留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动力过程的泥石流定量风险评估: 以四川凉山州木里县黄泥巴沟泥石流为例

王东坡 董奇 廖良波 鲁帅 闫帅星

王东坡, 董奇, 廖良波, 鲁帅, 闫帅星. 基于动力过程的泥石流定量风险评估: 以四川凉山州木里县黄泥巴沟泥石流为例[J]. 地质科技通报, 2024, 43(6): 1-14. doi: 10.19509/j.cnki.dzkq.tb20240148
引用本文: 王东坡, 董奇, 廖良波, 鲁帅, 闫帅星. 基于动力过程的泥石流定量风险评估: 以四川凉山州木里县黄泥巴沟泥石流为例[J]. 地质科技通报, 2024, 43(6): 1-14. doi: 10.19509/j.cnki.dzkq.tb20240148
WANG Dongpo, DONG Qi, LIAO Liangbo, LU Shuai, YAN Shuaixing. Quantitative risk assessment for debris flows based on dynamic process: A case study of Huangniba gully, Muli County, Liangshan Prefecture, Sichuan Province[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 1-14. doi: 10.19509/j.cnki.dzkq.tb20240148
Citation: WANG Dongpo, DONG Qi, LIAO Liangbo, LU Shuai, YAN Shuaixing. Quantitative risk assessment for debris flows based on dynamic process: A case study of Huangniba gully, Muli County, Liangshan Prefecture, Sichuan Province[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 1-14. doi: 10.19509/j.cnki.dzkq.tb20240148

基于动力过程的泥石流定量风险评估: 以四川凉山州木里县黄泥巴沟泥石流为例

doi: 10.19509/j.cnki.dzkq.tb20240148
基金项目: 

国家自然科学基金 42207232

四川省科技计划项目 2023YFS0444

地质灾害防治与地质环境保护国家重点实验室自主研究课题 SKLGP2021Z001

地质灾害防治与地质环境保护国家重点实验室自主研究课题 SKLGP2022Z023

详细信息
    作者简介:

    王东坡, E-mail: wangdongpo@cdut.edu.cn

    通讯作者:

    闫帅星, E-mail: yansx@cdut.edu.cn

  • 中图分类号: P642.23

Quantitative risk assessment for debris flows based on dynamic process: A case study of Huangniba gully, Muli County, Liangshan Prefecture, Sichuan Province

More Information
  • 摘要:

    以四川凉山州木里县黄泥巴沟泥石流为例, 基于Massflow数值仿真平台, 通过现场调查及数值模型构建, 分析泥石流形成演化机制, 反演泥石流动力演进物理过程。在此基础上, 开展不同重现期泥石流危险性评估, 构建不同破坏模式下砌体结构易损性评估模型, 建立基于动力过程的泥石流风险评估方法。研究区泥石流风险评估结果表明: 20 a一遇泥石流极高、高风险区面积分别为0.15×104和1.68×104 m2, 其中建筑物数量分别为10和13座; 50 a一遇极高、高风险区面积相比20 a一遇分别增加40%和70.8%, 建筑物分别增加2和4座; 100 a一遇极高、高风险区面积相比20 a一遇分别增加113.3%和132.1%, 建筑物分别增加11和5座。本研究构建的考虑侵蚀的泥石流动力过程数值模型可较好反映黄泥巴沟泥石流事件, 且砌体结构易损性评估模型经与其他泥石流事件分析验证表明其具有较好的可行性, 相关结果可为黄泥巴沟泥石流风险定量预测提供依据。

     

  • 图 1  黄泥巴沟地理位置(a)及地层岩性(b)

    Figure 1.  Geographical location(a) and stratigraphy and lithology(b) of Huangniba gully

    图 2  2021年7月5日黄泥巴沟泥石流前后降雨量

    Figure 2.  Pre- and post-debris flow rainfall at Huangniba gully on July 5, 2021

    图 3  黄泥巴沟流域火灾前后植被覆盖度变化对比图

    Figure 3.  Comparison of vegetation cover changes in Huangniba gully watershed before and after the fire

    图 4  泥石流沿程侵蚀

    Figure 4.  Debris flow erosion along its course

    图 5  泥石流沟断面位置图

    Figure 5.  Sections of the debris flow gully

    图 6  “7·5”泥石流数值反演流速(a)及流深(b)分布图

    Figure 6.  Distribution of flow velocity(a) and depth(b) in the numerical inversion of the "7·5" debris flow

    图 7  典型监测点泥痕

    Figure 7.  Measured flow heights at typical monitoring sites

    图 8  “7·5”泥石流模拟堆积结果与实际发生对比

    Figure 8.  Comparison of simulation accumulation results with actual events of the "7·5" debris flow

    图 9  不同重现期内黄泥巴沟泥石流危险性评估结果

    a~c.泥石流流深图; d~f.泥石流流速图; g~i.泥石流危险性分区图

    Figure 9.  Hazard assessment of debris flow for different recurrence periods in Huangniba gully

    图 10  泥石流冲击作用下墙体受力分析图

    M.墙体底部弯矩; TA.墙体上端的剪力; TB.墙体下端的剪力; 其余字母含义见正文, 下同

    Figure 10.  Force analysis diagram of debris flow impact wall

    图 11  墙体发生弯曲破坏和剪切破坏临界条件(a为经验系数, 下同)

    Figure 11.  Bending damage and shear damage critical conditions of the wall

    图 12  淤埋深度与财产损失的关系

    Figure 12.  Relationship between debris flow depth and property damage

    图 13  冲击破坏建筑物易损性曲线

    Figure 13.  Vulnerability curve for impact failure mode of the building

    图 14  淤埋破坏建筑物易损性曲线

    Figure 14.  Vulnerability curve for silting failure mode of the building

    图 15  对比文献[22, 47]易损度与本研究计算的易损性曲线

    Figure 15.  Comparison of the vulnerability values proposed by Quna Luna et al.[47] and Kang et al.[22] and the vulnerability curves calculated from this research

    图 16  黄泥巴沟不同重现期泥石流易损性评估结果

    a. 20 a一遇泥石流易损性分区图; b. 50 a一遇泥石流易损性分区图; c. 100 a一遇泥石流易损性分区图; d.不同重现期建筑物易损性统计图

    Figure 16.  Vulnerability assessment of debris flow for different recurrence periods in Huangniba gully

    图 17  泥石流定量风险性等级评估

    Figure 17.  Quantitative risk assessment for debris flows

    图 18  黄泥巴沟不同重现期泥石流风险性评估结果

    a. 20 a一遇泥石流风险性分区图; b. 50 a一遇泥石流风险性分区图; c. 100 a一遇泥石流风险性分区图; d.不同重现期泥石流风险区统计图

    Figure 18.  Risk assessment of debris flow for different recurrence periods in Huangniba gully

    表  1  泥石流相关参数计算公式

    Table  1.   Formulas for calculating parameters of debris flows

    计算方法 计算公式
    现场配浆法 $\gamma_{\mathrm{c}}=G_{\mathrm{c}} / V$
    平均流速计算法 $V_c=\frac{1}{\sqrt{\gamma_{\mathrm{H}} \varphi+1}} \frac{1}{n} R_c^{2 / 3} I_c^{1 / 2}$
    形态调查法 $Q_{\mathrm{c}}=A_{\mathrm{sc}} \times v_{\mathrm{c}}$
    雨洪修正法 $Q_{\mathrm{c}}=(1+\varphi) Q_{\mathrm{p}} D_{\mathrm{c}}$
    注:γc为泥石流重度,t/m3Gc为配置泥石流浆体重量,t;V为泥石流浆体体积,m3vc为断面处泥石流流速,m/s; Rc为断面处水力半径, m,可用泥石流深度替代;Ic为泥石流水力坡降,以沟道纵坡率代替;φ为泥沙修正系数;γH为泥石流固体物质容重,t/m3QcP频率下泥石流峰值流量,m3/s;Asc断面处过流面积,m2QpP频率下暴雨洪水峰值流量,m3/s;Dc为堵塞系数;下同
    下载: 导出CSV

    表  2  数值模拟参数

    Table  2.   Numerical simulation parameters

    汇流面积 F/km2 频率 P/% γc/ (t· m-3) φ 基底摩擦系数 μ 湍流系数 ζ/(m· s-2) Qc(1#)/ (m3· s-1) Qc(2#)/ (m3· s-1)
    10.30 7.5 1.84 1.52 0.22 260 77.70 50.8
    5.0 1.84 1.52 0.20 240 100.28 65.5
    2.0 1.84 1.52 0.18 220 127.84 83.5
    1.0 1.84 1.52 0.16 200 166.52 108.7
    注: Qc(1#), Qc(2#)分别为1#, 2#断面的流峰值流量
    下载: 导出CSV

    表  3  黄泥巴沟泥石流结果误差评价

    Table  3.   Errors in the results of the debris flow in Huangniba gully

    评价地点 监测点K1 监测点K3 监测点K6 监测点K7 堆积区结果
    误差率/% 4.9 16.2 8.7 19.3 13.4
    下载: 导出CSV

    表  4  泥石流危险性分区标准

    Table  4.   Debris flow hazard zoning criteria

    危险区 流深h/m 关系 最大动量hv/(m2·s-1)
    极高危险区 ≥2 ≥6
    高危险区 [1, 2) [4, 6)
    中危险区 [0.5, 1) [1, 4)
    轻危险区 <0.5 <1
    下载: 导出CSV

    表  5  冲击破坏易损度定义

    Table  5.   Relationship between the degree of impact damage and vulnerability

    冲击破坏程度 轻度破坏 中度破坏 严重破坏 完全破坏
    易损度 [0, 0.2) [0.2, 0.4) [0.4, 0.7) [0.7, 1]
    下载: 导出CSV

    表  6  淤埋破坏易损度定义

    Table  6.   Relationship between the degree of stacking damage and vulnerability

    淤埋破坏程度 轻度破坏 中度破坏 严重破坏 完全破坏
    易损度 [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 1]
    下载: 导出CSV

    表  7  建筑物易损度划分标准

    Table  7.   Vulnerability classification criteria

    划分标准 低易损度区 中易损度区 高易损度区 极高易损度区
    易损度 [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 1]
    下载: 导出CSV
  • [1] 谢洪, 钟敦伦, 韦方强, 等. 我国山区城镇泥石流灾害及其成因[J]. 山地学报, 2006, 24(1): 79-87.

    XIE H, ZHONG D L, WEI F Q, et al. Debris flow hazards and their formation causes in mountain urban area of China[J]. Mountain Research, 2006, 24(1): 79-87. (in Chinese with English abstract)
    [2] 崔鹏, 韦方强, 谢洪, 等. 中国西部泥石流及其减灾对策[J]. 第四纪研究, 2003, 23(2): 142-151.

    CUI P, WEI F Q, XIE H, et al. Debris flow and disaster reduction strategies in western China[J]. Quaternary Sciences, 2003, 23(2): 142-151. (in Chinese with English abstract)
    [3] 张楠, 方志伟, 韩笑, 等. 近年来我国泥石流灾害时空分布规律及成因分析[J]. 地学前缘, 2018, 25(2): 299-308.

    ZHANG N, FANG Z W, HAN X, et al. The study on temporal and spatial distribution law and cause of debris flow disaster in China in recent years[J]. Earth Science Frontiers, 2018, 25(2): 299-308. (in Chinese with English abstract)
    [4] ZHANG S, ZHANG L M, LI X Y, et al. Physical vulnerability models for assessing building damage by debris flows[J]. Engineering Geology, 2018, 247: 145-158. doi: 10.1016/j.enggeo.2018.10.017
    [5] 余斌, 马煜, 吴雨夫. 汶川地震后四川省绵竹市清平乡文家沟泥石流灾害调查研究[J]. 工程地质学报, 2010, 18(6): 827-836. doi: 10.3969/j.issn.1004-9665.2010.06.003

    YU B, MA Y, WU Y F. Investigation of severe debris flow hazards in Wenjia gully of Sichuan Province after the Wenchuan earthquake[J]. Journal of Engineering Geology, 2010, 18(6): 827-836. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.06.003
    [6] 亓星, 许强, 余斌, 等. 汶川震区文家沟泥石流治理工程效果分析[J]. 地质科技情报, 2016, 35(1): 161-165.

    QI X, XU Q, YU B, et al. Treatment effects in Wenjia gully, Wenchuan earthquake area[J]. Geological Science and Technology Information, 2016, 35(1): 161-165. (in Chinese with English abstract)
    [7] 齐信, 唐川, 陈州丰, 等. 地质灾害风险评价研究[J]. 自然灾害学报, 2012, 21(5): 33-40.

    QI X, TANG C, CHEN Z F, et al. Research of geohazards risk assessment[J]. Journal of Natural Disasters, 2012, 21(5): 33-40. (in Chinese with English abstract)
    [8] 中国地质调查局. 地质灾害调查技术要求(1∶50 000): DD2019-08[S]. 北京: 中国标准出版社, 2019.

    China Geological Survey. Technical requirement for geohazard survey (1∶50 000): DD2019-08[S]. Beijing: Standards Press of China, 2019. (in Chinese)
    [9] SHEN S W, XIE H E, XU Y, et al. Fuzzy comprehensive evaluation of debris flow in Matun Village, Laomao Mountain area, Dalian City[J]. Arabian Journal of Geosciences, 2020, 13(2): 49. doi: 10.1007/s12517-019-5011-y
    [10] 于秀治, 韦京莲. 灰色系统理论在北京山区泥石流危险度评价预测中的应用[J]. 中国地质灾害与防治学报, 2004, 15(1): 118-120.

    YU X Z, WEI J L. Grey system analysis and its application in the forecast of mud-rock flow criticality of Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(1): 118-120. (in Chinese with English abstract)
    [11] 蒋忠信. 泥石流流域系统的超熵[J]. 中国地质灾害与防治学报, 1992, 3(1): 35-42.

    JIANG Z X. Superentropy in drainage-system of debris flow[J]. The Chinese Journal of Geological Hazard and Control, 1992, 3(1): 35-42. (in Chinese with English abstract)
    [12] 庞海松, 谢骏锦, 张小明, 等. 基于RAMMS数值模拟的短时强降雨型泥石流危险性评价[J]. 地质科技通报, 2024, 43(2): 215-225. doi: 10.19509/j.cnki.dzkq.tb20230153

    PANG H S, XIE J J, ZHANG X M, et al. Hazard assessment of debris flow induced by short-time heavy rainfall based on RAMMS numerical simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 215-225. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230153
    [13] VELOSO V Q, REIS F A V G, CABRAL V, et al. Hazard assessment of debris-flow-prone watersheds in Cubatão, São Paulo State, Brazil[J]. Natural Hazards, 2023, 116(3): 3119-3138.
    [14] SUN Y Q, GE Y G, CHEN X Z, et al. Risk assessment of debris flow along the northern line of the Sichuan-Tibet highway[J]. Geomatics, Natural Hazards and Risk, 2023, 14(1): 2195531.
    [15] 谢奎林, 陈兴长, 陈慧, 等. 基于动力过程的单沟泥石流危险性评价方法[J]. 科学技术与工程, 2023, 23(29): 12406-12415.

    XIE K L, CHEN X C, CHEN H, et al. Risk assessment method of debris flow hazard based on dynamic process[J]. Science Technology and Engineering, 2023, 23(29): 12406-12415. (in Chinese with English abstract)
    [16] 陈兰, 范宣梅, 熊俊麟, 等. 藏东南多依弄巴流域冰湖溃决危险性评价[J]. 地质科技通报, 2023, 42(2): 258-266. doi: 10.19509/j.cnki.dzkq.tb20220235

    CHEN L, FAN X M, XIONG J L, et al. Hazard assessment of glacial lake outbursts in the Doyinongba Basin, southeastern Tibetan Plateau[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 258-266. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220235
    [17] TIMMERMAN P. Vulnerability, resilience and the collapse of society: A review of models and possible climatic applications[M]. Toronto, Canada: Institute for Environmental Studies, University of Toronto, 1981: 1-62.
    [18] 常鸣. 基于遥感及数值模拟的强震区泥石流定量风险评价研究[D]. 成都: 成都理工大学, 2014.

    CHANG M. Quantitative risk assessment of debris flow in coseismic area based on remote sensing and numerical simulation[D]. Chengdu: Chengdu University of Technology, 2014. (in Chinese with English abstract)
    [19] LUO H Y, ZHANG L M, ZHANG L L, et al. Vulnerability of buildings to landslides: The state of the art and future needs[J]. Earth-Science Reviews, 2023, 238: 104329.
    [20] PAPATHOMA-KÖHLE M, KAPPES M, KEILER M, et al. Physical vulnerability assessment for alpine hazards: State of the art and future needs[J]. Natural Hazards, 2011, 58(2): 645-680.
    [21] CHEN M, TANG C, ZHANG X Z, et al. Quantitative assessment of physical fragility of buildings to the debris flow on 20 August 2019 in the Cutou gully, Wenchuan, southwestern China[J]. Engineering Geology, 2021, 293: 106319.
    [22] KANG H S, KIM Y T. The physical vulnerability of different types of building structure to debris flow events[J]. Natural Hazards, 2016, 80(3): 1475-1493.
    [23] JAKOB M, STEIN D, ULMI M. Vulnerability of buildings to debris flow impact[J]. Natural Hazards, 2012, 60(2): 241-261.
    [24] HU K H, CUI P, ZHANG J Q. Characteristics of damage to buildings by debris flows on 7 August 2010 in Zhouqu, western China[J]. Natural Hazards and Earth System Sciences, 2012, 12(7): 2209-2217.
    [25] OUYANG C J, WANG Z W, AN H C, et al. An example of a hazard and risk assessment for debris flows: A case study of Niwan gully, Wudu, China[J]. Engineering Geology, 2019, 263: 105351.
    [26] OUYANG C J, XIANG W, AN H C, et al. Mechanistic analysis and numerical simulation of the 2021 post-fire debris flow in Xiangjiao Catchment, China[J]. Journal of Geophysical Research: Earth Surface, 2023, 128(1): e2022JF006846.
    [27] OUYANG C J, HE S M, XU Q, et al. A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain[J]. Computers & Geosciences, 2013, 52: 1-10.
    [28] IVERSON R M, OUYANG C J. Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-integrated theory[J]. Reviews of Geophysics, 2015, 53(1): 27-58.
    [29] KLAUS S, BARBARA T, BRIAN M, et al. Modeling debris-flow runout pattern on a forested alpine fan with different dynamic simulation models[M]//Anon. Engineering geology for society and territory: Volume 2. Cham: Springer International Publishing, 2015: 1673-1676.
    [30] PIRULLI M, MARCO F. Description and numerical modelling of the October 2000 Nora debris flow, Northwestern Italian Alps[J]. Canadian Geotechnical Journal, 2010, 47(2): 135-146.
    [31] SCHEIDL C, RICKENMANN D. Empirical prediction of debris-flow mobility and deposition on fans[J]. Earth Surface Processes and Landforms, 2010, 35(2): 157-173.
    [32] HÜBL J, STEINWENDTNER H. Two-dimensional simulation of two viscous debris flows in Austria[J]. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 2001, 26(9): 639-644.
    [33] GARCIA R, LÓPEZ J L, NOYA M, et al. Hazard mapping for debris-flow events in the alluvial fans of northern Venezuela[J]. International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, 2003, 1: 589-599.
    [34] 唐川, 刘希林, 朱静. 泥石流堆积泛滥区危险度的评价与应用[J]. 自然灾害学报, 1993, 2(4): 79-84.

    TANG C, LIU X L, ZHU J. The evaluation and application of risk degree for debris flow inundation on alluvial fans[J]. Journal of Natural Disasters, 1993, 2(4): 79-84. (in Chinese with English abstract)
    [35] 韦方强, 胡凯衡, LOPEZ J L, 等. 泥石流危险性动量分区方法与应用[J]. 科学通报, 2003, 48, (3): 298-301.

    WEI F Q, HU K H, LOPEZ J L, et al. Debris flow hazard momentum partitioning methods and applications[J]. Chinese Science Bulletin, 2003, 48(3): 298-301. (in Chinese with English abstract)
    [36] 吴季寰, 张春山, 杨为民, 等. 基于熵权变异系数融合算法和FLO-2D的朱家沟流域泥石流危险性评价[J]. 自然灾害学报, 2022, 31(1): 81-91.

    WU J H, ZHANG C S, YANG W M, et al. Risk assessment of debris flow in Zhujia gully watershed based on entropy weight coefficient of variation fusion algorithm and FLO-2D[J]. 自然灾害学报, 2022, 31(1): 81-91. (in Chinese with English abstract)
    [37] ZANUTTIGH B, LAMBERTI A. Experimental analysis of the impact of dry avalanches on structures and implication for debris flows[J]. Journal of Hydraulic Research, 2006, 44(4): 522-534.
    [38] 刘洋, 游勇, 王海帆, 等. 颗粒流冲击力研究现状及讨论[J]. 防灾减灾工程学报, 2020, 40(5): 714-723.

    LIU Y, YOU Y, WANG H F, et al. Research status and discussion on granular flow impact force[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(5): 714-723. (in Chinese with English abstract)
    [39] ZANCHETTA G, SULPIZIO R, PARESCHI M T, et al. Characteristics of May 5-6, 1998 volcaniclastic debris flows in the Sarno area(Campania, southern Italy): Relationships to structural damage and hazard zonation[J]. Journal of Volcanology and Geothermal Research, 2004, 133(1/4): 377-393.
    [40] CANELLI L, FERRERO A M, MIGLIAZZA M, et al. Debris flow risk mitigation by the means of rigid and flexible barriers-experimental tests and impact analysis[J]. Natural Hazards and Earth System Sciences, 2012, 12(5): 1693-1699.
    [41] SCOTTON P, DEGANUTTI A M. Phreatic line and dynamic impact in laboratory debris flow experiments[J]. International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, 1997: 777-786.
    [42] BUGNION L, MCARDELL B W, BARTELT P, et al. Measurements of hillslope debris flow impact pressure on obstacles[J]. Landslides, 2012, 9(2): 179-187.
    [43] HÜBL J, HOLZINGER G. Entwicklung von Grundlagen zur Dimensionierung kronenoffener Bauwerke fudie Geschiebebewirtschaftung in Wildba hen: Kleinmasssta liche Modellversuche zur Wirkung von Murbrechern[J]. WLS report, 2003, 50.
    [44] 曾超, 苏志满, 雷雨, 等. 泥石流浆体与大颗粒冲击力特征的试验研究[J]. 岩土力学, 2015, 36(7): 1923-1930.

    ZENG C, SU Z M, LEI Y, et al. An experimental study of the characteristics of impact forces between debris flow slurry and large-sized particles[J]. Rock and Soil Mechanics, 2015, 36(7): 1923-1930. (in Chinese with English abstract)
    [45] KWAN J. Supplementary technical guidance on design of rigid debris-resisting barriers[R]. Hong Kong: Geotechnical Engineering Office, RHKSA, 2012.
    [46] LO W C, TSAO T C, HSU C H. Building vulnerability to debris flows in Taiwan: A preliminary study[J]. Natural Hazards, 2012, 64(3): 2107-2128.
    [47] QUNA LUNA B, BLAHUT J, VAN WESTEN C J, et al. The application of numerical debris flow modelling for the generation of physical vulnerability curves[J]. Natural Hazards and Earth System Sciences, 2011, 11(7): 2047-2060.
    [48] AGLIATA R, BORTONE A, MOLLO L. Indicator-based approach for the assessment of intrinsic physical vulnerability of the built environment to hydro-meteorological hazards: Review of indicators and example of parameters selection for a sample area[J]. International Journal of Disaster Risk Reduction, 2021, 58: 102199.
    [49] 梁梦辉. 不同物源条件下典型单沟泥石流风险评价[D]. 重庆: 重庆交通大学, 2023.

    LIANG M H. Study under different source conditions risk assessment of typical single gully debris flow[D]. Chongqing: Chongqing Jiaotong University, 2023. (in Chinese with English abstract)
    [50] 王术桁. 云南省倘甸两区金源乡集镇泥石流风险评价[D]. 成都: 成都理工大学, 2017.

    WANG S H. Risk assessment of debris flow in Jinyuan Township, Tangdian District, Yunnan Province[D]. Chengdu: Chengdu University of technology, 2017. (in Chinese with English abstract)
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  371
  • PDF下载量:  450
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-08
  • 录用日期:  2024-07-01
  • 修回日期:  2024-05-30

目录

    /

    返回文章
    返回