留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隧道围岩收敛变形预测模型动态选择与变形量概率预测

曾鹏 张志强 李天斌 唐浩 严祖龙 孟陆波

曾鹏, 张志强, 李天斌, 唐浩, 严祖龙, 孟陆波. 隧道围岩收敛变形预测模型动态选择与变形量概率预测[J]. 地质科技通报, 2024, 43(6): 15-25. doi: 10.19509/j.cnki.dzkq.tb20240187
引用本文: 曾鹏, 张志强, 李天斌, 唐浩, 严祖龙, 孟陆波. 隧道围岩收敛变形预测模型动态选择与变形量概率预测[J]. 地质科技通报, 2024, 43(6): 15-25. doi: 10.19509/j.cnki.dzkq.tb20240187
ZENG Peng, ZHANG Zhiqiang, LI Tianbin, Tang Hao, YAN Zulong, MENG Lubo. Dynamic selection of optimal tunnel convergence prediction model for a probabilistic deformation prediction[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 15-25. doi: 10.19509/j.cnki.dzkq.tb20240187
Citation: ZENG Peng, ZHANG Zhiqiang, LI Tianbin, Tang Hao, YAN Zulong, MENG Lubo. Dynamic selection of optimal tunnel convergence prediction model for a probabilistic deformation prediction[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 15-25. doi: 10.19509/j.cnki.dzkq.tb20240187

隧道围岩收敛变形预测模型动态选择与变形量概率预测

doi: 10.19509/j.cnki.dzkq.tb20240187
基金项目: 

国家自然科学基金重点项目 42130719

详细信息
    作者简介:

    曾鹏, E-mail: zengpeng15@cdut.edu.cn

    通讯作者:

    张志强, E-mail: 1299502491@qq.com

  • 中图分类号: TU457

Dynamic selection of optimal tunnel convergence prediction model for a probabilistic deformation prediction

More Information
  • 摘要:

    高地应力或复杂地质条件下隧道围岩极易变形侵限。在隧道施工期对围岩的变形趋势与收敛变形值进行超前判识, 对保障施工人员安全、提高隧道施工效率具有重要意义。传统单一预测模型难以适应隧道收敛变形的动态变化, 预测效果有限。建立了一个基于连续贝叶斯反分析方法和最优模型选择的围岩收敛变形动态预测模型, 利用隧道收敛变形监测信息作为观察值, 对用于围岩收敛变形曲线预测的3种经验模型参数进行了连续更新校准, 选择最优模型预测围岩最终收敛变形值并量化其不确定性。将该模型应用于白马隧道9个断面16组测点的围岩收敛变形预测, 预测与监测的最终收敛变形量平均相对误差仅3.22%。动态预测模型仅需开挖后10 d的观测数据即可有效预测40 d的最终变形收敛结果, 为全断面开挖法隧道围岩变形侵限和大变形灾害防治提供了重要技术支撑。

     

  • 图 1  8类围岩收敛变形特征曲线(b~i)及占比(a)

    Figure 1.  Convergence deformation characteristic curves and proportions for eight types of surrounding rock

    图 2  经验模型2的随机变量先验信息(dx*, Y, dt*, Q含义见公式(2))

    Figure 2.  Prior information of random variables for empirical model 2

    图 3  经验模型3的随机变量先验信息

    Figure 3.  Prior information of random variables for empirical model 3

    图 4  K39+405断面拱顶沉降预测结果

    a.每次预测的最终拱顶沉降均值与标准差; b.拱顶沉降连续更新的预测值与实际测量值(经验模型2)

    Figure 4.  Prediction results of K39+405 vault settlement

    图 5  K39+695断面周边收敛预测结果

    a.周边收敛连续更新的预测值与实际测量值(经验模型3);b.每次预测的最终周边收敛均值与标准差

    Figure 5.  Prediction results for the convergence around K39+695

    表  1  经验模型1的随机变量先验信息

    Table  1.   Prior information of random variables for empirical model 1

    随机变量 X/m T/d Cx/mm m
    均值 20.00 2.20 24.80 3.89
    标准差 2.00 0.22 2.48 0.39
    变异系数 0.10 0.10 0.10 0.10
    分布类型 正态 正态 正态 正态
    注:XTCx, m含义见公式(1)
    下载: 导出CSV

    表  2  随机变量的后验统计信息

    Table  2.   Posterior statistical information of random variables

    经验模型1 经验模型2 经验模型3
    随机变量 均值 标准差 随机变量 均值 标准差 随机变量 均值 标准差
    X/m 21.28 2.36 dx*/mm 21.31 10.24 a 21.39 3.79
    T/d 2.37 0.26 Y/m 17.88 4.54 σε 2.16 1.26
    Cx/mm 26.95 2.66 dt*/mm 51.19 10.70
    m 4.20 0.44 Q/d 12.07 1.74
    σε 2.13 1.35 σε 2.02 1.35
    模型证据权重 0.327 8 模型证据权重 0.362 3 模型证据权重 0.309 9
    注:σε.模型偏差系数标准差, 其余随机变量的含义见公式(1)~(3),下同
    下载: 导出CSV

    表  3  K39+405断面拱顶沉降第2~10次模型选择的模型证据权重

    Table  3.   Model evidence weights for the 2nd to 10th model selection of K39+405 vault settlement

    模型类别 第2次选择 第3次选择 第4次选择 第5次选择 第6次选择 第7次选择 第8次选择 第9次选择 第10次选择
    经验模型1 0.345 0 0.129 7 0.052 0 0.009 7 0.002 2 0.000 3 0.000 1 0.000 1 0.000 1
    经验模型2 0.440 3 0.762 9 0.854 6 0.952 0 0.974 4 0.990 2 0.994 0 0.999 2 0.999 6
    经验模型3 0.214 7 0.107 4 0.093 4 0.038 3 0.023 3 0.009 5 0.005 9 0.000 7 0.000 3
    下载: 导出CSV

    表  4  K39+405断面拱顶沉降最优模型随机变量的后验信息统计(经验模型2)

    Table  4.   Posterior statistical information of random variables for the optimal model of K39+405 vault settlement

    第2次更新 第3次更新 第4次更新
    随机变量 均值 标准差 随机变量 均值 标准差 随机变量 均值 标准差
    dx*/mm 17.02 8.50 dx*/mm 13.65 5.58 dx*/mm 13.38 4.42
    Y/m 16.40 4.80 Y/m 14.78 4.02 Y/m 14.01 4.13
    dt*/mm 49.45 10.57 dt*/mm 48.55 9.52 dt*/mm 46.36 9.08
    Q/d 11.49 1.87 Q/d 10.80 1.64 Q/d 11.00 1.47
    σε 0.83 1.02 σε 0.21 0.35 σε 0.15 0.16
    第5次更新 第6次更新 第7次更新
    随机变量 均值 标准差 随机变量 均值 标准差 随机变量 均值 标准差
    dx*/mm 13.86 3.58 dx*/mm 13.53 3.60 dx*/mm 13.57 3.80
    Y/m 13.00 3.61 Y/m 12.33 3.13 Y/m 12.17 2.89
    dt*/mm 43.87 8.36 dt*/mm 44.43 8.03 dt*/mm 41.69 7.18
    Q/d 11.46 1.42 Q/d 11.67 1.43 Q/d 11.01 1.78
    σε 0.10 0.08 σε 0.08 0.05 σε 0.07 0.03
    第8次更新 第9次更新 第10次更新
    随机变量 均值 标准差 随机变量 均值 标准差 随机变量 均值 标准差
    dx*/mm 14.49 2.54 dx*/mm 12.71 1.67 dx*/mm 14.31 1.78
    Y/m 13.46 2.23 Y/m 10.49 1.88 Y/m 12.03 1.56
    dt*/mm 43.50 5.50 dt*/mm 44.24 3.62 dt*/mm 45.19 3.98
    Q/d 11.77 1.87 Q/d 11.60 1.14 Q/d 12.86 1.87
    σε 0.07 0.03 σε 0.05 0.02 σε 0.04 0.02
    下载: 导出CSV

    表  5  K39+695断面周边收敛的模型证据权重

    Table  5.   Model evidence weights for the convergence around K39+695

    模型类别 第1次选择 第2次选择 第3次选择 第4次选择 第5次选择 第6次选择 第7次选择 第8次选择 第9次选择 第10次选择 第11次选择
    经验模型1 0.169 2 0.067 9 0.011 6 0.002 2 0.000 4 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1
    经验模型2 0.238 3 0.152 2 0.068 8 0.033 9 0.019 5 0.004 8 0.003 0 0.014 9 0.261 8 0.017 8 0.005 4
    经验模型3 0.592 5 0.779 9 0.919 6 0.963 9 0.980 1 0.995 1 0.996 9 0.985 1 0.738 0 0.982 1 0.994 5
    下载: 导出CSV

    表  6  16组测点动态预测模型的计算结果

    Table  6.   Computational results of dynamic prediction models for 16 groups of measuring points

    测点编号 桩号、围岩级别及测点位置 预测次数 最优模型选择 模型预测结果 实际测量值 Uobs/mm 相对误差 $\Delta U=\frac{\left|U_{\mathrm{m}}-U_{\mathrm{obs}}\right|}{U_{\mathrm{obs}}} / \%$
    均值Um/mm 标准差σ/mm 变异系数
    1 K39+405(Ⅴ)拱顶沉降 10 经验模型2 57.34 4.29 0.07 60.36 5.00
    2 K39+405(Ⅴ)周边收敛 10 经验模型2 53.95 5.74 0.11 58.47 7.73
    3 K39+655(Ⅴ)拱顶沉降 8 经验模型3 73.89 1.83 0.02 75.13 1.65
    4 K39+655(Ⅴ)周边收敛 11 经验模型3 55.66 5.67 0.10 54.56 2.02
    5 K39+695(Ⅴ)拱顶沉降 9 经验模型3 76.85 7.04 0.09 76.57 0.37
    6 K39+695(Ⅴ)周边收敛 11 经验模型3 69.92 6.46 0.09 68.90 1.48
    7 K39+790(Ⅴ)拱顶沉降 11 经验模型3,2 65.72 7.70 0.12 71.47 8.05
    8 K39+790(Ⅴ)周边收敛 10 经验模型3 84.28 10.59 0.13 86.46 2.52
    9 K39+820(Ⅴ)拱顶沉降 11 经验模型1 172.91 22.67 0.13 163.58 5.70
    10 K39+830(Ⅴ)周边收敛 13 经验模型1 131.20 16.07 0.12 131.06 0.11
    11 K40+090(Ⅴ)拱顶沉降 13 经验模型3,1 152.15 14.42 0.09 153.86 1.11
    12 K40+090(Ⅴ)周边收敛 13 经验模型1 186.11 19.69 0.11 180.00 3.39
    13 K40+160(Ⅴ)拱顶沉降 10 经验模型1 132.77 15.52 0.12 131.03 1.33
    14 K40+160(Ⅴ)周边收敛 15 经验模型3,2 203.01 30.03 0.15 208.96 2.85
    15 K40+180(Ⅴ)拱顶沉降 8 经验模型2 52.04 5.90 0.11 56.55 7.98
    16 K40+180(Ⅴ)周边收敛 11 经验模型2 55.32 3.57 0.06 55.45 0.23
    相对误差(ΔU)均值/% 3.22
    注:K39+790拱顶沉降模型选择结果第1~5次预测选择经验模型3,第6~11次预测选择经验模型2;K40+090拱顶沉降模型选择结果第1~4次预测选择经验模型3,第5~13次选择经验模型1;K40+160周边收敛模型选择结果第1~3次预测选择经验模型3,第4~15次预测选择经验模型2
    下载: 导出CSV
  • [1] GUAN Z C, JIANG Y J, TANABASHI Y, et al. A new rheological model and its application in mountain tunnelling[J]. Tunnelling and Underground Space Technology, 2008, 23(3): 292-299. doi: 10.1016/j.tust.2007.06.003
    [2] 徐啸川, 徐光黎, 林高炜, 等. 小尺寸模型在五峰隧道涌突水判别中的应用[J]. 地质科技通报, 2023, 42(6): 42-52. doi: 10.19509/j.cnki.dzkq.2022.0149

    XU X C, XU G L, LIN G W, et al. Application of a small-scale model test in distinguishing of water inrush in the Wufeng Tunnel[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 42-52. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0149
    [3] 徐啸川, 徐光黎, 魏文豪, 等. 示踪实验在湾潭隧道涌水突泥判别中的应用[J]. 地质科技通报, 2023, 42(2): 297-304. doi: 10.19509/j.cnki.dzkq.2022.0141

    XU X C, XU G L, WEI W H, et al. Application of a tracing experiment in the prediction of water and mud inrush in the Wantan Tunnel[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 297-304. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0141
    [4] 侯守江. 基于多元算法融合的软岩隧道围岩变形预测模型及应用研究[J]. 现代隧道技术, 2023, 60(6): 151-164.

    HOU S J. Study on the prediction model of surrounding rock deformation in soft rock tunnel based on multivariate algorithm fusion and its application[J]. Modern Tunnelling Technology, 2023, 60(6): 151-164. (in Chinese with English abstract)
    [5] NOMIKOS P, RAHMANNEJAD R, SOFIANOS A. Supported axisymmetric tunnels within linear viscoelastic Burgers rocks[J]. Rock Mechanics and Rock Engineering, 2011, 44(5): 553-564. doi: 10.1007/s00603-011-0159-0
    [6] DEBERNARDI D, BARLA G. New viscoplastic model for design analysis of tunnels in squeezing conditions[J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 259-288. doi: 10.1007/s00603-009-0174-6
    [7] 朱维申, 孙爱花, 王文涛, 等. 大型洞室群高边墙位移预测和围岩稳定性判别方法[J]. 岩石力学与工程学报, 2007, 26(9): 1729-1736.

    ZHU W S, SUN A H, WANG W T, et al. Study on prediction of high wall displacement and stability judging method of surrounding rock for large cavern groups[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(9): 1729-1736. (in Chinese with English abstract)
    [8] PELLET F, ROOSEFID M, DELERUYELLE F. On the 3D numerical modelling of the time-dependent development of the damage zone around underground galleries during and after excavation[J]. Tunnelling and Underground Space Technology, 2009, 24(6): 665-674. doi: 10.1016/j.tust.2009.07.002
    [9] NADIMI S, SHAHRIAR K, SHARIFZADEH M, et al. Triaxial creep tests and back analysis of time-dependent behavior of Siah Bisheh cavern by 3-dimensional distinct element method[J]. Tunnelling and Underground Space Technology, 2011, 26(1): 155-162. doi: 10.1016/j.tust.2010.09.002
    [10] SHARIFZADEH M, TARIFARD A, ALI MORIDI M. Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method[J]. Tunnelling and Underground Space Technology, 2013, 38: 348-356. doi: 10.1016/j.tust.2013.07.014
    [11] STERPI D, GIODA G. Visco-plastic behaviour around advancing tunnels in squeezing rock[J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 319-339. doi: 10.1007/s00603-007-0137-8
    [12] GUAN Z C, JIANG Y J, TANABASHI Y. Rheological parameter estimation for the prediction of long-term deformations in conventional tunnelling[J]. Tunnelling and Underground Space Technology, 2009, 24(3): 250-259. doi: 10.1016/j.tust.2008.08.001
    [13] JIMENEZ R, RECIO D. A linear classifier for probabilistic prediction of squeezing conditions in Himalayan tunnels[J]. Engineering Geology, 2011, 121(3/4): 101-109.
    [14] SULEM J, PANET M, GUENOT A. Closure analysis in deep tunnels[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1987, 24(3): 145-154.
    [15] KONTOGIANNI V, PSIMOULIS P, STIROS S. What is the contribution of time-dependent deformation in tunnel convergence?[J]. Engineering Geology, 2006, 82(4): 264-267. doi: 10.1016/j.enggeo.2005.11.001
    [16] GONZÁLEZ-NICIEZA C, ÁLVAREZ-VIGIL A E, MENÉNDEZ-DÍAZ A, et al. Influence of the depth and shape of a tunnel in the application of the convergence-confinement method[J]. Tunnelling and Underground Space Technology, 2008, 23(1): 25-37. doi: 10.1016/j.tust.2006.12.001
    [17] ASADOLLAHPOUR E, RAHMANNEJAD R, ASGHARI A, et al. Back analysis of closure parameters of Panet equation and Burger's model of Babolak water tunnel conveyance[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 68: 159-166. doi: 10.1016/j.ijrmms.2014.02.017
    [18] 杨红军, 夏才初, 彭裕闻, 等. 时空效应下隧道的收敛变形预测及二衬合理支护时机[J]. 公路, 2010, 55(4): 218-223.

    YANG H J, XIA C C, PENG Y W, et al. Prediction of convergence deformation of tunnel under spatio-temporal effect and reasonable support timing of secondary lining[J]. Highway, 2010, 55(4): 218-223. (in Chinese with English abstract)
    [19] FENG X D, JIMENEZ R, ZENG P, et al. Prediction of time-dependent tunnel convergences using a Bayesian updating approach[J]. Tunnelling and Underground Space Technology, 2019, 94: 103118. doi: 10.1016/j.tust.2019.103118
    [20] JUANG C H, GONG W P, MARTIN J R, et al. Model selection in geological and geotechnical engineering in the face of uncertainty: Does a complex model always outperform a simple model?[J]. Engineering Geology, 2018, 242: 184-196. doi: 10.1016/j.enggeo.2018.05.022
    [21] 张传庆, 冯夏庭, 周辉, 等. 隧洞围岩收敛损失位移的求取方法及应用[J]. 岩土力学, 2009, 30(4): 997-1003.

    ZHANG C Q, FENG X T, ZHOU H, et al. Method of obtaining loss convergence displacement and its application to tunnel engineering[J]. Rock and Soil Mechanics, 2009, 30(4): 997-1003. (in Chinese with English abstract)
    [22] VU T M, SULEM J, SUBRIN D, et al. Anisotropic closure in squeezing rocks: The example of Saint-Martin-la-Porte access gallery[J]. Rock Mechanics and Rock Engineering, 2013, 46(2): 231-246. doi: 10.1007/s00603-012-0320-4
    [23] PANET M. Le calcul des tunnels par la methode convergence-confinement[M]. Paris: Presses de l'École Nationale des Ponts et Chaussees, 1995.
    [24] 房倩, 粟威, 张顶立, 等. 基于现场监测数据的隧道围岩变形特性研究[J]. 岩石力学与工程学报, 2016, 35(9): 1884-1897.

    FANG Q, SU W, ZHANG D L, et al. Tunnel deformation characteristics based on on-site monitoring data[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9): 1884-1897. (in Chinese with English abstract)
    [25] 孙柏林, 乔松林, 张乾青, 等. 隧道拱顶沉降及周边收敛动态过程预测的Richards时间函数模型[J]. 公路工程, 2015, 40(6): 114-118.

    SUN B L, QIAO S L, ZHANG Q Q, et al. Richards time function model of dynamic process prediction for tunnel vault sedimentation and peripheral convergence[J]. Highway Engineering, 2015, 40(6): 114-118. (in Chinese with English abstract)
    [26] ZHANG L L, ZHANG J, ZHANG L M, et al. Back analysis of slope failure with Markov chain Monte Carlo simulation[J]. Computers and Geotechnics, 2010, 37(7/8): 905-912.
    [27] KUNG G T, JUANG C H, HSIAO E C, et al. Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 731-747. doi: 10.1061/(ASCE)1090-0241(2007)133:6(731)
    [28] LI X Y, ZHANG L M, JIANG S H. Updating performance of high rock slopes by combining incremental time-series monitoring data and three-dimensional numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 83: 252-261. doi: 10.1016/j.ijrmms.2014.09.011
    [29] KONTOGIANNI V A, STIROS S C. Predictions and observations of convergence in shallow tunnels: Case histories in Greece[J]. Engineering Geology, 2002, 63(3/4): 333-345.
    [30] JIN Y F, YIN Z Y, ZHOU W H, et al. Identifying parameters of advanced soil models using an enhanced transitional Markov chain Monte Carlo method[J]. Acta Geotechnica, 2019, 14(6): 1925-1947. doi: 10.1007/s11440-019-00847-1
    [31] CHING J, CHEN Y C. Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging[J]. Journal of Engineering Mechanics, 2007, 133(7): 816-832. doi: 10.1061/(ASCE)0733-9399(2007)133:7(816)
    [32] YUEN K V. Recent developments of Bayesian model class selection and applications in civil engineering[J]. Structural Safety, 2010, 32(5): 338-346. doi: 10.1016/j.strusafe.2010.03.011
    [33] CAO Z J, WANG Y, LI D Q. Quantification of prior knowledge in geotechnical site characterization[J]. Engineering Geology, 2016, 203: 107-116. doi: 10.1016/j.enggeo.2015.08.018
    [34] SUN X P, ZENG P, LI T B, et al. A Bayesian approach to develop simple Run-out distance models: Loess landslides in Heifangtai Terrace, Gansu Province, China[J]. Landslides, 2023, 20(1): 77-95. doi: 10.1007/s10346-022-01965-w
    [35] ZHANG J, WANG Z P, ZHANG G D, et al. Probabilistic prediction of slope failure time[J]. Engineering Geology, 2020, 271: 105586. doi: 10.1016/j.enggeo.2020.105586
    [36] MASSEY JR F J. The Kolmogorov-Smirnov test for goodness of fit[J]. Journal of the American Statistical Association, 1951, 46(253): 68-78. doi: 10.1080/01621459.1951.10500769
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  265
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-25
  • 录用日期:  2024-07-01
  • 修回日期:  2024-06-06

目录

    /

    返回文章
    返回