留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时序InSAR形变梯度估计与城市建筑物风险评估: 以北京平原为例

左世诚 董杰 廖明生

左世诚, 董杰, 廖明生. 时序InSAR形变梯度估计与城市建筑物风险评估: 以北京平原为例[J]. 地质科技通报, 2024, 43(6): 171-183. doi: 10.19509/j.cnki.dzkq.tb20240117
引用本文: 左世诚, 董杰, 廖明生. 时序InSAR形变梯度估计与城市建筑物风险评估: 以北京平原为例[J]. 地质科技通报, 2024, 43(6): 171-183. doi: 10.19509/j.cnki.dzkq.tb20240117
ZUO Shicheng, DONG Jie, LIAO Mingsheng. Time-series InSAR deformation gradient estimation and urban buildings risk assessment: A case study in the Beijing Plain[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 171-183. doi: 10.19509/j.cnki.dzkq.tb20240117
Citation: ZUO Shicheng, DONG Jie, LIAO Mingsheng. Time-series InSAR deformation gradient estimation and urban buildings risk assessment: A case study in the Beijing Plain[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 171-183. doi: 10.19509/j.cnki.dzkq.tb20240117

时序InSAR形变梯度估计与城市建筑物风险评估: 以北京平原为例

doi: 10.19509/j.cnki.dzkq.tb20240117
基金项目: 

国家自然科学基金项目 42374013

国家重点研发计划课题 2023YFC3009404

详细信息
    作者简介:

    左世诚, E-mail: a2409637129@163.com

    通讯作者:

    廖明生, E-mail: liao@whu.edu.cn

  • 中图分类号: P642.26

Time-series InSAR deformation gradient estimation and urban buildings risk assessment: A case study in the Beijing Plain

More Information
  • 摘要:

    城市地表的差异性形变易对其表面基础设施造成断裂、扭曲等威胁或损害, 监测差异性形变并评估建筑物风险等级对人民生命财产安全至关重要。采用时序InSAR方法对Sentinel-1卫星数据进行时间序列分析, 获取了研究区地表形变及空间形变梯度; 结合夜光遥感数据、土地利用类型数据集、建筑物高程数据等多源外部数据, 采用网络层次分析法计算了研究区的危险性和易损性指标, 并由此开展了宏观风险评估; 在微观层面上评估建筑物的风险性, 识别潜在风险区域, 对宏观风险评估结果进行补充, 并进行对比实验验证了本研究的有效性。研究结果显示, 朝阳区东部、通州区西北部具有较大的差异性形变; 首都国际机场区域、安定南街附近等地区存在较高的风险性。因此, 利用多源数据进行差异性形变监测和风险评估对城市安全运行具有重要意义。

     

  • 图 1  北京平原范围示意图

    Figure 1.  Schematic map of Beijing Plain

    图 2  城市区域风险评估技术路线图

    Figure 2.  Technical roadmap of urban area risk assessment

    图 3  垂直向累计形变图(a)、水平向累计形变图(b)、垂直向空间形变梯度图(c)和水平向空间形变梯度图(d)

    Figure 3.  Vertical cumulative deformation(a), horizontal cumulative deformation(b), vertical spatial deformation gradient(c) and horizontal spatial deformation gradient(d)

    图 4  相位梯度堆叠图

    Figure 4.  Phase-gradient stacking

    图 5  宏观危险性(a)和易损性(b)等级分类结果图

    Figure 5.  Classification of macro hazard(a) and vulnerability(b)

    图 6  宏观风险性等级评估分类结果图

    Figure 6.  Classification of macro risk assessment

    图 7  建筑物危险性(a)和易损性等级分类结果图(b)

    Figure 7.  Classification of buildings hazard(a) and vulnerability(b)

    图 8  建筑物风险性等级评估分类结果图

    Figure 8.  Classification of buildings risk assessment

    图 9  风险性等级评估结果对比图

    a.对比实验宏观结果; b.多源数据宏观结果;c.对比实验微观结果;d.多源数据微观结果

    Figure 9.  Comparison of risk assessment results

    表  1  宏观危险性分级标准和权重

    Table  1.   Macro hazard classification standards and weights

    危险性因子 危险性分级标准 权重
    非常高(H3) 高(H2) 中(H1) 低(H0)
    水平向累计形变/m ≤-0.06或
    ≥0.06
    (-0.06, -0.04]或
    [0.04, 0.06)
    (-0.04, -0.02]或
    [0.02, 0.04)
    (-0.02, 0.02) 0.08
    垂直向累计形变/m ≤-0.15或
    ≥0.06
    (-0.15, -0.08]或
    [0.04, 0.06)
    (-0.08, -0.05]或
    [0.02, 0.04)
    (-0.05, 0.02) 0.16
    垂直向空间形变梯度(弧度形变)/10-4 ≥1.2 [0.8, 1.2) [0.4, 0.8) [0, 0.4) 0.20
    水平向空间形变梯度(弧度形变)/10-4 ≥1.0 [0.5, 1.0) [0.3, 0.5) [0, 0.3) 0.32
    相位梯度堆叠 ≥0.8 [0.5, 0.8) [0.3, 0.5) [0, 0.3) 0.24
    下载: 导出CSV

    表  2  宏观易损性分级标准和权重

    Table  2.   Macro vulnerability classification standards and weights

    易损性因子 易损性分级标准 权重
    非常高(V3) 高(V2) 中(V1) 低(V0)
    人口密度/(人·km-2) >80 000 (8 000, 80 000] (800, 8 000] [0, 800] 0.2
    GDP/亿元 >5 000 (500, 5 000] (50, 500] [0, 50] 0.2
    夜光遥感强度 >800 (500, 800] (300, 500] [0, 300] 0.2
    建筑物高度/m >20 (10, 20] (5, 10] [0, 5] 0.4
    下载: 导出CSV

    表  3  宏观风险评估分级

    Table  3.   Macro risk assessment classification

    易损性等级 危险性等级
    H0 H1 H2 H3
    V0 R0 R0 R1 R2
    V1 R0 R1 R2 R3
    V2 R1 R2 R3 R4
    V3 R2 R3 R4 R4
        注:R0,R1,R2,R3,R4分别为宏观风险非常低、低、中、高、非常高5个风险性等级,下同
    下载: 导出CSV

    表  4  建筑物易损性分级标准和权重

    Table  4.   Classification standards and weights of buildings vulnerability

    易损性因子 易损性分级标准 权重
    非常高(V3) 高(V2) 中(V1) 低(V0)
    夜光遥感强度 >500 (400, 500] (300, 400] (200, 300] 0.5
    建筑物体积/m3 >50 000 (10 000, 50 000] (5 000, 10 000] (0, 5 000] 0.5
    下载: 导出CSV

    表  5  建筑物风险评估分级

    Table  5.   Buildings risk assessment classification

    易损性等级 危险性等级
    H0 H1 H2 H3
    V0 R0 R0 R0 R1
    V1 R0 R0 R1 R2
    V2 R0 R1 R2 R3
    V3 R1 R2 R3 R3
    下载: 导出CSV

    表  6  对照实验评价因子分级

    Table  6.   Classification of control experiment evaluation factors

    评价因子 风险性分级标准
    高(R3) 中(R2) 低(R1) 非常低(R0)
    空间形变梯度/10-4 ≥1.2(H3) [0.8, 1.2)(H2) [0.4, 0.8)(H1) [0, 0.4)(H0)
    人口密度/(人·km-2) >80 000(V3) (8 000, 80 000](V2) (800, 8 000](V1) [0, 800](V0)
    下载: 导出CSV
  • [1] 胡喜梅, 马传明, 邓波, 等. 江苏省沿海地区地面沉降风险评价[J]. 地质科技情报, 2017, 36(2): 222-228.

    HU X M, MA C M, DENG B, et al. Risk evaluation of land subsidence in coastal areas of Jiangsu Province[J]. Geological Science and Technology Information, 2017, 36(2): 222-228. (in Chinese with English abstract)
    [2] 魏以宽, 闵天, 邹崇尧, 等. 基于InSAR的武汉地区2016-2021年地面沉降监测[J]. 地理空间信息, 2023, 21(10): 69-72. doi: 10.3969/j.issn.1672-4623.2023.10.017

    WEI Y K, MIN T, ZOU C Y, et al. Land subsidence monitoring in Wuhan from 2016 to 2021 based on InSAR[J]. Geospatial Information, 2023, 21(10): 69-72. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-4623.2023.10.017
    [3] ZHAO F M, GONG W P, TANG H M, et al. An integrated approach for risk assessment of land subsidence in Xi'an, China using optical and radar satellite images[J]. Engineering Geology, 2023, 314: 106983. doi: 10.1016/j.enggeo.2022.106983
    [4] WANG Z Y, BALZ T, ZHANG L, et al. Using TSX/TDX pursuit monostatic SAR stacks for PS-InSAR analysis in urban areas[J]. Remote Sensing, 2018, 11(1): 26. doi: 10.3390/rs11010026
    [5] 王腾, 廖明生. Sentinel-1卫星数据提取同震形变场: 最新技术及震例[J]. 遥感学报, 2018, 22(增刊1): 120-127.

    WANG T, LIAO M S. Coseismic displacement derived from Sentinel-1 data: Latest techniques and case studies[J]. Journal of Remote Sensing, 2018, 22(S1): 120-127. (in Chinese with English abstract)
    [6] 蔡杰华, 张路, 董杰, 等. 九寨沟震后滑坡隐患雷达遥感早期识别与形变监测[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1707-1716.

    CAI J H, ZHANG L, DONG J, et al. Detection and monitoring of post-earthquake landslides in Jiuzhaigou using radar remote sensing[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1707-1716. (in Chinese with English abstract)
    [7] 李思慧, 董杰, 张路, 等. 时序InSAR对流层大气延迟改正的相位堆叠方法[J]. 遥感学报, 2023, 27(10): 2406-2417.

    LI S H, DONG J, ZHANG L, et al. Time-series InSAR tropospheric atmospheric delay correction based on common scene stacking[J]. National Remote Sensing Bulletin, 2023, 27(10): 2406-2417. (in Chinese with English abstract)
    [8] DONG J, GUO S K, WANG N, et al. Tri-decadal evolution of land subsidence in the Beijing Plain revealed by multi-epoch satellite InSAR observations[J]. Remote Sensing of Environment, 2023, 286: 113446. doi: 10.1016/j.rse.2022.113446
    [9] CIGNA F, CABRAL-CANO E, OSMANOĈLU B, et al. Detecting subsidence-induced faulting in Mexican urban areas by means of Persistent Scatterer Interferometry and subsidence horizontal gradient mapping[C]//Anon. 2011 IEEE International Geoscience and Remote Sensing Symposium. [S. l.]: IEEE, 2011: 2125-2128.
    [10] 秦欢欢. 北京平原地面沉降数值模拟情景分析[J]. 地质科技情报, 2019, 38(1): 221-227.

    QIN H H. Numerical simulation and scenario analysis of land subsidence in Beijing Plain[J]. Geological Science and Technology Information, 2019, 38(1): 221-227. (in Chinese with English abstract)
    [11] ERTEN H, BOSTANCI E, ACICI K, et al. Semantic segmentation with high-resolution Sentinel-1 SAR data[J]. Applied Sciences, 2023, 13(10): 6025. doi: 10.3390/app13106025
    [12] 仵倩玉, 王密, 陈俊博. 语义描述驱动的启明星一号自主任务规划方法[J]. 武汉大学学报(信息科学版), 2023, 48(8): 1264-1272.

    WU Q Y, WANG M, CHEN J B. Semantic description driven autonomous mission planning method for QMX-1[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1264-1272. (in Chinese with English abstract)
    [13] 王妤, 孙斌栋. 城市规模分布对地区收入差距的影响: 基于LandScan全球人口数据库的实证研究[J]. 城市发展研究, 2021, 28(6): 25-32.

    WANG S, SUN B D. The effect of city size distribution on regional income disparities: An empirical research based on LandScan population database[J]. Urban Development Studies, 2021, 28(6): 25-32. (in Chinese with English abstract)
    [14] ZHAO N Z, LIU Y, CAO G F, et al. Forecasting China's GDP at the pixel level using nighttime lights time series and population images[J]. GIScience & Remote Sensing, 2017, 54(3): 407-425.
    [15] WU W B, MA J, BANZHAF E, et al. A first Chinese building height estimate at 10 m resolution(CNBH-10 m)using multi-source earth observations and machine learning[J]. Remote Sensing of Environment, 2023, 291: 113578. doi: 10.1016/j.rse.2023.113578
    [16] GONG P, CHEN B, LI X C, et al. Mapping essential urban land use categories in China(EULUC-China): Preliminary results for 2018[J]. Science Bulletin, 2020, 65(3): 182-187. doi: 10.1016/j.scib.2019.12.007
    [17] YANG J, HUANG X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925. doi: 10.5194/essd-13-3907-2021
    [18] KARRA K, KONTGIS C, STATMAN-WEIL Z, et al. Global land use/land cover with Sentinel 2 and deep learning[C]//Anon. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. [S. l.]: IEEE, 2021: 4704-4707.
    [19] WEGNVLLER U, WERNER C, STROZZI T, et al. Sentinel-1 support in the GAMMA Software[C]//Anon. International Conference on ENTERprise Information Systems/International Conference on Project MANagement/International Conference on Health and Social Care Information Systems and Technologies(CENTERIS/ProjMAN/HCist). [S. l.]: Elsevier B.V., 2016, 100: 1305-1312.
    [20] HAWKER L, UHE P, PAULO L, et al. A 30 m global map of elevation with forests and buildings removed[J]. Environmental Research Letters, 2022, 17(2): 024016. doi: 10.1088/1748-9326/ac4d4f
    [21] TANG W, MOTAGH M, ZHAN W. Monitoring active open-pit mine stability in the Rhenish coalfields of Germany using a coherence-based SBAS method[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 93: 102217. doi: 10.1016/j.jag.2020.102217
    [22] 尹勇, 史先琳, 钟佳宏, 等. 联合升降轨Sentinel-1A监测攀枝花机场高边坡二维形变[J]. 测绘与空间地理信息, 2023, 46(12): 45-48.

    YIN Y, SHI X L, ZHONG J H, et al. Monitoring 2D deformation of high slope in Panzhihua airport by joint lifting rail Sentinel-1A[J]. Geomatics & Spatial Information Technology, 2023, 46(12): 45-48. (in Chinese with English abstract)
    [23] CABRAL-CANO E, DIXON T H, MIRALLES-WILHELM F, et al. Space geodetic imaging of rapid ground subsidence in Mexico City[J]. Geological Society of America Bulletin, 2008, 120(11/12): 1556-1566.
    [24] CIGNA F, TAPETE D. Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico[J]. Remote Sensing of Environment, 2021, 254: 112254. doi: 10.1016/j.rse.2020.112254
    [25] FU L, ZHANG Q, WANG T, et al. Detecting slow-moving landslides using InSAR phase-gradient stacking and deep-learning network[J]. Frontiers in Environmental Science, 2022, 10: 963322. doi: 10.3389/fenvs.2022.963322
    [26] 李德仁, 李熙. 论夜光遥感数据挖掘[J]. 测绘学报, 2015, 44(6): 591-601.

    LI D R, LI X. An overview on data mining of nighttime light remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6): 591-601. (in Chinese with English abstract)
    [27] SHI P J, SHUAI J B, CHEN W F, et al. Study on large-scale disaster risk assessment and risk transfer models[J]. International Journal of Disaster Risk Science, 2010, 1(2): 1-8.
    [28] TURNER B L 2nd, KASPERSON R E, MATSON P A, et al. A framework for vulnerability analysis in sustainability science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8074-8079.
    [29] CUTTER S L, BARNES L, BERRY M, et al. A place-based model for understanding community resilience to natural disasters[J]. Global Environmental Change, 2008, 18(4): 598-606. doi: 10.1016/j.gloenvcha.2008.07.013
    [30] BIRKMANN J, CARDONA O D, CARREÑO M L, et al. Framing vulnerability, risk and societal responses: The MOVE framework[J]. Natural Hazards, 2013, 67(2): 193-211. doi: 10.1007/s11069-013-0558-5
    [31] 周姝天, 翟国方, 施益军, 等. 城市自然灾害风险评估研究综述[J]. 灾害学, 2020, 35(4): 180-186.

    ZHOU S T, ZHAI G F, SHI Y J, et al. A literature review of urban natural disaster risk assessment[J]. Journal of Catastrophology, 2020, 35(4): 180-186. (in Chinese with English abstract)
    [32] ZHANG Z H, ZHANG S B, HU C T, et al. Hazard assessment model of ground subsidence coupling AHP, RS and GIS: A case study of Shanghai[J]. Gondwana Research, 2023, 117: 344-362. doi: 10.1016/j.gr.2023.01.014
    [33] 赵帆, 方世跃, 祁欣海, 等. 基于ANP与ArcGIS的城市火灾风险评估[J]. 科学技术与工程, 2023, 23(3): 1308-1318.

    ZHAO F, FANG S Y, QI X H, et al. Urban fire risk assessment based on ANP and ArcGIS[J]. Science Technology and Engineering, 2023, 23(3): 1308-1318. (in Chinese with English abstract)
    [34] CIRO AUCELLI P P, DI PAOLA G, INCONTRI P, et al. Coastal inundation risk assessment due to subsidence and sea level rise in a Mediterranean alluvial plain(Volturno coastal plain-southern Italy)[J]. Estuarine, Coastal and Shelf Science, 2017, 198: 597-609.
    [35] CATANI F, CASAGLI N, ERMINI L, et al. Landslide hazard and risk mapping at catchment scale in the Arno River basin[J]. Landslides, 2005, 2(4): 329-342.
    [36] VARNES D J. Landslide hazard zonation: A review of principles and practice[M]. Paris: United Nations Educational, Scientific and Cultural Organization, 1984.
    [37] 李玉梅, 罗勇, 赵龙. 北京市平原区地面沉降研究进展与思考[J]. 灾害学, 2023, 38(4): 121-126.

    LI Y M, LUO Y, ZHAO L. The advance and considerations on land subsidence in Beijing Plain[J]. Journal of Catastrophology, 2023, 38(4): 121-126. (in Chinese with English abstract)
    [38] 张熔鑫, 邢会林, 舒涛, 等. 中国地震科学实验场断层系统的三维计算网格模型[J]. 地震, 2023, 43(3): 18-33.

    ZHANG R X, XING H L, SHU T, et al. 3D mesh for the fault system in China seismic experimental site[J]. Earthquake, 2023, 43(3): 18-33. (in Chinese with English abstract)
    [39] LIU Z P, TANG H, FENG L, et al. China building rooftop area: The first multi-annual(2016-2021) and high-resolution(2.5 m) building rooftop area dataset in China derived with super-resolution segmentation from Sentinel-2 imagery[J]. Earth System Science Data, 2023, 15(8): 3547-3572.
    [40] CIGNA F, TAPETE D. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014-2020 Sentinel-1 IW InSAR[J]. Remote Sensing of Environment, 2021, 253: 112161.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  149
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-26
  • 录用日期:  2024-07-01
  • 修回日期:  2024-05-21

目录

    /

    返回文章
    返回