留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气候变化环境下青藏高原含冰冰碛土斜坡水热力耦合特性与长期稳定性

李奇龙 周佳庆 李长冬 刘洪斌 王雪萦 吕豪

李奇龙,周佳庆,李长冬,等. 气候变化环境下青藏高原含冰冰碛土斜坡水热力耦合特性与长期稳定性[J]. 地质科技通报,2025,44(1):112-125 doi: 10.19509/j.cnki.dzkq.tb20240079
引用本文: 李奇龙,周佳庆,李长冬,等. 气候变化环境下青藏高原含冰冰碛土斜坡水热力耦合特性与长期稳定性[J]. 地质科技通报,2025,44(1):112-125 doi: 10.19509/j.cnki.dzkq.tb20240079
LI Qilong,ZHOU Jiaqing,LI Changdong,et al. Coupling characteristics and stability evolution of ice-rich moraine soil slopes on the Tibetan Plateau under climate change[J]. Bulletin of Geological Science and Technology,2025,44(1):112-125 doi: 10.19509/j.cnki.dzkq.tb20240079
Citation: LI Qilong,ZHOU Jiaqing,LI Changdong,et al. Coupling characteristics and stability evolution of ice-rich moraine soil slopes on the Tibetan Plateau under climate change[J]. Bulletin of Geological Science and Technology,2025,44(1):112-125 doi: 10.19509/j.cnki.dzkq.tb20240079

气候变化环境下青藏高原含冰冰碛土斜坡水热力耦合特性与长期稳定性

doi: 10.19509/j.cnki.dzkq.tb20240079
基金项目: 国家自然科学基金项目(42277177);国家重大自然科学基金川藏铁路重大基础科学问题专项(41941017)
详细信息
    作者简介:

    李奇龙:E-mail:liqilong@cug.edu.cn

    通讯作者:

    E-mail:jqzhou@whu.edu.cn

  • 中图分类号: P642.22

Coupling characteristics and stability evolution of ice-rich moraine soil slopes on the Tibetan Plateau under climate change

More Information
  • 摘要:

    全球气候变暖形势严峻,温度的升高将直接导致广泛分布于青藏高原的各类含冰堆积体与冻结堆积体出现冻结区退化、热融沉降、失稳破坏等一系列工程地质问题。随着青藏地区人类生产实践与工程活动的日益频繁,这些工程地质问题将严重威胁着该地区的人民生命财产安全和重大工程建设进程。本研究建立了考虑冰水相变作用的岩土体渗流-传热-变形耦合数值模型,并通过与已有试验研究以及数值模拟研究的结果进行对比,充分验证了所搭建耦合模拟方法的有效性。基于所搭建的耦合模拟方法,聚焦帕隆藏布流域广泛分布的含冰冰碛土斜坡,结合历史气象数据和气候预测数据(SSP1-2.6与SSP5-8.5两种情景下),开展了自2020-2100年,时长80 a的斜坡多场耦合模拟与长期稳定性计算研究。结果表明,坡体内部各深度土体在长期变暖进程中均呈现不同程度的升温,并进一步导致坡体内部冻结区出现不可逆转的退化,从而导致相应的不可逆转的热融沉降与稳定性下降现象。冻结区的退化与其相应导致的不良工程地质现象受未来不同气候演化模式影响巨大。在SSP5-8.5情景下,持续升温至2080年前后,年均大气温度共抬升了3.84 ℃,坡体内部开始出现冻结区不可逆的退化与随之出现的不可逆沉降现象。在2080年坡体表层出现冻结区永久退化之后,坡体的热融沉降进程与稳定性的下降过程开始出现显著的加速现象,直至2100年,坡体热融沉降可达0.06 m,坡体稳定性较2020年下降了6.3%,这一非线性演化特征深刻反映了含冰土体这一特殊岩土材料在温度升高作用下由量变向质变转变的演化过程。而在SSP1-2.6情景下,冰碛土斜坡并未出现显著的冻结区退化与稳定性劣化的现象。本文构建的嵌入气候模型、考虑了冰水相变的岩土体温度-渗流-应力多场耦合模拟平台,量化评估了不同未来气候情景下坡体退化程度与失稳风险,揭示了气候驱动下含冰冰碛土斜坡水热力多场响应机制,阐明了斜坡长期稳定性演化规律,其成果为高寒高海拔地区地质灾害气候响应和区域地质风险评估奠定了重要理论基础。

     

  • 图 1  研究区灾害点分布概况(滑坡灾害点源自文献[8,33]调研汇编)

    Figure 1.  Distribution of hazard sites in the study area (Landslide locations are derived from a large number of literature [8,33] research and compilation)

    图 2  波密地区2018-2020气温波动特征及根据海拔差修正后的研究区气温波动特征

    Figure 2.  Temperature fluctuation characteristics of Bomê County from 2018 to 2020 and the temperature fluctuation characteristics of the study area corrected according to altitude difference

    图 3  SSP1-2.6与SSP5-8.5情景下波密地区2020-2100气温抬升示意图

    Figure 3.  Schematic diagram of temperature rise in Bomê County from 2020 to 2100 under SSP1-2.6 and SSP5-8.5 scenarios

    图 4  考虑冰水相变作用下传热-渗流-变形耦合示意图(实线表示本模型中所考虑的耦合作用,虚线表示本模型所忽略的耦合作用)

    Figure 4.  Schematic diagram of heat-seepage-deformation coupling under the consideration of ice-water phase transition (solid line represents the coupling considered in this model, dashed line represents the coupling ignored in this model)

    图 5  冰水相变过程示意图

    θiθw分别为孔隙中冰、水的体积分数;Tpc为相变温度;∆T为地温梯度

    Figure 5.  Schematic diagram of ice-water phase transition process

    图 6  数值模型验证对比

    数据点为JAME[43]试验结果;虚线为HUANG等[45]数值模拟验证结果;实线为本研究所建立数值模型的验证结果

    Figure 6.  Comparison of numerical model verification

    图 7  寒区含冰冰碛土斜坡致灾机理示意图

    Figure 7.  Conceptual diagram of hazard-causing mechanism of ice-rich moraine landslide in cold regions

    图 8  模型几何与边界条件以及网格剖分示意图

    注:T为大气温度;T0为初始年份平均气温;ω为角频率;φ为波动函数初相位;$ \Delta T $为升温速率;t为时间;A为温度波动幅值的1/2

    Figure 8.  Schematic diagram of model geometry and boundary conditions and grid generation

    图 9  不同温度升高情景下2060年含冰冰碛土斜坡地温分布特征

    Figure 9.  Characteristics of ground temperature distribution in ice-rich moraine slopes under different climate warming during 2060

    图 10  不同温度升高情景下2020-2100年含冰冰碛土斜坡地温分布演化特征

    Figure 10.  Evolution characteristics of ground temperature distribution in ice-rich moraine slopes under different warming scenarios

    图 11  升温情景下含冰冰碛土斜坡冻结区占比演化特征

    Figure 11.  Evolution characteristics of frozen area proportion of ice-rich moraine slopes under climate warming

    图 12  升温情景下含冰冰碛土斜坡冻融位移演化图

    Figure 12.  Evolution of freeze-thaw displacement of ice-rich moraine slope under climate warming

    图 13  升温情景下2060年含冰冰碛土斜坡稳定性波动示意图

    Figure 13.  Diagram of ice-rich moraine slope stability seasonal fluctuation during 2060 under climate warming

    图 14  升温情景下含冰冰碛土斜坡夏季稳定性演化特征

    Figure 14.  Stability (at summer time) evolution characteristics of ice-rich moraine slopes under climate warming

    表  1  物理力学参数表

    Table  1.   Physical and mechanical parameters

    参数 数值 描述
    ρs 2600 kg/m3 土体基质密度
    ρw 1000 kg/m3 水体密度
    ρi 918 kg/m3 冰体密度
    ε0 0.15 孔隙率
    εr 0.05 残余含水率
    ku 4×10−11 m2 融土渗透系数
    μ 1.793×10−3 Pa·s 水体动力黏度
    Ω 50 冰体阻抗系数
    λs 1.07 W/(m·℃) 土体导热系数
    λw 0.63 W/(m·℃) 水体导热系数
    λi 2.31 W/(m·℃) 冰体导热系数
    Cs 0.93 kJ/(kg·℃) 土体热容
    Cw 4.2 kJ/(kg·℃) 水体热容
    Ci 2.1 kJ/(kg·℃) 冰体热容
    L 334.56 kJ/kg 冰水相变潜热
    Es 100 MPa 土体杨氏模量
    $ \nu $ 0.4 土体泊松比
    cun 60 kPa 融土黏聚力
    cf 200 kPa 冻土黏聚力
    φun 25 ° 融土内摩擦角
    φf 30 ° 冻土内摩擦角
    下载: 导出CSV
  • [1] FAN X,DUAN Q,SHEN C,et al. Global surface air temperatures in CMIP6:Historical performance and future changes[J]. Environmental Research Letters,2020,15(10):104056.
    [2] Mountain Research Initiative EDW Working Group. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change,2015,5(5):424-430. doi: 10.1038/nclimate2563
    [3] BISKABORN B K,SMITH S L,NOETZLI J,et al. Permafrost is warming at a global scale[J]. Nature Communications,2019,10(1):264. doi: 10.1038/s41467-018-08240-4
    [4] NITZBON J,WESTERMANN S,LANGER M,et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate[J]. Nature Communications,2020,11(1):2201. doi: 10.1038/s41467-020-15725-8
    [5] YOU Q,CAI Z,PEPIN N,et al. Warming amplification over the Arctic Pole and Third Pole:Trends,mechanisms and consequences[J]. Earth-Science Reviews,2021,217:103625. doi: 10.1016/j.earscirev.2021.103625
    [6] ZHANG G,YAO T,XIE H,et al. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming[J]. Global and Planetary Change,2015,131:148-157. doi: 10.1016/j.gloplacha.2015.05.013
    [7] ZHAO L,PING C L,YANG D,et al. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau,China[J]. Global and Planetary Change,2004,43(1/2):19-31. doi: 10.1016/j.gloplacha.2004.02.003
    [8] 崔鹏,郭剑. 沟谷灾害链演化模式与风险防控对策[J]. 工程科学与技术,2021,53(3):5-18.

    CUI P,GUO J. Evolution models,risk prevention and control counter measures of the valley disaster chain[J]. Advanced Engineering Science,2021,53(3):5-18. (in Chinese with English abstract
    [9] NEUPANE R,CHEN H,CAO C. Review of moraine dam failure mechanism[J]. Geomatics,Natural Hazards and Risk,2019,10(1):1948-1966. doi: 10.1080/19475705.2019.1652210
    [10] RICHARDSON S D,REYNOLDS J M. Degradation of ice-cored moraine dams :Implications for hazard development[M]. Wallingford:IAHS Press,2000.
    [11] HEALY T R. Thermokarst:A mechanism of de-icing ice-cored moraines[J]. Boreas,2008,4(1):19-23.
    [12] HAEBERLI W,HUDER J,KEUSEN H,et al. Core drilling through rock glacier permafrost[C]//Anon. Proceedings of the Fith International Conference on Permafrost. [S. 1. ]:[S. n. ],1988:937-942.
    [13] 李德基,游勇. 西藏波密米堆冰湖溃决浅议[J]. 山地研究,1992,10(4):219-224.

    LI D J,YOU Y. Analysis on the outburst of the glacial lake in Bome Midui,Tibet[J]. Mountain Research,1992,10(4):219-224. (in Chinese with English abstract
    [14] 刘建康,张佳佳,高波,等. 我国西藏地区冰湖溃决灾害综述[J]. 冰川冻土,2019,41(6):1335-1347.

    LIU J K,ZHANG J J,GAO B,et al. An overview of glacial lake outburst flood in Tibet,China[J]. Journal of Glaciology and Geocryology,2019,41(6):1335-1347. (in Chinese with English abstract
    [15] 王欣,蒋亮虹,刘时银,等. 喜马拉雅山北坡冰碛湖坝温度特征及其对堤坝稳定的影响[J]. 冰川冻土,2014,36(6):1517-1525.

    WANG X,JIANG L H,LIU S Y,et al. Temperature features of a moraine-dam on north slopes of the Himalayas and their effect on the dam stability[J]. Journal of Glaciology and Geocryology,2014,36(6):1517-1525. (in Chinese with English abstract
    [16] 蒋婷婷,潘华利,艾一帆,等. 冻融循环及含水率对冰碛土力学特性影响[J]. 地质科技通报,2024,43(2):238-252.

    JIANG T T,PAN H L,AI Y F et al. ,Effect of freeze-thaw cycles and water content on the mechanical properties of moraine soil[J]. Bulletin of Geological Science and Technology,2024,43(2):238-252. (in Chinese with English abstract
    [17] 高波,张佳佳,王军朝,等. 西藏天摩沟泥石流形成机制与成灾特征[J]. 水文地质工程地质,2019,46(5):144-153.

    GAO B,ZHANG J J,WANG J C,et al. Formation mechanism and disaster characteristics of debris flow in the Tianmo gully in Tibet[J]. Hydogeology & Engineering Geology,2019,46(5):144-153. (in Chinese with English abstract
    [18] MCROBERTS E C,MORGENSTERN N R. The stability of thawing slopes[J]. Canadian Geotechnical Journal,1974,11(4):447-469. doi: 10.1139/t74-052
    [19] 王绍令. 青藏公路风火山地区的热融滑塌[J]. 冰川冻土,1990,12(1):63-70.

    WANG S L. Thermal melt collapse in Feng-volcano area of Qinghai-Tibet Highway[J]. Journal of Glaciology and Geocryology,1990,12(1):63-70. (in Chinese with English abstract
    [20] 靳德武,牛富俊,李宁. 青藏高原多年冻土区热融滑塌变形现场监测分析[J]. 工程地质学报,2006,14(5):677-682. doi: 10.3969/j.issn.1004-9665.2006.05.019

    JIN D W,NIU F J,LI N. In-situ monitoring and analysis of thaw slumping and deformation in gentle slopeing ground of permafrost soils on Qinghai-Tibet Plateau[J]. Journal of Engineering Geology,2006,14(5):677-682. (in Chinese with English abstract doi: 10.3969/j.issn.1004-9665.2006.05.019
    [21] SHAN W,ZHANG C C,GUO Y. Mechanism of shallow slide on soil road cutting slope during spring in seasonal frozen region[J]. Applied Mechanics and Materials,2012,178/181:1258-1263. doi: 10.4028/www.scientific.net/AMM.178-181.1258
    [22] 王超. 季冻区哈大高铁边坡冻融滑塌机理研究[D]. 哈尔滨:哈尔滨工业大学,2014.

    WANG C. Research on freeze-thaw slumping mechanism of harbin-dalian high-speed railway slope in seasonally frozen soil region[D]. Harbin:Harbin Institute of Technology,2014. (in Chinese with English abstract
    [23] KORSHUNOV A A,DOROSHENKO S P,Nevzorov A L. The impact of freezing-thawing process on slope stability of earth structure in cold climate[J]. Procedia Engineering,2016,143:682-688. doi: 10.1016/j.proeng.2016.06.100
    [24] 李智明. 冻土水热力场耦合机理研究与工程应用[D]. 哈尔滨:哈尔滨工业大学,2017.

    LI Z M. Study on mechanisum of moisture-heat-stress coupling for frozen soil and engineering application[D]. Harbin:Harbin Institute of Technology,2017. (in Chinese with English abstract
    [25] CUI K,QIN X. Landslide risk assessment of frozen soil slope in Qinghai-Tibet Plateau during spring thawing period under the coupling effect of moisture and heat[J]. Natural Hazards,2023,115(3):2399-2416. doi: 10.1007/s11069-022-05646-8
    [26] GE Q,WU H,GONG Y F. Research on the soil slope stability based on soil strength deterioration in seasonal frozen areas[J]. Advanced Materials Research,2011,243/249:4270-4273. doi: 10.4028/www.scientific.net/AMR.243-249.4270
    [27] 李书林,张哲华,陈鑫鑫,等. 浅析冻融循环作用下青藏高原冻土区软弱结构面长期稳定性[J]. 科学技术创新,2020(26):129-130. doi: 10.3969/j.issn.1673-1328.2020.26.058

    LI S L,ZHANG Z H,CHEN X X,et al. Analysis on the long-term stability of weak structural plane in the frozen soil region of Qinghai-Tibet Plateau under the action of freeze-thaw cycle[J]. Science and Technology Innovation,2020(26):129-130. (in Chinese with English abstract doi: 10.3969/j.issn.1673-1328.2020.26.058
    [28] KAWAMURA S,MIURA S. Stability evaluation of volcanic slope subjected to rainfall and freeze-thaw action based on field monitoring[J]. Advances in Civil Engineering,2011(1):1-14.
    [29] NIU F,LUO J,LIN Z,et al. Thaw-induced slope failures and stability analyses in permafrost regions of the Qinghai-Tibet Plateau,China[J]. Landslides,2016,13(1):55-65. doi: 10.1007/s10346-014-0545-2
    [30] XU J,WANG Z Q,REN J W,et al. Mechanism of slope failure in loess terrains during spring thawing[J]. Journal of Mountain Science,2018,15(4):845-858. doi: 10.1007/s11629-017-4584-8
    [31] 宋勇军,操警辉,程柯岩,等. 砂岩冻结/解冻过程蠕变特性研究[J]. 水文地质工程地质,2024,51(6):93-103.

    SONG Y J,CAO J H,CHENG K Y,et al. Creep characteristics of sandstone durir:g freezing/thawing process[J]. Hydrogeology & Engineering Geology,2024,51(6):93-103.(in Chinese with English abstract
    [32] 陈兰,范宣梅,熊俊麟,等. 藏东南多依弄巴流域冰湖溃决危险性评价[J]. 地质科技通报,2023,42(2):258-266.

    CHEN L,FAN X M,XIONG J L,et al. Hazard assessment of glacial lake outbursts in the Doyinongba Basin,southeastern Tibetan Plateau[J]. Bulletin of Geological Science and Technology,2023,42(2):258-266. (in Chinese with English abstract
    [33] 郭长宝,吴瑞安,蒋良文,等. 川藏铁路雅安-林芝段典型地质灾害与工程地质问题[J]. 现代地质,2021,35(1):1-17.

    GUO C B,WU R A,JIANG L W,et al. Typical geohazards and engineering geological problems along the Ya'an-Linzhi section of the Sichuan-Tibet Railway,China[J]. Geoscience,2021,35(1):1-17. (in Chinese with English abstract
    [34] GROVE J M. Little ice ages:Vol. 2[M]. Ed2. Routledge:[S. n. ],2013.
    [35] 焦世晖,王凌越,刘耕年. 全球变暖背景下青藏高原多年冻土分布变化预测[J]. 北京大学学报(自然科学版),2016,52(2):249-256.

    JIAO S H,WANG L Y,LIU G N. Prediction of Tibetan Plateau permafrost distribution in global warming[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2016,52(2):249-256. (in Chinese with English abstract
    [36] 李述训,吴通华. 青藏高原地气温度之间的关系[J]. 冰川冻土,2012,27(5):627-632.

    LI S X,WU T H. The relationship between earth,air and temperature in Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology,2012,27(5):627-632. (in Chinese with English abstract
    [37] O’NEILL B C,TEBALDI C,VAN VUUREN D P,et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development,2016,9(9):3461-3482. doi: 10.5194/gmd-9-3461-2016
    [38] GRENIER C,ANBERGEN H,BENSE V,et al. Groundwater flow and heat transport for systems undergoing freeze-thaw:Intercomparison of numerical simulators for 2D test cases[J]. Advances in Water Resources,2018,114:196-218.
    [39] MCKENZIE J M,VOSS C I,SIEGEL D I. Groundwater flow with energy transport and water-ice phase change:Numerical simulations,benchmarks,and application to freezing in peat bogs[J]. Advances in Water Resources,2007,30(4):966-983. doi: 10.1016/j.advwatres.2006.08.008
    [40] VAN GENUCHTEN M T H. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [41] BIOT M A,Willis D G. The elastic coefficients of the theory of consolidation[J]. Journal of Applied Mechanics,2021,24(4):594-601.
    [42] KURYLYK B L,WATANABE K. The mathematical representation of freezing and thawing processes in variably-saturated,non-deformable soils[J]. Advances in Water Resources,2013,60:160-177. doi: 10.1016/j.advwatres.2013.07.016
    [43] JAME Y W. Heat and mass transfer in freezing unsaturated soil[D]. [S. 1. ]:University of Saskatchewan,1977.
    [44] PENG E X,SHENG Y,HU X Y,et al. Thermal effect of thermokarst lake on the permafrost under embankment[J]. Advances in Climate Change Research,2021,12(1):76-82. doi: 10.1016/j.accre.2020.10.002
    [45] HUANG X,RUDOLPH D L,Glass B. A coupled thermal‐hydraulic‐mechanical approach to modeling the impact of roadbed frost loading on water main failure[J]. Water Resources Research,2022,58(3):e2021WR030933.
    [46] JI H,NAN Z,HU J,et al. On the spin-up strategy for spatial modeling of permafrost dynamics:A case study on the Qinghai-Tibet Plateau[J]. Journal of Advances in Modeling Earth Systems,2022,14(3):e2021MS002750.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  78
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-05
  • 录用日期:  2024-06-07
  • 修回日期:  2024-06-06
  • 网络出版日期:  2025-02-18

目录

    /

    返回文章
    返回