Potential chain disaster evolution process of debris flow blockage and dam failure floods in the Bailong River basin
-
摘要:
受"5·12"汶川大地震影响, 白龙江流域由泥石流引发的堵江-溃决洪水链式灾害出现的频率显著增加。同时, 由于特殊的地质环境条件, 白龙江流域很多城镇都位于峡谷阶地、泥石流堆积扇等地区, 极易受到泥石流堵江-溃决洪水链式灾害的威胁。为探究白龙江流域潜在泥石流堵江-溃决洪水链式灾害的危险性, 以甘肃省舟曲县白龙江流域的寨子沟泥石流为研究对象, 旨在正确认识寨子沟泥石流堵江-溃决洪水链式灾害的孕灾特征、致灾条件及演化模式, 明确泥石流引发的链式灾害威胁范围。通过遥感解译与野外调查等方法, 构建寨子沟泥石流地形地貌和物源数据库, 核算了该泥石流静动力学参数, 并在此基础上分析了泥石流堵河和溃决洪水的灾害链效应。选用FLO-2D和HEC-RAS模型, 开展了不同降雨频率下(
P =1%, 2%)的泥石流演进数值仿真, 获取了泥石流和溃决洪水的深度、流速和威胁范围等特征参数, 并基于特征参数分析了泥石流和溃决洪水危害强度并评估潜在危险。结果表明: (1)百年一遇降雨频率下的寨子沟泥石流流动最大流速可达11.96 m/s, 泥石流冲出物进入河道形成的堰塞坝平均厚度约10 m, 造成白龙江完全堵塞, 堰塞湖库容为6.26 km3。(2)溃决洪水演进过程总时长约为12 h, 溃口流量达到顶峰时间约30 min, 其溃决影响范围为沿白龙江主干流甘南州舟曲县峰迭镇下游至陇南市武都区桔柑乡上游段河谷及两岸区域, 面积达56.36 km2, 距离约97.4 km。结合模拟结果, 初步探讨了监测与治理为一体的流域性泥石流灾害链风险防控模式。该研究强调了传统模型在洪水灾害评估中的局限性, 并有助于深入了解泥石流堵江引起的洪水灾害的连锁危害。研究成果可为白龙江中下游流域此类泥石流链式灾害风险评价和防治工程设计提供参考。Abstract:Objective In the aftermath of the "5.12" Wenchuan earthquake, the frequency of chain disasters, precipitated by debris flow blockages and subsequent breaching floods, significantly increased in the Bailong River basin. The region's distinctive geological conditions, characterized by numerous towns situated on canyon terraces and debris flow accumulation fans, further exacerbate its susceptibility to such chain disasters. This study aims to investigate the potential risks associated with debris flow blockages and flood chain disasters in the Bailong River basin, with a specific focus on the Zhaizi gully debris flow in Bailong River basin, Zhouqu County, Gansu Province. The objective is to elucidate the disaster-breeding characteristics, disaster-inducing conditions, and evolution patterns of the Zhaizi gully debris flow chain disaster, while also delineating the threat range posed by these chain disasters.
Methods Through remote sensing interpretation and field surveys, a comprehensive database encompassing the topography, geomorphology, and material sources of the Zhaizi gully debris flow was established. This facilitated the identification of the development characteristics and various physical and mechanical parameters of the debris flow. Using the FLO-2D and HEC-RAS models, numerical simulations were performed under different rainfall frequencies (P=1%, 2%), yielding key parameters such as depth, flow velocity, and the threat range of the debris flow and breaching floods. These parameters facilitated the analysis of hazard intensity and potential risks associated with debris flows and breaching floods.
Results Under a 100-year rainfall frequency, the maximum flow velocity of the Zhaizi gully debris flow can reach 11.96 m/s. The average thickness of the debris dam formed is approximately 10 m, leading to complete blockage of the Bailong River and the formation of a dammed lake with a capacity of 6.26 km3. The evolution of the breaching flood lasts approximately 12 hours, with the peak flow occurring about 30 minutes after breach. The impact range of the breaching flood extends from the downstream area of Fengdie Town in Zhouqu County, Gannan, along the main stream of the Bailong River, to the upstream section of Jigan Township in Wudu District, Longnan City, covering an area of 56.36 km2 and spanning a distance of approximately 97.4 km. Based on the simulation results, a preliminary discussion was conducted on a comprehensive risk prevention and control model for basin-wide debris flow disaster chains, integrating monitoring and mitigation measures.
Conclusion This study highlights the limitations of traditional models in flood disaster assessment and enhances the understanding of cascading hazards induced by debris flow blockages. The findings provide valuable insights for the risk assessment and engineering design of mitigation projects for similar debris flow disaster chains in the middle and lower reaches of the Bailong River basin.
-
Key words:
- debris flow /
- dammed lake /
- river blocking /
- disaster chain /
- evolving process /
- Bailong River basin /
- Zhaizi gully /
- Zhouqu County, Gansu Province
-
表 1 寨子沟流域分区特征
Table 1. Characteristics of the Zhaizi gully watershed
分区名称 流域面积/km2 主沟长度/km 平均纵比降/‰ 最低高程/m 最大高程/m 相对高差/m 形成区 10.18 6.10 423.85 1 570 4 138 2 559 流通区 5.78 1.70 123.8 1 399 1 768 369 堆积区 0.53 0.65 94 1 339 1 399 60 表 2 寨子沟流域遥感影像数据来源
Table 2. Sources of remote sensing imagery for the Zhaizi gully watershed
序号 影像来源 分辨率/m 时间 1 Quickbird 30 2014/9/19 2 2017/10/5 3 Worldview-2 30 2019/11/19 4 2022/1/6 表 3 寨子沟流域泥石流物源解译统计
Table 3. Interpretation statistics of debris flow material sources for the Zhaizi gully watershed
时间 物源类型 松散固体物源总方量/104 m3 2014/9/19 坡面物源 1 677.57 沟道物源 16.61 崩滑物源 6 830.88 2017/10/5 坡面物源 1 501.68 沟道物源 19.30 崩滑物源 8516.47 2019/11/19 坡面物源 1 502.59 沟道物源 25.42 崩滑物源 8709.39 2022/1/6 坡面物源 1 508.03 沟道物源 34.85 崩滑物源 9 567.31 表 4 寨子沟流域内各高程物源分布统计
Table 4. Statistical distributions of material sources at different elevations within the Zhaizi gully watershed
高程/m 物源类型 储量/104 m3 距沟口高差/m 总储量占比/% >3 000 坡面、崩滑物源 2 753.57 >1 737 24.78 [2 500, 3 000] 崩滑物源 1 453.08 [1 237, 1 737] 13.08 [2 000, 2 500) 崩滑、沟道、坡面物源 6 139.93 [737, 1 237) 55.26 [1 500, 2 000) 崩滑、沟道、坡面物源 746.03 [237, 737) 6.71 [1 263, 1 500) 崩滑物源 17.59 <237 0.16 表 5 室内试验获取参数
Table 5. Material characteristic indices and values
物源特征 数值 D50/mm 2.69 D90/mm 10.33 样品重度/(kg·m-3) 1 900.00 注:D50.一个样品累计粒度分布百分数达到50%时所对应的粒径;D90.一个样品累计粒度分布百分数达到90%时所对应的粒径 表 6 寨子沟泥石流流量计算参数
Table 6. Calculation parameters for peak flow of the Zhaizi gully debris flow
相关参数 雨强/(mm·h-1) 汇水面积/ km2 泥沙修正系数 堵塞系数 50 a一遇降雨频率P=2% 100 a一遇降雨频率P=1% 取值 69.3 74.3 17.1 1.86 2.3 表 7 FLO-2D软件数值运行参数选取
Table 7. Selection of numerical analysis parameters in FLO-2D software
表 8 土地利用类型及对应糙率
Table 8. Land use types and corresponding roughness coefficients
土地利用类型 糙率 备注 耕地 0.07 水田、旱地等 林地 0.09 树林覆盖,植被覆盖率超过30% 草地 0.055 天然草覆盖,植被覆盖率超过10% 湿地 0.04 湿地植物和水体 水体 0.025 有水河道、天然湖泊、库塘、堰塞湖 人工地表 0.09 居民地、厂矿、交通用地等 表 9 泥石流模拟结果与野外实测对比
Table 9. Comparison of debris flow simulation results with field measurements
项目 最大冲出距离/m 最大堆积宽度/m 堆积范围/ km2 精度/% 模拟 424 679 0.23 — 实际 385 705 0.26 — 重叠 — — 0.21 85.9 -
[1] 王高峰, 李浩, 田运涛, 等. 甘肃省白龙江流域典型高位堆积层滑坡成因机制研究及其危险性预测[J]. 岩石力学与工程学报, 2023, 42(4): 1003-1018.WANG G F, LI H, TIAN Y T, et al. Study on the formation mechanism and risk prediction of high-level accumulation landslides in Bailongjiang River basin, Gansu Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(4): 1003-1018. (in Chinese with English abstract) [2] 孟兴民, 陈冠, 郭鹏, 等. 白龙江流域滑坡泥石流灾害研究进展与展望[J]. 海洋地质与第四纪地质, 2013, 33(4): 1-15.MENG X M, CHEN G, GUO P, et al. Research of landslides and debris flows in Bailong River basin: Progrss and prospect[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 1-15. (in Chinese with English abstract) [3] XIONG J, TANG C, GONG L F, et al. How landslide sediments are transferred out of an alpine basin: Evidence from the epicentre of the Wenchuan earthquake[J]. CATENA, 2022, 208: 105781. [4] CAO Z X, PENDER G, WALLIS S, et al. Computational dam-break hydraulics over erodible sediment bed[J]. Journal of Hydraulic Engineering, 2004, 130(7): 689-703. [5] 杨强, 王高峰, 李金柱, 等. 白龙江中上游泥石流形成条件与成灾模式探讨[J]. 中国地质灾害与防治学报, 2022, 33(6): 70-79.YANG Q, WANG G F, LI J Z, et al. Formation conditions and the disaster modes of debris flows along middle and upper reaches of the Bailongjiang River basin[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 70-79. (in Chinese with English abstract) [6] WANG L, CHANG M, LE J, et al. Two multi-temporal datasets to track debris flow after the 2008 Wenchuan earthquake[J]. Scientific Data, 2022, 9(1): 525. doi: 10.1038/s41597-022-01658-y [7] 赵成, 王根龙, 胡向德, 等. "8.8" 舟曲暴雨泥石流的成灾模式[J]. 西北地质, 2011, 44(3): 63-70.ZHAO C, WANG G L, HU X D, et al. The disaster mode of rainstorm debris flow happened in Zhouqu County on August 8, 2010[J]. Northwestern Geology, 2011, 44(3): 63-70. (in Chinese with English abstract) [8] 庞海松, 谢骏锦, 张小明, 等. 基于RAMMS数值模拟的短时强降雨型泥石流危险性评价[J]. 地质科技通报, 2024, 43(2): 215-225. doi: 10.19509/j.cnki.dzkq.tb20230153PANG H S, XIE J J, ZHANG X M, et al. Hazard assessment of debris flow induced by short-time heavy rainfall based on RAMMS numerical simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 215-225. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230153 [9] 曾鹏, 王宇豪, 张天龙, 等. 基于NSGA-Ⅱ遗传算法的黄土滑坡参数反分析与稳定性预测[J]. 地球科学, 2023, 48(5): 1675-1685.ZENG P, WANG Y H, ZHANG T L, et al. Parameter back analysis and stability prediction of loess landslide based on NSGA-Ⅱ genetic algorithm[J]. Earth Science, 2023, 48(5): 1675-1685. (in Chinese with English abstract) [10] TAN D Y, FENG W Q, YIN J H, et al. Numerical study of retention efficiency of a flexible barrier in mitigating granular flow comparing with large-scale physical modeling test data[J]. Acta Geotechnica, 2021, 16(2): 433-448. doi: 10.1007/s11440-020-01036-1 [11] 赵玉, 陈丽霞, 梁梦姣. 基于LSTM_TCN模型的降雨型滑坡时间概率预测及气象预警建模[J]. 地质科技通报, 2024, 43(2): 201-214. doi: 10.19509/j.cnki.dzkq.tb20220657ZHAO Y, CHEN L X, LIANG M J. Temporal probability prediction and meteorological early warning modeling of rainfall-induced landslide based on LSTM_TCN model[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 201-214. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220657 [12] 李林泽, 常鸣, 李宏杰, 等. "9·5" 泸定震后落井沟泥石流灾变过程预测分析[J]. 地震工程学报, 2023, 45(5): 1116-1124.LI L Z, CHANG M, LI H J, et al. Prediction of the catastrophe process of the debris flow in Luojing gully after the "9·5" Luding earthquake[J]. China Earthquake Engineering Journal, 2023, 45(5): 1116-1124. (in Chinese with English abstract) [13] 刘世康, 范宣梅, 王文松, 等. 降雨模式对震后泥石流起动模式影响的试验研究: 以九寨天堂沟为例[J]. 地质科技通报, 2022, 41(6): 278-286. doi: 10.19509/j.cnki.dzkq.2022.0214LIU S K, FAN X M, WANG W S, et al. Experimental study on the effect of rainfall patterns on the failure mode of debris flows after earthquakes: A case study of Tiantanggou, Jiuzhai[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 278-286. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0214 [14] TAN D Y, YIN J H, QIN J Q, et al. Experimental study on impact and deposition behaviours of multiple surges of channelized debris flow on a flexible barrier[J]. Landslides, 2020, 17(7): 1577-1589. doi: 10.1007/s10346-020-01378-7 [15] 陈兰, 范宣梅, 熊俊麟, 等. 藏东南多依弄巴流域冰湖溃决危险性评价[J]. 地质科技通报, 2023, 42(2): 258-266. doi: 10.19509/j.cnki.dzkq.tb20220235CHEN L, FAN X M, XIONG J L, et al. Hazard assessment of glacial lake outbursts in the Doyinongba basin, southeastern Tibetan Plateau[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 258-266. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220235 [16] OUYANG C J, HE S M, TANG C. Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced area[J]. Engineering Geology, 2015, 194: 62-72. doi: 10.1016/j.enggeo.2014.07.012 [17] CHEN M, TANG C, ZHANG X Z, et al. Quantitative assessment of physical fragility of buildings to the debris flow on 20 August 2019 in the Cutou gully, Wenchuan, southwestern China[J]. Engineering Geology, 2021, 293: 106319. doi: 10.1016/j.enggeo.2021.106319 [18] HVRLIMANN M, COPONS R, ALTIMIR J. Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach[J]. Geomorphology, 2006, 78(3/4): 359-372. [19] CHANG M, TANG C, VAN ASCH T W J, et al. Hazard assessment of debris flows in the Wenchuan earthquake-stricken area, South West China[J]. Landslides, 2017, 14(5): 1783-1792. doi: 10.1007/s10346-017-0824-9 [20] ZHANG X Z, TANG C X, YU Y J, et al. Some considerations for using numerical methods to simulate possible debris flows: The case of the 2013 and 2020 Wayao debris flows(Sichuan, China)[J]. Water, 2022, 14(7): 1050. doi: 10.3390/w14071050 [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中国地震动参数区划图: GB18306-2015[S]. 北京: 中国标准出版社, 2015.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. China Earthquake Administration Seismic ground motion parameters zonation map of China: GB18306-2015[S]. Beijing: Standards Press of China, 2015. (in Chinese) [22] 乔建平, 黄栋, 杨宗佶, 等. 汶川地震极震区泥石流物源动储量统计方法讨论[J]. 中国地质灾害与防治学报, 2012, 23(2): 1-6.QIAO J P, HUANG D, YANG Z J, et al. Statistical method on dynamic reserve of debris flow's source materials in meizoseismal area of Wenchuan earthquake region[J]. The Chinese Journal of Geological Hazard and Control, 2012, 23(2): 1-6. (in Chinese with English abstract) [23] 朱武, 杨璐瑶, 张金敏, 等. 联合InSAR和质量守恒法估计西藏贡觉地区雄巴滑坡厚度[J]. 地球科学与环境学报, 2023, 45(3): 535-547.ZHU W, YANG L Y, ZHANG J M, et al. Thickness estimation of Xiongba landslide in Gongjue area of Tibet, China by combining InSAR and mass conservation method[J]. Journal of Earth Sciences and Environment, 2023, 45(3): 535-547. (in Chinese with English abstract) [24] 王高峰, 高幼龙, 姚亚辉, 等. 甘肃省白龙江流域降雨型潜在泥石流危险性预报模型[J]. 中国地质, 2022, 49(3): 732-748.WANG G F, GAO Y L, YAO Y H, et al. Prediction model of potential debris flow hazard of rainfall type in Bailong River basin, Gansu Province[J]. Geology in China, 2022, 49(3): 732-748. (in Chinese with English abstract) [25] 毛佳睿, 武雄, 王高峰. 甘肃省甘家沟泥石流特征分析与防治建议[J]. 昆明理工大学学报(自然科学版), 2020, 45(6): 51-59.MAO J R, WU X, WANG G F. Characteristic analysis and prevention suggestions of debris flow in Ganjiagou of Gansu Province[J]. Journal of Kunming University of Science and Technology(Natural Sciences), 2020, 45(6): 51-59. (in Chinese with English abstract) [26] 罗玉婷, 王立娟, 马松, 等. 强震区泥石流堵江-洪水灾害链式过程模拟研究: 以汶川县下庄沟为例[J]. 人民珠江, 2023, 44(4): 63-70.LUO Y T, WANG L J, MA S, et al. Modelling of chain process of debris flow blocking river and induced flood disaster in meizoseismal area: A case of Xiazhuang gully in Wenchuan County[J]. Pearl River, 2023, 44(4): 63-70(in Chinese with English abstract) [27] YU B, MA Y, WU Y F. Case study of a giant debris flow in the Wenjia gully, Sichuan Province, China[J]. Natural Hazards, 2013, 65(1): 835-849. doi: 10.1007/s11069-012-0395-y [28] 中国地质灾害防治工程行业协会. 泥石流灾害防治工程勘查规范(试行): T/CAGHP 006-2018[S]. 武汉: 中国地质大学出版社, 2018.China Association of Geological Hazard Prevention. Specification of Geological Investigation for Debris Flow Stabilization: T/CAGHP 006-2018[S]. Wuhan: China University of Geosciences Press, 2018. (in Chinese) [29] BRIEN J S. FLO-2D Reference Manual[M]. [S. l. ]: [s. n. ], 2009. [30] 詹钱登, 余昌益, 吴云瑞. 含砂浓度对含砂水流流变参数的影响之初步研究[C]//佚名. 第一届泥石流研讨会论文集. [出版地不详]: [出版者不详], 1997: 179-190.ZHAN Q D, YU Y C, WU Y D. Preliminary study on the effect of sand concentration on the rheological parameters of sandy water flow[C]//Anon. Proceedings of the First Symposium on Debris Flow. [S. l. ]: [s. n. ], 1997: 179-190. (in Chinese with English abstract) [31] 张建新, 程琳, 王光谦, 等. 堰塞湖最大库容及库容曲线分析计算[J]. 水文, 2009, 29(5): 63-66.ZHANG J X, CHENG L, WANG G Q, et al. Analysis and calculation of maximum reservoir storage and reservoir storage curve of barrier lakes[J]. Journal of China Hydrology, 2009, 29(5): 63-66. (in Chinese with English abstract) [32] 张小琴, 包为民, 梁文清, 等. 河道糙率问题研究进展[J]. 水力发电, 2008(6): 98-100.ZHANG X Q, BAO W M, LIANG W Q, et al. Research progress on river channel roughness issues[J]. Journal of Hydroelectric Engineering, 2008(6): 98-100. (in Chinese with English abstract)