Quantitative risk assessment for debris flows based on dynamic process: A case study of Huangniba gully, Muli County, Liangshan Prefecture, Sichuan Province
-
摘要:
以四川凉山州木里县黄泥巴沟泥石流为例, 基于Massflow数值仿真平台, 通过现场调查及数值模型构建, 分析泥石流形成演化机制, 反演泥石流动力演进物理过程。在此基础上, 开展不同重现期泥石流危险性评估, 构建不同破坏模式下砌体结构易损性评估模型, 建立基于动力过程的泥石流风险评估方法。研究区泥石流风险评估结果表明: 20 a一遇泥石流极高、高风险区面积分别为0.15×104和1.68×104 m2, 其中建筑物数量分别为10和13座; 50 a一遇极高、高风险区面积相比20 a一遇分别增加40%和70.8%, 建筑物分别增加2和4座; 100 a一遇极高、高风险区面积相比20 a一遇分别增加113.3%和132.1%, 建筑物分别增加11和5座。本研究构建的考虑侵蚀的泥石流动力过程数值模型可较好反映黄泥巴沟泥石流事件, 且砌体结构易损性评估模型经与其他泥石流事件分析验证表明其具有较好的可行性, 相关结果可为黄泥巴沟泥石流风险定量预测提供依据。
Abstract:Objective, Methods This study focus on debris flows in Huangniba gully, Muli County, Liangshan Prefecture, Sichuan Province, utilizing a mass flow numerical simulation platform. Through field investigations and the construction of numerical models, we analyze the mechanisms driving debris flow formation and evolution, aiming to invert these mechanisms.Based on this foundation, we assess debris flow hazards, develop a vulnerability model for masonry structures under different damage modes, and establish a dynamic process-based debris flow risk assessment method.
Results The risk assessment indicates that, for a 20-year return period, very high- and high-risk zones for debris flow encompass 0.15×104 m2 and 1.68×104 m2, affecting 10 and 13 buildings, respectively. For a 50-year return period, the areas of very high- and high-risk zones expand by 40% and 70.8%, with 2 and 4 additional buildings affected. Moreover, for a 100-year return period, these zones increase by 113.3% and 132.1%, respectively, affecting 11 and 5 more buildings compared to the 20-year scenario.
Conclusion Furthermore, the erosion-incorporating debris flow dynamics model developed in this study accurately represents the debris flow events in Huangniba gully. Additionally, the vulnerability assessment model for masonry structures was validated against other debris flow events, confirming its enhanced feasibility. These findings provide a foundation for quantitative risk prediction in Huangniba gully.
-
Key words:
- debris flow /
- Massflow /
- dynamic process /
- hazard /
- vulnerability /
- quantitative risk assessment /
- Huangniba gully /
- Liangshan, Sichuan
-
表 1 泥石流相关参数计算公式
Table 1. Formulas for calculating parameters of debris flows
计算方法 计算公式 现场配浆法 $\gamma_{\mathrm{c}}=G_{\mathrm{c}} / V$ 平均流速计算法 $V_c=\frac{1}{\sqrt{\gamma_{\mathrm{H}} \varphi+1}} \frac{1}{n} R_c^{2 / 3} I_c^{1 / 2}$ 形态调查法 $Q_{\mathrm{c}}=A_{\mathrm{sc}} \times v_{\mathrm{c}}$ 雨洪修正法 $Q_{\mathrm{c}}=(1+\varphi) Q_{\mathrm{p}} D_{\mathrm{c}}$ 注:γc为泥石流重度,t/m3;Gc为配置泥石流浆体重量,t;V为泥石流浆体体积,m3;vc为断面处泥石流流速,m/s; Rc为断面处水力半径, m,可用泥石流深度替代;Ic为泥石流水力坡降,以沟道纵坡率代替;φ为泥沙修正系数;γH为泥石流固体物质容重,t/m3;Qc为P频率下泥石流峰值流量,m3/s;Asc断面处过流面积,m2;Qp为P频率下暴雨洪水峰值流量,m3/s;Dc为堵塞系数;下同 表 2 数值模拟参数
Table 2. Numerical simulation parameters
汇流面积 F/km2 频率 P/% γc/ (t· m-3) φ 基底摩擦系数 μ 湍流系数 ζ/(m· s-2) Qc(1#)/ (m3· s-1) Qc(2#)/ (m3· s-1) 10.30 7.5 1.84 1.52 0.22 260 77.70 50.8 5.0 1.84 1.52 0.20 240 100.28 65.5 2.0 1.84 1.52 0.18 220 127.84 83.5 1.0 1.84 1.52 0.16 200 166.52 108.7 注: Qc(1#), Qc(2#)分别为1#, 2#断面的流峰值流量 表 3 黄泥巴沟泥石流结果误差评价
Table 3. Errors in the results of the debris flow in Huangniba gully
评价地点 监测点K1 监测点K3 监测点K6 监测点K7 堆积区结果 误差率/% 4.9 16.2 8.7 19.3 13.4 表 4 泥石流危险性分区标准
Table 4. Debris flow hazard zoning criteria
危险区 流深h/m 关系 最大动量hv/(m2·s-1) 极高危险区 ≥2 或 ≥6 高危险区 [1, 2) 且 [4, 6) 中危险区 [0.5, 1) 且 [1, 4) 轻危险区 <0.5 且 <1 表 5 冲击破坏易损度定义
Table 5. Relationship between the degree of impact damage and vulnerability
冲击破坏程度 轻度破坏 中度破坏 严重破坏 完全破坏 易损度 [0, 0.2) [0.2, 0.4) [0.4, 0.7) [0.7, 1] 表 6 淤埋破坏易损度定义
Table 6. Relationship between the degree of stacking damage and vulnerability
淤埋破坏程度 轻度破坏 中度破坏 严重破坏 完全破坏 易损度 [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 1] 表 7 建筑物易损度划分标准
Table 7. Vulnerability classification criteria
划分标准 低易损度区 中易损度区 高易损度区 极高易损度区 易损度 [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 1] -
[1] 谢洪, 钟敦伦, 韦方强, 等. 我国山区城镇泥石流灾害及其成因[J]. 山地学报, 2006, 24(1): 79-87.XIE H, ZHONG D L, WEI F Q, et al. Debris flow hazards and their formation causes in mountain urban area of China[J]. Mountain Research, 2006, 24(1): 79-87. (in Chinese with English abstract) [2] 崔鹏, 韦方强, 谢洪, 等. 中国西部泥石流及其减灾对策[J]. 第四纪研究, 2003, 23(2): 142-151.CUI P, WEI F Q, XIE H, et al. Debris flow and disaster reduction strategies in western China[J]. Quaternary Sciences, 2003, 23(2): 142-151. (in Chinese with English abstract) [3] 张楠, 方志伟, 韩笑, 等. 近年来我国泥石流灾害时空分布规律及成因分析[J]. 地学前缘, 2018, 25(2): 299-308.ZHANG N, FANG Z W, HAN X, et al. The study on temporal and spatial distribution law and cause of debris flow disaster in China in recent years[J]. Earth Science Frontiers, 2018, 25(2): 299-308. (in Chinese with English abstract) [4] ZHANG S, ZHANG L M, LI X Y, et al. Physical vulnerability models for assessing building damage by debris flows[J]. Engineering Geology, 2018, 247: 145-158. doi: 10.1016/j.enggeo.2018.10.017 [5] 余斌, 马煜, 吴雨夫. 汶川地震后四川省绵竹市清平乡文家沟泥石流灾害调查研究[J]. 工程地质学报, 2010, 18(6): 827-836. doi: 10.3969/j.issn.1004-9665.2010.06.003YU B, MA Y, WU Y F. Investigation of severe debris flow hazards in Wenjia gully of Sichuan Province after the Wenchuan earthquake[J]. Journal of Engineering Geology, 2010, 18(6): 827-836. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.06.003 [6] 亓星, 许强, 余斌, 等. 汶川震区文家沟泥石流治理工程效果分析[J]. 地质科技情报, 2016, 35(1): 161-165.QI X, XU Q, YU B, et al. Treatment effects in Wenjia gully, Wenchuan earthquake area[J]. Geological Science and Technology Information, 2016, 35(1): 161-165. (in Chinese with English abstract) [7] 齐信, 唐川, 陈州丰, 等. 地质灾害风险评价研究[J]. 自然灾害学报, 2012, 21(5): 33-40.QI X, TANG C, CHEN Z F, et al. Research of geohazards risk assessment[J]. Journal of Natural Disasters, 2012, 21(5): 33-40. (in Chinese with English abstract) [8] 中国地质调查局. 地质灾害调查技术要求(1∶50 000): DD2019-08[S]. 北京: 中国标准出版社, 2019.China Geological Survey. Technical requirement for geohazard survey (1∶50 000): DD2019-08[S]. Beijing: Standards Press of China, 2019. (in Chinese) [9] SHEN S W, XIE H E, XU Y, et al. Fuzzy comprehensive evaluation of debris flow in Matun Village, Laomao Mountain area, Dalian City[J]. Arabian Journal of Geosciences, 2020, 13(2): 49. doi: 10.1007/s12517-019-5011-y [10] 于秀治, 韦京莲. 灰色系统理论在北京山区泥石流危险度评价预测中的应用[J]. 中国地质灾害与防治学报, 2004, 15(1): 118-120.YU X Z, WEI J L. Grey system analysis and its application in the forecast of mud-rock flow criticality of Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(1): 118-120. (in Chinese with English abstract) [11] 蒋忠信. 泥石流流域系统的超熵[J]. 中国地质灾害与防治学报, 1992, 3(1): 35-42.JIANG Z X. Superentropy in drainage-system of debris flow[J]. The Chinese Journal of Geological Hazard and Control, 1992, 3(1): 35-42. (in Chinese with English abstract) [12] 庞海松, 谢骏锦, 张小明, 等. 基于RAMMS数值模拟的短时强降雨型泥石流危险性评价[J]. 地质科技通报, 2024, 43(2): 215-225. doi: 10.19509/j.cnki.dzkq.tb20230153PANG H S, XIE J J, ZHANG X M, et al. Hazard assessment of debris flow induced by short-time heavy rainfall based on RAMMS numerical simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 215-225. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230153 [13] VELOSO V Q, REIS F A V G, CABRAL V, et al. Hazard assessment of debris-flow-prone watersheds in Cubatão, São Paulo State, Brazil[J]. Natural Hazards, 2023, 116(3): 3119-3138. [14] SUN Y Q, GE Y G, CHEN X Z, et al. Risk assessment of debris flow along the northern line of the Sichuan-Tibet highway[J]. Geomatics, Natural Hazards and Risk, 2023, 14(1): 2195531. [15] 谢奎林, 陈兴长, 陈慧, 等. 基于动力过程的单沟泥石流危险性评价方法[J]. 科学技术与工程, 2023, 23(29): 12406-12415.XIE K L, CHEN X C, CHEN H, et al. Risk assessment method of debris flow hazard based on dynamic process[J]. Science Technology and Engineering, 2023, 23(29): 12406-12415. (in Chinese with English abstract) [16] 陈兰, 范宣梅, 熊俊麟, 等. 藏东南多依弄巴流域冰湖溃决危险性评价[J]. 地质科技通报, 2023, 42(2): 258-266. doi: 10.19509/j.cnki.dzkq.tb20220235CHEN L, FAN X M, XIONG J L, et al. Hazard assessment of glacial lake outbursts in the Doyinongba Basin, southeastern Tibetan Plateau[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 258-266. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220235 [17] TIMMERMAN P. Vulnerability, resilience and the collapse of society: A review of models and possible climatic applications[M]. Toronto, Canada: Institute for Environmental Studies, University of Toronto, 1981: 1-62. [18] 常鸣. 基于遥感及数值模拟的强震区泥石流定量风险评价研究[D]. 成都: 成都理工大学, 2014.CHANG M. Quantitative risk assessment of debris flow in coseismic area based on remote sensing and numerical simulation[D]. Chengdu: Chengdu University of Technology, 2014. (in Chinese with English abstract) [19] LUO H Y, ZHANG L M, ZHANG L L, et al. Vulnerability of buildings to landslides: The state of the art and future needs[J]. Earth-Science Reviews, 2023, 238: 104329. [20] PAPATHOMA-KÖHLE M, KAPPES M, KEILER M, et al. Physical vulnerability assessment for alpine hazards: State of the art and future needs[J]. Natural Hazards, 2011, 58(2): 645-680. [21] CHEN M, TANG C, ZHANG X Z, et al. Quantitative assessment of physical fragility of buildings to the debris flow on 20 August 2019 in the Cutou gully, Wenchuan, southwestern China[J]. Engineering Geology, 2021, 293: 106319. [22] KANG H S, KIM Y T. The physical vulnerability of different types of building structure to debris flow events[J]. Natural Hazards, 2016, 80(3): 1475-1493. [23] JAKOB M, STEIN D, ULMI M. Vulnerability of buildings to debris flow impact[J]. Natural Hazards, 2012, 60(2): 241-261. [24] HU K H, CUI P, ZHANG J Q. Characteristics of damage to buildings by debris flows on 7 August 2010 in Zhouqu, western China[J]. Natural Hazards and Earth System Sciences, 2012, 12(7): 2209-2217. [25] OUYANG C J, WANG Z W, AN H C, et al. An example of a hazard and risk assessment for debris flows: A case study of Niwan gully, Wudu, China[J]. Engineering Geology, 2019, 263: 105351. [26] OUYANG C J, XIANG W, AN H C, et al. Mechanistic analysis and numerical simulation of the 2021 post-fire debris flow in Xiangjiao Catchment, China[J]. Journal of Geophysical Research: Earth Surface, 2023, 128(1): e2022JF006846. [27] OUYANG C J, HE S M, XU Q, et al. A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain[J]. Computers & Geosciences, 2013, 52: 1-10. [28] IVERSON R M, OUYANG C J. Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-integrated theory[J]. Reviews of Geophysics, 2015, 53(1): 27-58. [29] KLAUS S, BARBARA T, BRIAN M, et al. Modeling debris-flow runout pattern on a forested alpine fan with different dynamic simulation models[M]//Anon. Engineering geology for society and territory: Volume 2. Cham: Springer International Publishing, 2015: 1673-1676. [30] PIRULLI M, MARCO F. Description and numerical modelling of the October 2000 Nora debris flow, Northwestern Italian Alps[J]. Canadian Geotechnical Journal, 2010, 47(2): 135-146. [31] SCHEIDL C, RICKENMANN D. Empirical prediction of debris-flow mobility and deposition on fans[J]. Earth Surface Processes and Landforms, 2010, 35(2): 157-173. [32] HÜBL J, STEINWENDTNER H. Two-dimensional simulation of two viscous debris flows in Austria[J]. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 2001, 26(9): 639-644. [33] GARCIA R, LÓPEZ J L, NOYA M, et al. Hazard mapping for debris-flow events in the alluvial fans of northern Venezuela[J]. International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, 2003, 1: 589-599. [34] 唐川, 刘希林, 朱静. 泥石流堆积泛滥区危险度的评价与应用[J]. 自然灾害学报, 1993, 2(4): 79-84.TANG C, LIU X L, ZHU J. The evaluation and application of risk degree for debris flow inundation on alluvial fans[J]. Journal of Natural Disasters, 1993, 2(4): 79-84. (in Chinese with English abstract) [35] 韦方强, 胡凯衡, LOPEZ J L, 等. 泥石流危险性动量分区方法与应用[J]. 科学通报, 2003, 48, (3): 298-301.WEI F Q, HU K H, LOPEZ J L, et al. Debris flow hazard momentum partitioning methods and applications[J]. Chinese Science Bulletin, 2003, 48(3): 298-301. (in Chinese with English abstract) [36] 吴季寰, 张春山, 杨为民, 等. 基于熵权变异系数融合算法和FLO-2D的朱家沟流域泥石流危险性评价[J]. 自然灾害学报, 2022, 31(1): 81-91.WU J H, ZHANG C S, YANG W M, et al. Risk assessment of debris flow in Zhujia gully watershed based on entropy weight coefficient of variation fusion algorithm and FLO-2D[J]. 自然灾害学报, 2022, 31(1): 81-91. (in Chinese with English abstract) [37] ZANUTTIGH B, LAMBERTI A. Experimental analysis of the impact of dry avalanches on structures and implication for debris flows[J]. Journal of Hydraulic Research, 2006, 44(4): 522-534. [38] 刘洋, 游勇, 王海帆, 等. 颗粒流冲击力研究现状及讨论[J]. 防灾减灾工程学报, 2020, 40(5): 714-723.LIU Y, YOU Y, WANG H F, et al. Research status and discussion on granular flow impact force[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(5): 714-723. (in Chinese with English abstract) [39] ZANCHETTA G, SULPIZIO R, PARESCHI M T, et al. Characteristics of May 5-6, 1998 volcaniclastic debris flows in the Sarno area(Campania, southern Italy): Relationships to structural damage and hazard zonation[J]. Journal of Volcanology and Geothermal Research, 2004, 133(1/4): 377-393. [40] CANELLI L, FERRERO A M, MIGLIAZZA M, et al. Debris flow risk mitigation by the means of rigid and flexible barriers-experimental tests and impact analysis[J]. Natural Hazards and Earth System Sciences, 2012, 12(5): 1693-1699. [41] SCOTTON P, DEGANUTTI A M. Phreatic line and dynamic impact in laboratory debris flow experiments[J]. International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, 1997: 777-786. [42] BUGNION L, MCARDELL B W, BARTELT P, et al. Measurements of hillslope debris flow impact pressure on obstacles[J]. Landslides, 2012, 9(2): 179-187. [43] HÜBL J, HOLZINGER G. Entwicklung von Grundlagen zur Dimensionierung kronenoffener Bauwerke fudie Geschiebebewirtschaftung in Wildba hen: Kleinmasssta liche Modellversuche zur Wirkung von Murbrechern[J]. WLS report, 2003, 50. [44] 曾超, 苏志满, 雷雨, 等. 泥石流浆体与大颗粒冲击力特征的试验研究[J]. 岩土力学, 2015, 36(7): 1923-1930.ZENG C, SU Z M, LEI Y, et al. An experimental study of the characteristics of impact forces between debris flow slurry and large-sized particles[J]. Rock and Soil Mechanics, 2015, 36(7): 1923-1930. (in Chinese with English abstract) [45] KWAN J. Supplementary technical guidance on design of rigid debris-resisting barriers[R]. Hong Kong: Geotechnical Engineering Office, RHKSA, 2012. [46] LO W C, TSAO T C, HSU C H. Building vulnerability to debris flows in Taiwan: A preliminary study[J]. Natural Hazards, 2012, 64(3): 2107-2128. [47] QUNA LUNA B, BLAHUT J, VAN WESTEN C J, et al. The application of numerical debris flow modelling for the generation of physical vulnerability curves[J]. Natural Hazards and Earth System Sciences, 2011, 11(7): 2047-2060. [48] AGLIATA R, BORTONE A, MOLLO L. Indicator-based approach for the assessment of intrinsic physical vulnerability of the built environment to hydro-meteorological hazards: Review of indicators and example of parameters selection for a sample area[J]. International Journal of Disaster Risk Reduction, 2021, 58: 102199. [49] 梁梦辉. 不同物源条件下典型单沟泥石流风险评价[D]. 重庆: 重庆交通大学, 2023.LIANG M H. Study under different source conditions risk assessment of typical single gully debris flow[D]. Chongqing: Chongqing Jiaotong University, 2023. (in Chinese with English abstract) [50] 王术桁. 云南省倘甸两区金源乡集镇泥石流风险评价[D]. 成都: 成都理工大学, 2017.WANG S H. Risk assessment of debris flow in Jinyuan Township, Tangdian District, Yunnan Province[D]. Chengdu: Chengdu University of technology, 2017. (in Chinese with English abstract)