Application of H2S and SO2 gas geochemical measurements in the Pulang porphyry copper deposit, Yunnan Province
-
摘要:
鉴于覆盖区找矿信息的识别和提取难度大,在覆盖区寻找斑岩铜矿面临巨大困难和挑战。斑岩铜矿中的矿体以低品位的金属硫化物为主,是否可以形成气体异常并确定矿体的延伸情况有待进一步研究。利用便携式气体快速分析仪在普朗斑岩铜矿区开展了H2S和SO2气体地球化学测量试验性研究。结果表明铜矿体上方可以形成很好的H2S和SO2气体地球化学异常,说明该方法能够揭示深部隐伏矿体等有效信息,通过异常在空间上的分布情况能够推测矿体在走向和倾向的延伸方向。二者协同性较好、浓度异常分布较为连续的部位具有很好的找矿潜力,是一种非常适合覆盖区斑岩铜矿矿产勘查的有效工作手段,为隐伏矿产勘查提供了新思路和新方法。
Abstract:Given the difficulty in identifying and extracting exploration information in covered areas, the search for porphyry copper deposits faces significant challenges.
Objective The ore bodies in porphyry copper deposits are primarily low-grade metal sulfides, and further research is needed to determine the depth and extent of these deposits via gas geochemistry.
Methods Preliminary experiments were conducted in this study using a portable gas analyzer for H2S and SO2 geochemical measurements at the Pulang porphyry copper deposit.
Results The results indicate significant H2S and SO2 geochemical anomalies above copper mineralization, suggesting the method's efficacy in revealing hidden ore bodies and predicting their strike and dip extensions.
Conclusion Areas showing good synergistic behavior, continuous anomalous concentration distributions, and potential for mineralization are promising targets for exploration. This approach represents an effective method for mineral exploration in covered porphyry copper deposits, offering new insights into prospecting concealed mineral resources.
-
-
[1] 张必敏,王学求,贺灵,等. 内蒙古半干旱草原区隐伏矿地球化学勘查方法试验[J]. 物探与化探,2013,37(5):804-810.ZHANG B M,WANG X Q,HE L,et al. Geochemical exploration for concealed deposits on semi-arid grasslands of Inner Mongolia[J]. Geophysical and Geochemical Exploration,2013,37(5):804-810. (in Chinese with English abstract [2] WANG S W,ZHOU T F,YUAN F,et al. Geochemical characteristics of the Shujiadian Cu deposit related intrusion in Tongling:Petrogenesis and implications for the formation of porphyry Cu systems in the Middle-Lower Yangtze River Valley metallogenic belt,Eastern China[J]. Lithos,2016,252:185-199. [3] 张维康,张青,张成,等. 基于地球化学数据的斑岩型矿床蚀变矿物提取与综合成矿预测[J]. 地质科技通报,2024,43(5):105-116.ZHANG W K,ZHANG Q,ZHANG C,et al. Alteration mineral identification and metallogenic prediction of porphyry deposits based on geochemical data[J]. Bulletin of Geological Science and Technology,2024,43(5):105-116. (in Chinese with English abstract [4] LIN C G,CHENG Z Z,CHEN X,et al. Application of multi-component gas geochemical survey for deep mineral exploration in covered areas[J]. Journal of Geochemical Exploration,2021,220:106656. doi: 10.1016/j.gexplo.2020.106656 [5] 徐启东,张晓军,尚恒胜,等. 构建覆盖区综合地质找矿思路和流程的探索:以内蒙古锡林郭勒西北部为例[J]. 地球科学,2012,37(6):1252-1258.XU Q D,ZHANG X J,SHANG H S,et al. New approach of integrated geological prospection in covered areas:A case study from northwestern Xilinguole,Inner Mongolia[J]. Earth Science,2012,37(6):1252-1258. (in Chinese with English abstract [6] 唐杰,王文磊,袁长江. 多重分形局部奇异性分析方法在中国西藏多龙矿集区深层次地球化学异常识别中的应用[J]. 地质科技通报,2024,43(5):296-310.TANG J,WANG W L,YUAN C J. Application of multifractal and local singularity analysis method to the identification of deep-level geochemical anomalies in the Duolong mineral district,Tibet,China[J]. Bulletin of Geological Science and Technology,2024,43(5):296-310. (in Chinese with English abstract [7] RICHARDS J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology,2003,98(8):1515-1533. doi: 10.2113/gsecongeo.98.8.1515 [8] COOKE D R,HOLLINGS P,WALSHE J L. Giant porphyry deposits:Characteristics,distribution,and tectonic controls[J]. Economic Geology,2005,100(5):801-818. doi: 10.2113/gsecongeo.100.5.801 [9] SEEDORFF E,DILLES J H,PROFFETT J M,et al. Porphyry deposits:Characteristics and origin of hypogene features[J]. Economic Geology,2005,100:251-298. [10] MUNTEAN J L,CLINE J S,SIMON A C,et al. Magmatic-hydrothermal origin of Nevada’s Carlin-type gold deposits[J]. Nature Geoscience,2011,4(2):122-127. doi: 10.1038/ngeo1064 [11] DOU X F,ZHENG Y Y,ZHENG S L,et al. Advanced soil-gas geochemical exploration methods for orogenic gold deposits:A case study of Chalapu deposit,Xizang[J]. Ore Geology Reviews,2024,173:106226. doi: 10.1016/j.oregeorev.2024.106226 [12] 张洁,程志中,伦知颍,等. 土壤中CO2、SO2和H2S气体测量:一种适用于覆盖区找矿的化探方法[J]. 地质科技情报,2016,35(4):12-17.ZHANG J,CHENG Z Z,LUN Z Y,et al. Soil air carbon dioxide,sulphur dioxide and hydrogen sulfide measurements as a guide to concealed mineralization[J]. Geological Science and Technology Information,2016,35(4):12-17. (in Chinese with English abstract [13] ALPERS C N,DETTMAN D L,LOHMANN K C,et al. Stable isotopes of carbon dioxide in soil gas over massive sulfide mineralization at Crandon,Wisconsin[J]. Journal of Geochemical Exploration,1990,38(1/2):69-86. [14] ARIAS J A,HALE M,WEBB J S. Vapour dispersion of mercury and radon at Cachinal,northern Chile[J]. Andean Geology,2010,8:3-12. [15] ARIAS J,LOWELL J,HALE M. Development and application of vapour geochemistry techniques to minerals exploration in overburden covered areas of Northern Chile[J]. Revista Geologica de Chile,1982,16:23-80. [16] BALL T K,CROW M J,LAFFOLEY N,et al. Application of soil-gas geochemistry to mineral exploration in Africa[J]. Journal of Geochemical Exploration,1990,38(1/2):103-115. [17] BALL T K,NICHOLSON R A,PEACHEY D. Effects of meteorological variables on certain soil gases used to detect buried ore deposits[J]. Transactions of the Institution of Mining and Metallurgy,Section B (Applied Earth Science),1983,92:183-190. [18] CHENG Z Z,WANG Q,LIN C G,et al. Application of portable multi-component gas analyzer to mineral exploration in semi-arid steppes of Northern China:A case study from the Qinjiaying Ag-Pb-Zn prospect[J]. Applied Geochemistry,2024,166:105996. doi: 10.1016/j.apgeochem.2024.105996 [19] DYCK W,JONASSON I R. The nature and behavior of gases in natural waters[J]. Water Research,1977,11(8):705-711. doi: 10.1016/0043-1354(77)90111-7 [20] LOVELL J S. Applications of vapour geochemistry to mineral exploration[D]. London:University of London,1979. [21] 王双,张声桃,魏俊浩,等. 基于地球化学数据的多图幅台阶效应与试验校正的多种方法优选[J]. 地质科技通报,2023,42(3):350-364.WANG S,ZHANG S T,WEI J H,et al. Multiple-map step effect and optimization of various experimental correction methods based on geochemical data[J]. Bulletin of Geological Science and Technology,2023,42(3):350-364. (in Chinese with English abstract [22] HINKLE M E,RYDER J L,SUTLEY S J,et al. Production of sulfur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande,Pinal County,Arizona[J]. Journal of Geochemical Exploration,1990,38(1/2):43-67. [23] HINKLE M E,DILBERT C A. Gases and trace elements in soils at the North Silver Bell deposit,Pima County,Arizona[J]. Journal of Geochemical Exploration,1984,20(3):323-336. doi: 10.1016/0375-6742(84)90074-8 [24] OAKES B W,HALE M. Dispersion patterns of carbonyl sulphide above mineral deposits[J]. Journal of Geochemical Exploration,1987,28(1/2/3):235-249. [25] FRIDMAN A I. Application of naturally occurring gases as geochemical pathfinders in prospecting for endogenetic deposits[J]. Journal of Geochemical Exploration,1990,38(1/2):1-11. [26] FLEISCHER M. Data of geochemistry[M]. [S. 1.]:US Government Printing Office,1962. [27] HIGHSMITH P. Overview of soilgas theory[J]. Explore Newsletter,2004,122:1-15. [28] 李文昌,曾普胜. 云南普朗超大型斑岩铜矿特征及成矿模型[J]. 成都理工大学学报(自然科学版),2007,34(4):436-446. doi: 10.3969/j.issn.1671-9727.2007.04.011LI W C,ZENG P S. Characteristics and metallogenic model of the Pulang superlarge porphyry copper deposit in Yunnan,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2007,34(4):436-446. (in Chinese with English abstract doi: 10.3969/j.issn.1671-9727.2007.04.011 [29] CAO K,YANG Z M,WHITE N C,et al. Generation of the giant porphyry Cu-Au deposit by repeated recharge of mafic magmas at pulang in eastern Tibet[J]. Economic Geology,2022,117(1):57-90. doi: 10.5382/econgeo.4860 [30] CAO K,YANG Z M,MAVROGENES J,et al. Geology and genesis of the giant pulang porphyry Cu-Au district,Yunnan,Southwest China[J]. Economic Geology,2019,114(2):275-301. doi: 10.5382/econgeo.2019.4631 [31] 吴练荣,吴维虎,董桥峰,等. 云南普朗斑岩型铜矿伴生元素金、银、钼的赋存状态与分布规律[J]. 中国钼业,2021,45(5):11-17.WU L R,WU W H,DONG Q F,et al. Occurrence and distribution of associated elements gold,silver and molybdenum in Pulang porphyry copper deposit of Yunnan[J]. China Molybdenum Industry,2021,45(5):11-17. (in Chinese with English abstract [32] 李颖,付金宇,侯永超. 有害气体检测的电化学技术的应用发展[J]. 科学技术与工程,2018,18(3):132-141.LI Y,FU J Y,HOU Y C. Application development of electrochemical sensors technology for harmful gases detecting[J]. Science Technology and Engineering,2018,18(3):132-141. (in Chinese with English abstract [33] LOVELL J S,HALE M,WEBB J S. Soil air carbon dioxide and oxygen measurements as a guide to concealed mineralization in semi-arid and arid regions[M]//Anon. Developments in economic geology. Amsterdam:Elsevier,1984:305-317. [34] TAYLOR C H,KESLER S E,CLOKE P L. Sulfur gases produced by the decomposition of sulfide minerals:Application to geochemical exploration[J]. Journal of Geochemical Exploration,1982,17(3):165-185. doi: 10.1016/0375-6742(82)90001-2 [35] 王学求,张必敏,姚文生,等. 覆盖区勘查地球化学理论研究进展与案例[J]. 地球科学,2012,37(6):1126-1132.WANG X Q,ZHANG B M,YAO W S,et al. New evidences for transport mechanism and case histories of geochemical exploration through covers[J]. Earth Science,2012,37(6):1126-1132. (in Chinese with English abstract [36] 周晓丹,杨帆,吴静,等. 云南普朗斑岩型铜矿床外围斑岩体成因探讨[J]. 地质科技情报,2018,37(4):39-50.ZHOU X D,YANG F,WU J,et al. Petrogenesis of porphyry body in the periphery of pulang porphyry copper deposit,Yunnan[J]. Geological Science and Technology Information,2018,37(4):39-50. (in Chinese with English abstract -