676 0.006 S366 0.335 1.934 1.006 1.081 0.767 1.587 S720 0.682 0.463 1.723 1.906 0.788 0.614 S395 0.020 0.836 0.689 0.750 1.525 1.089 S724 1.697 0.504 1.783 1.771 0.177 0.176 S396 1.390 0.127 1.112 0.819 0.076 0.614 S725 0.521 0.620 0.338 0.274 1.002 0.603 S463 2.572 0.068 1.723 0.527 1.591 1.819 S726 0.071 0.288 0.568 0.836 0.619 0.225 K167 0.733 0.815 0.185 0.937 0.602 0.371 表 6 安江地下河系统内各含水岩组地下水背景值
Table 6. Background values of each groundwater-bearing rock group in Anjiang underground river system
含水岩组 组数/
组NH4+/
(mg·L-1)TFe/
(mg·L-1)SO42-/
(mg·L-1)NO3-/
(mg·L-1)总矿化度/
(mg·L-1)总硬度(CaCO3)/
(mg·L-1)总磷/
(mg·L-1)耗氧量/
(mg·L-1)氟化物/
(mg·L-1)Mn/
(mg·L-1)∈3-4O1l 22 0.02 0.05 96.77 40.08 503.85 439.18 0.02 0.593 0.151 0.005 P2q-m 17 0.02 0.05 106.59 22.76 396.22 340.34 0.02 0.937 0.207 0.005 表 7 安江地下河系统地下水污染指数Pki值及污染等级
Table 7. Groundwater pollution index Pki value and pollution levels in Anjiang underground river system
取样编号 S75 ZK16 CK1 S163 ZK15 CK2 CK4 类型 下降泉 钻孔 钻孔 下降泉 钻孔 钻孔 钻孔 含水岩组 ∈3-4O1l ∈3-4O1l ∈3-4O1l P2q-m P2q-m P2q-m P2q-m Pki NH4+ -0.04 -0.04 0.20 -0.04 -0.04 1.56 0.04 TFe -0.17 0.10 -0.17 -0.17 0.03 1.53 -0.17 SO42- 0.49 -0.02 0.25 -0.42 -0.06 0.12 2.21 NO3- -0.52 -0.87 -1.52 -1.00 -0.73 -0.39 1.30 总矿化度 0.08 -0.06 0.03 -0.07 -0.09 0.09 0.91 总硬度 -0.12 -0.10 0.10 -0.15 -0.17 0.10 1.13 总磷 -0.10 -0.10 0.05 1.15 6.25 0.05 -0.10 耗氧量 -0.17 -0.12 -0.20 -0.08 -0.23 0.32 -0.12 氟化物 0.15 -0.05 0.39 -0.21 0.29 5.19 0.39 Mn -0.05 -0.05 0.03 0.07 -0.05 1.32 0.07 Pimax 0.49 0.10 0.39 1.15 6.25 5.19 2.21 污染等级 中(Ⅲ级) 轻(Ⅱ级) 中(Ⅲ级) 严重(Ⅴ级) 极重(Ⅵ级) 极重(Ⅵ级) 极重(Ⅵ级) -
[1] 袁道先, 薛禹群, 傅家谟, 等. 我西南岩溶地区地下河面临变成"下水道"威胁加强保护和污染治理需从国家层面尽快做出决策[J]. 科学新闻, 2007(14): 7-9.YUAN D X, XUE Y Q, FU J M, et al. Underground rivers in karst areas in Southwest China are facing the threat of becoming "sewers". To strengthen protection and pollution control, we need to make decisions at the national level as soon as possible[J]. Science News, 2007(14): 7-9. (in Chinese) [2] GUO F, YUAN D X, QIN Z J. Groundwater contamination in karst areas of southwestern China and recommended countermeasures[J]. Acta Carsologica, 2010, 39(2): 389-399. [3] 张连凯, 杨慧. 岩溶地下河中砷迁移过程及其影响因素分析: 以广西南丹县里湖地下河为例[J]. 中国岩溶, 2013, 32(4): 377-383.ZHANG L K, YANG H. Transport process of arsenic in karst subterranean stream and analysis on the influence factors: A case in Lihu subterranean stream of Nandan County, Guangxi[J]. Carsologica Sinica, 2013, 32(4): 377-383. (in Chinese with English abstract) [4] WEN Y B, LI W, YANG Z F, et al. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, southwestern China[J]. Environmental Pollution, 2020, 258: 113645. doi: 10.1016/j.envpol.2019.113645 [5] ZHOU C S, ZOU S Z, ZHU D N, et al. Pollution pattern of underground river in karst area of the Southwest China[J]. Journal of Groundwater Science and Engineering, 2018, 6(2): 71-83. [6] 郭芳, 王文科, 姜光辉, 等. 岩溶地下河污染物运移特征及自净能力: 以广西里湖地下河为例[J]. 水科学进展, 2014, 25(3): 414-419.GUO F, WANG W K, JIANG G H, et al. Contaminant transport behavior in a karst subterranean river and its capacity of self-purification: A case study of Lihu, Guangxi[J]. Advances in Water Science, 2014, 25(3): 414-419. (in Chinese with English abstract) [7] 任坤, 梁作兵, 于正良, 等. 重庆南山老龙洞地下河系统重金属分布、迁移及自净能力[J]. 环境科学, 2015, 36(11): 4095-4102.REN K, LIANG Z B, YU Z L, et al. Distribution and transportation characteristics of heavy metals in Nanshan Laolongdong subterranean river system and its capacity of self-purification in Chongqing[J]. Environmental Science, 2015, 36(11): 4095-4102. (in Chinese with English abstract) [8] LASAGNA M, DE LUCA D A, DEBERNARDI L, et al. Effect of the dilution process on the attenuation of contaminants in aquifers[J]. Environmental Earth Sciences, 2013, 70(6): 2767-2784. [9] LAMOUROUX C, HANI A. Identification of groundwater flow paths in complex aquifer systems[J]. Hydrological Processes, 2006, 20(14): 2971-2987. [10] 董贵明, 王颖, 詹红兵, 等. 二维承压非稳定流水均衡区间的数值模拟[J]. 地质科技通报, 2023, 42(4): 75-82. doi: 10.19509/j.cnki.dzkq.tb20230028DONG G M, WANG Y, ZHAN H B, et al. Numerical simulation of the water budget interval for unsteady two-dimensional confined flow[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 75-82. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230028 [11] 邓恩德, 颜智华, 姜秉仁, 等. 黔西地区上二叠统龙潭组海陆交互相页岩气储层特征[J]. 石油实验地质, 2020, 42(3): 467-476.DENG E D, YAN Z H, JIANG B R, et al. Reservoir characteristics of marine-continental shale gas in Upper Permian Longtan Formation, western Guizhou Province[J]. Petroleum Geology & Experiment, 2020, 42(3): 467-476. (in Chinese with English abstract) [12] 刘曾勤. 黔西地区龙潭组致密砂岩储层评价[D]. 北京: 中国地质大学(北京), 2020.LIU Z Q. Reservoir characterization of the marine-continental transitional tight sandstones in the Longtan Fomation, West Guizhou, China[D]. Beijing: China University of Geosciences(Beijing), 2020. (in Chinese with English abstract) [13] KARMEGAM U, CHIDAMBARAM S, PRASANNA M V, et al. A study on the mixing proportion in groundwater samples by using Piper diagram and Phreeqc model[J]. Chinese Journal of Geochemistry, 2011, 30(4): 490-495. [14] RUSSONIELLO C J, LAUTZ L K. Pay the PIED piper: Guidelines to visualize large geochemical datasets on piper diagrams[J]. Ground Water, 2020, 58(3): 464-469. [15] 李泽威, 袁飞, 李明龙, 等. 水化学特征在恩施盆地地热资源调查中的指示意义[J]. 地质科技通报, 2023, 42(4): 83-94. doi: 10.19509/j.cnki.dzkq.tb20210791LI Z W, YUAN F, LI M L, et al. Indicative significance of hydrochemical characteristics in geothermal resource investigations in the Enshi Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 83-94. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20210791 [16] 林华颖, 裴鹏, 邹行, 等. 贵州省毕节市米底河地热特征及形成机理[J]. 地质科技通报, 2023, 42(3): 281-288. doi: 10.19509/j.cnki.dzkq.tb20210675LIN H Y, PEI P, ZOU H, et al. Geothermal characteristics and formation mechanism of the Medi River in Bijie City, Guizhou Province[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 281-288. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20210675 [17] ZHU B Q, YANG X P, RIOUAL P, et al. Hydrogeochemistry of three watersheds(the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China[J]. Applied Geochemistry, 2011, 26(8): 1535-1548. [18] XING L N, GUO H M, ZHAN Y H. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain[J]. Journal of Asian Earth Sciences, 2013, 70: 250-264. [19] 陈旺光, 曾成, 龚效宇, 等. 贵州深切峡谷区典型岩溶地下河水文水化学特征: 以贵州三塘地下河为例[J]. 水文地质工程地质, 2022, 49(4): 19-29.CHEN W G, ZENG C, GONG X Y, et al. Hydrological and hydrochemical regime of a typical subterraneous river in a deep canyon karst area: A case study in the Santang underground river, Guizhou[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 19-29. (in Chinese with English abstract) [20] 中华人民共和国生态环境部土壤生态环境司. 地下水环境状况调查评价工作指南[S]. [出版地不详]: [出版者不详], 2019.Department of Soil Ecological Environment, Ministry of Ecology and Environment of the People's Republic of China. Guidelines for investigation and evaluation of groundwater environmental conditions(Trial)[S]. [S. l. ]: [s. n. ], 2019. (in Chinese) [21] 郭高轩, 辛宝东, 刘文臣, 等. 我国地下水环境背景值研究综述[J]. 水文地质工程地质, 2010, 37(2): 95-98.GUO G X, XIN B D, LIU W C, et al. Review on the study of the environment background values of groundwater in China[J]. Hydrogeology & Engineering Geology, 2010, 37(2): 95-98. (in Chinese with English abstract) [22] RAVBAR N, GOLDSCHEIDER N. Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment[J]. Hydrogeology Journal, 2009, 17(3): 725-733. [23] ANDERSON T W, DARLING D A. A test of goodness of fit[J]. Journal of the American Statistical Association, 1954, 49(268), 765-769. [24] HE D J, XU X Z, ZHAO J X. A new procedure for testing normality based on the L2 Wasserstein distance[J]. Journal of Systems Science and Complexity, 2013, 26(4): 572-582. [25] HE B H, TANG R, TAGN Q Y. Identifying the best common factor model via exploratory eactor analysis[J]. Applied Mathematics-A Journal of Chinese Universities, 2024, 39(1): 24-33. [26] 中华人民共和国生态环境部土壤生态环境司. 地下水环境背景值统计表征技术指南(试行)[S]. [出版地不详]: [出版者不详], 2023.Department of Soil Ecological Environment, Ministry of Ecology and Environment of the People's Republic of China. Technical guide for statistical characterization of groundwater environmental background values(trial)[S]. [S. l. ]: [s. n. ], 2023. (in Chinese)