留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于贝叶斯网络的公路隧道围岩失稳风险评估及系统开发

邹鹤民

邹鹤民. 基于贝叶斯网络的公路隧道围岩失稳风险评估及系统开发[J]. 地质科技通报, 2024, 43(6): 89-101. doi: 10.19509/j.cnki.dzkq.tb20240205
引用本文: 邹鹤民. 基于贝叶斯网络的公路隧道围岩失稳风险评估及系统开发[J]. 地质科技通报, 2024, 43(6): 89-101. doi: 10.19509/j.cnki.dzkq.tb20240205
ZOU Hemin. Risk assessment and system development of surrounding rock instability in highway tunnel based on Bayesian network[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 89-101. doi: 10.19509/j.cnki.dzkq.tb20240205
Citation: ZOU Hemin. Risk assessment and system development of surrounding rock instability in highway tunnel based on Bayesian network[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 89-101. doi: 10.19509/j.cnki.dzkq.tb20240205

基于贝叶斯网络的公路隧道围岩失稳风险评估及系统开发

doi: 10.19509/j.cnki.dzkq.tb20240205
基金项目: 

中铁十六局集团有限公司科技计划项目 K2023-6B

中国铁路上海局集团有限公司科研项目 2024141

中国铁路上海局集团有限公司科研项目 2022178

详细信息
    通讯作者:

    邹鹤民, E-mail: xlsky123@sina.com

  • 中图分类号: U458.3;TU457

Risk assessment and system development of surrounding rock instability in highway tunnel based on Bayesian network

More Information
  • 摘要:

    随着我国交通运输行业的快速发展, 公路建设所面临的地质条件越来越复杂, 隧道凭借其优越的越岭能力在地质条件复杂的山岭公路建设中得到了广泛的应用。然而随着隧道工程数量的增加, 公路隧道建设过程中, 围岩掉块、塌方等频繁发生, 造成严重的经济损伤和人员伤亡, 因此进行准确的风险评估具有重要工程意义。首先, 针对公路隧道失稳风险评估因素的复杂性和多样性, 归纳统计了40例失稳工程案例, 细化出14个二级指标并构建了风险评估指标体系。然后, 从灾害发生的概率和后果2个方面对风险进行了评估, 采用解释结构模型(interpretative structural modeling, 简称ISM)法构建了层次拓扑图, 并通过因果图法修正建立贝叶斯网络模型, 分别使用统计结果中80%和20%的案例对模型进行了训练和验证。最后, 自主开发了公路隧道失稳风险贝叶斯网络评估系统(risk assessment Bayesian network evaluation system, 简称RIAS), 该系统兼具工程适用性和使用友好性特征, 实现了公路隧道建设过程中的准确、快速围岩失稳风险评估。将构建的公路隧道失稳风险评估系统应用在北固山隧道ZK5+937~ZK5+917等标段的风险评估工作, 预测结果显示隧道的失稳概率为18.2%, 失稳规模为"None(无)", 失稳风险评估等级计算为"低度Ⅰ", 与实际开挖情况相符。本研究创新性地改进了单一风险等级评估的缺陷, 构建了适用于公路隧道失稳风险评估的贝叶斯网络模型, 解决了因工程数据组数不足致使无法借助评估模型实现精准、快速评估的难题。所搭建的贝叶斯网络模型成功通过了北固山隧道的检验, 证明该模型可应用于其他公路隧道工程建设中, 对提高公路隧道建设的安全性和风险预测具有较好工程应用价值。

     

  • 图 1  简单的贝叶斯网络模型

    Figure 1.  Simple Bayesian network model

    图 2  围岩失稳风险评估案例详细统计

    Figure 2.  Detailed statistics of surrounding rock instability risk assessment case

    图 3  围岩失稳风险评估统计指标占比图

    Figure 3.  Proportion of risk assessment statistical indicators of surrounding rock instability

    图 4  围岩失稳风险评估指标影响关系图

    S1, S2, …, S10均为风险评估指标,具体含义见表 2,下同; ①, ②, ③代表指标之间的影响关系,具体含义见正文

    Figure 4.  Influence relationship of surrounding rock instability risk assessment indicator

    图 5  围岩失稳风险评估模型

    Figure 5.  Risk assessment model of surrounding rock instability

    图 6  训练后的公路隧道失稳风险评估的贝叶斯网络模型

    Y和N分别代表是和否,用以评价失稳势(概率);None, Weak, Medium和Strong依次代表致灾性等级由低到高分别为无,弱,中等和强;下同

    Figure 6.  Trained Bayesian network model for instability risk assessment of highway tunnel

    图 7  基于贝叶斯网络模型的失稳评估系统

    Figure 7.  Instability risk assessment system of Bayesian network model

    图 8  北固山隧道ZK5+917掌子面照片

    Figure 8.  Face of Beigushan tunnel ZK5+917

    表  1  围岩失稳风险评估统计指标的参评情况

    Table  1.   Participation in the statistical indicators of surrounding rock instability risk assessment

    一级指标 二级指标 参评率/%
    岩体质量因素 岩石强度 35
    围岩级别 60
    岩石风化程度 20
    岩体完整性 42.5
    岩体特性 12.5
    地质因素 地形地貌 30
    不良与特殊地质 70
    水文地质 92.5
    工程因素 截面积 22.5
    开挖方法 42.5
    支护情况 55
    埋深 60
    隧道跨度 42.5
    单循环进尺 12.5
    监控量测因素 20.0
    勘察设计因素 20.0
    技术与管理因素 65.0
    下载: 导出CSV

    表  2  围岩失稳风险评估指标

    Table  2.   Risk assessment indicators of surrounding rock instability

    代号 名称 代号 名称
    S1 围岩级别 S6 埋深
    S2 不良与特殊地质 S7 隧道跨度
    S3 水文地质 S8 技术与管理
    S4 开挖方法 S9 失稳势(失稳概率)
    S5 支护情况 S10 失稳规模(塌方量)
    下载: 导出CSV

    表  3  围岩失稳风险评估指标量化

    Table  3.   Risk assessment indicators quantization of surrounding rock instability

    致灾性分级 围岩级别S1 水文地质S3 开挖方法S4 支护情况[18, 23, 50]S5 埋深[38] S6/ m
    定性描述 定量描述(岩体基本质量指标BQ) 定性描述 定量描述(24 h降雨量)/mm 定性描述 支护时间 支护质量
    地质适配度 开挖扰动程度
    None
    (无)

    >550
    550~451
    干燥,地下水不发育 < 9.9(微量降雨和小雨) 双侧壁导坑法
    CRD或CD法
    运营期内,已过混凝土养护龄期 优秀/循环进尺 >60
    Weak
    (弱)
    450~351 潮湿,渗水,地下水弱或少发育 10~24.9 (中雨) 环形开挖留核心土法 一般 二衬已完成 良好/钢拱架 (40, 60]
    Medium
    (中等)
    350~251 线状涌水,地下水较发育 25.0~49.9 (大雨) 台阶法 合格 较高 初支已完毕 一般/锚杆 (20, 40]
    Strong
    (强)
    ≤250 帘幕式或股状涌水,地下水发育 >50(暴雨、大暴雨和特大暴雨) 全断面法 不合格 初支未施作完成,或尚未施作支护 差/无施作混凝土 ≤20
    致灾性分级 不良与特殊地质S2 隧道跨度[18, 51]S7 技术与管理[12-14, 16, 20, 31] S8
    定性描述 定量描述 跨度/ m 截面积/ m2
    断层破碎带 偏压
    None
    (无)
    无或少见,几乎不利于围岩失稳灾害的发生 不存在或存在小规模的断层破碎带,厚度<2 m 不存在或轻微偏压,偏压 < 10° [0, 9) < 45
    Weak
    (弱)
    一般,不太有利于围岩失稳灾害的发生 存在一定规模的断层破碎带,厚度[2, 5) m 一般偏压,偏压[10°, 20°) [9, 14) [45, 70)
    Medium
    (中等)
    常见,中等有利于围岩失稳灾害的发生 存在较大规模的断层破碎带,厚度[5, 10) m 显著偏压,偏压[20°, 40°] [14,18] [70,120] 一般
    Strong
    (强)
    频繁,强有利于围岩失稳灾害的发生 存在大规模的断层破碎带,厚度>10 m 严重偏压,偏压>40° >18 >120
    致灾性分级 失稳势[52] S9/% 失稳规模[53]S10
    塌方高度/m 塌方体积/m3
    None(无) < 25 无或小掉块
    Weak(弱) [25, 50) [0, 3) [0, 30)
    Medium(中等) [50,75] [3,6] [30,100]
    Strong(强) >75 >6 >100
    注:Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ,Ⅵ表示岩体基本质量级别
    下载: 导出CSV

    表  4  公路隧道围岩稳定风险评估等级标准

    Table  4.   Stability grade standards for surrounding rock stability risk assessment of highway tunnel

    失稳势/% 致灾性分级
    None(无) Weak(弱) Medium(中等) Strong(强)
    >75 高度Ⅲ 高度Ⅲ 极高Ⅳ 极高Ⅳ
    [50,75] 中度Ⅱ 高度Ⅲ 高度Ⅲ 极高Ⅳ
    [25, 50) 中度Ⅱ 中度Ⅱ 高度Ⅲ 高度Ⅲ
    < 25 低度Ⅰ 中度Ⅱ 中度Ⅱ 高度Ⅲ
    下载: 导出CSV

    表  5  拓扑节点名称对应

    Table  5.   Names of topological nodes

    风险评估指标 拓扑节点名称
    围岩级别S1 SRockLevel
    不良与特殊地质S2 BadSGeologicalCondition
    水文地质S3 HydrogeologicalCondition
    开挖方法S4 ExcavationMethod
    支护情况S5 SupportCondition
    埋深S6 Depth
    隧道跨度S7 Span
    技术与管理S8 TechAndManagement
    失稳势S9 InstabilityPotential
    失稳规模S10 CollapseScale
    下载: 导出CSV

    表  6  贝叶斯网络模型验证数据

    Table  6.   Validation data of Bayesian network model

    案例序号 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
    86 Weak Strong None Weak Strong None Medium Strong Y Strong
    87 * None Weak None Weak None None None N None
    88 Strong None Weak None None None Weak None N None
    89 Strong None Weak None Weak None Weak None N None
    90 Medium Strong Medium Medium Medium None Weak Medium Y Strong
    91 Strong Strong Strong Weak Medium None Weak Medium Y Medium
    92 Medium Medium None Medium Medium None Weak Medium N None
    93 Strong * Medium Strong Medium * Medium * Y Strong
    94 Strong Strong Strong Weak * None Medium * Y Strong
    95 Strong * Medium Medium * Weak Medium * Y Strong
    96 Strong * None Medium Strong * Weak Strong Y Strong
    注:“*”代表没有明确结果; 下同
    下载: 导出CSV

    表  7  北固山隧道失稳风险评估参数(ZK5+937~ZK5+917)

    Table  7.   Parameters of instability risk assessment for Beigushan tunnel (ZK5+937~ZK5+917)

    风险评估指标 特征
    围岩级别 Ⅲ级(弱)
    不良与特殊地质 存在一条宽约0.4 m的破碎带(无)
    水文地质 可能存在少量裂隙水,存在大量涌水可能性小(无)
    开挖方法 上下台阶法(中等)
    支护情况 开挖结束后紧跟施作初支(中等)
    埋深 *
    隧道跨度 14 m(中等)
    技术与管理 优(无)
    下载: 导出CSV
  • [1] 童宏纲, 刘佑荣, 杜时贵. 高速公路隧道围岩质量评价系统初步研究[J]. 地质科技情报, 2000, 19(3): 81-86.

    TONG H G, LIU Y R, DU S G. Preliminary study on surrounding rock quality evaluation system of highway tunnel[J]. Geological Science and Technology Information, 2000, 19(3): 81-86. (in Chinese with English abstract)
    [2] 王剑非, 刘昆珏, 周文皎, 等. 香丽高速公路昌格洛滑坡-隧道工程病害三维数值分析[J]. 地质科技通报, 2022, 41(2): 34-43. doi: 10.19509/j.cnki.dzkq.2022.0009

    WANG J F, LIU K J, ZHOU W J, et al. Three-dimensional numerical analysis of the Changgeluo landslide-tunnel engineering disaster on Shangri-La to Lijiang highway[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 34-43. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0009
    [3] 王震, 崔景川, 彭文波, 等. 水平定向钻隧道地质勘察孔岩屑运移与地层相关性研究[J]. 地质科技通报, 2022, 41(6): 331-338. doi: 10.19509/j.cnki.dzkq.2022.0114

    WANG Z, CUI J C, PENG W B, et al. Correlation study of cuttings and formation during tunnel geological investigation using HDD technology[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 331-338. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0114
    [4] 孙振海, 韦建昌, 韩玉, 等. 隧道施工事故统计分析[J]. 西部交通科技, 2020(7): 91-93.

    SUN Z H, WEI J C, HAN Y, et al. Statistical analysis of tunnel construction accidents[J]. Western China Communications Science & Technology, 2020(7): 91-93. (in Chinese with English abstract)
    [5] WANG X T, LI S C, XU Z H, et al. An interval risk assessment method and management of water inflow and inrush in course of karst tunnel excavation[J]. Tunnelling and Underground Space Technology, 2019, 92: 103033. doi: 10.1016/j.tust.2019.103033
    [6] 刘尚各, 彭文波, 刘继国, 等. 公路隧道施工风险评估方法及其应用研究[J]. 现代隧道技术, 2020, 57(增刊1): 241-246.

    LIU S G, PENG W B, LIU J G, et al. Risk assessment method of highway tunnel construction and its application[J]. Modern Tunnelling Technology, 2020, 57(S1): 241-246. (in Chinese with English abstract)
    [7] LI Z Y, WANG Y C, OLGUN C G, et al. Risk assessment of water inrush caused by karst cave in tunnels based on reliability and GA-BP neural network[J]. Geomatics, Natural Hazards and Risk, 2020, 11(1): 1212-1232. doi: 10.1080/19475705.2020.1785956
    [8] WU S C, WU Z G, ZHANG C X. Rock burst prediction probability model based on case analysis[J]. Tunnelling and Underground Space Technology, 2019, 93: 103069. doi: 10.1016/j.tust.2019.103069
    [9] BRUSS F T. 250 years of "An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F.R.S. communicated by Mr. Price, in a letter to John Canton, A.M.F.R.S. "[J]. Jahresbericht Der Deutschen Mathematiker-Vereinigung, 2014, 115(3): 129-133.
    [10] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society Series B(Statistical Methodology), 1977, 39(1): 1-22. doi: 10.1111/j.2517-6161.1977.tb01600.x
    [11] 徐龙旺. 大跨公路隧道两阶段安全风险评估及对策研究: 以百色隧道为例[D]. 南宁: 广西大学, 2021.

    XU L W. Two stage risk assessment and countermeasures of long span highway tunnel: Taking Baise Tunnel as an example[D]. Nanning: Guangxi University, 2021. (in Chinese with English abstract)
    [12] 吴波, 朱林萍, 刘聪, 等. 基于未确知测度理论公路隧道塌方风险评价[J]. 福建工程学院学报, 2022, 20(3): 205-212.

    WU B, ZHU L P, LIU C, et al. Tunnel collapse risk assessment based on unascertained measure theory[J]. Journal of Fujian University of Technology, 2022, 20(3): 205-212. (in Chinese with English abstract)
    [13] 黄亚华. 基于案例管理系统开发的公路隧道塌方处理决策分析[D]. 西安: 长安大学, 2021.

    HUANG Y H. Decision analysis of highway tunnel collapse treatment based on case management system development[D]. Xi'an: Chang'an University, 2021. (in Chinese with English abstract)
    [14] 茶增云, 陈舞, 肖振江, 等. 基于集对分析法的山岭隧道坍塌风险评价[J]. 水利与建筑工程学报, 2021, 19(1): 122-129.

    CHA Z Y, CHEN W, XIAO Z J, et al. Collapse risk assessment of mountain tunnels based on set pair analysis theory[J]. Journal of Water Resources and Architectural Engineering, 2021, 19(1): 122-129. (in Chinese with English abstract)
    [15] 魏强, 刘加奇, 王景春, 等. 基于理想模糊物元的隧道施工安全韧性评估[J]. 中国安全科学学报, 2021, 31(8): 62-68.

    WEI Q, LIU J Q, WANG J C, et al. Evaluation of safety resilience in tunnel construction based on ideal fuzzy matter element[J]. China Safety Science Journal, 2021, 31(8): 62-68. (in Chinese with English abstract)
    [16] 何乐平, 徐应东, 胡启军, 等. 基于博弈论-云模型的软岩隧道大变形风险评估[J]. 现代隧道技术, 2021, 58(6): 85-94.

    HE L P, XU Y D, HU Q J, et al. Assessment of large deformation risk in soft rock tunnels based on game theory-cloud model[J]. Modern Tunnelling Technology, 2021, 58(6): 85-94. (in Chinese with English abstract)
    [17] SUN R Y, HUANG S. Risk management and control measures of complex mountain tunnel construction[J]. Science Technology and Engineering, 2021, 21(11): 4627-4633. (in Chinese with English abstract))
    [18] 翟强, 顾伟红. 基于EW-AHP和未确知测度理论的隧道坍塌风险评价[J]. 安全与环境工程, 2020, 27(5): 92-97.

    ZHAI Q, GU W H. Risk assessment of tunnel collapse by EW-AHP and unascertained measure theory[J]. Safety and Environmental Engineering, 2020, 27(5): 92-97. (in Chinese with English abstract)
    [19] 王晓形. 基于AHP及专家打分法的大跨度隧道风险评估[J]. 现代隧道技术, 2020, 57(增刊1): 233-240.

    WANG X X. Risk assessment of the large-span tunnel based on AHP and expert scoring method[J]. Modern Tunnelling Technology, 2020, 57(S1): 233-240. (in Chinese with English abstract)
    [20] 张延杰, 杨小兵, 任孟德, 等. 山岭隧道施工期静态与动态风险评估方法及应用[J]. 铁道科学与工程学报, 2020, 17(10): 2703-2710.

    ZHANG Y J, YANG X B, REN M D, et al. Static and dynamic risk assessment method of mountain tunnel during construction period and its application[J]. Journal of Railway Science and Engineering, 2020, 17(10): 2703-2710. (in Chinese with English abstract)
    [21] 阎锡东, 高军, 韩翡, 等. 隧道穿越活动断裂带风险评价研究及工程应用[J]. 现代隧道技术, 2020, 57(5): 10-22.

    YAN X D, GAO J, HAN F, et al. Risk evaluation of the tunnel passing through active fault zone and engineering application[J]. Modern Tunnelling Technology, 2020, 57(5): 10-22. (in Chinese with English abstract)
    [22] WANG S, LI L P, SHI S S, et al. Dynamic risk assessment method of collapse in mountain tunnels and application[J]. Geotechnical and Geological Engineering, 2020, 38(3): 2913-2926.
    [23] 刘灿, 郑邦友, 李政, 等. 基于熵权-改进灰色关联模型的公路隧道塌方风险评估[J]. 科学技术与工程, 2020, 20(15): 6292-6297.

    LIU C, ZHENG B Y, LI Z, et al. Risk assessment of highway tunnel collapse in entropy weight-modified grey relational model[J]. Science Technology and Engineering, 2020, 20(15): 6292-6297. (in Chinese with English abstract)
    [24] 张翾, 刘鑫鑫. 基于概率统计理论的公路隧道大变形风险评估方法研究[J]. 公路, 2020, 65(8): 372-379.

    ZHANG X, LIU X X. Study on risk assessment method of large deformation of highway tunnel based on probability and statistics theory[J]. Highway, 2020, 65(8): 372-379. (in Chinese with English abstract)
    [25] 田伟, 王文星. 公路隧道设计阶段风险评估中的问题与对策[J]. 公路与汽运, 2020(1): 134-138.

    TIAN W, WANG W X. Problems and countermeasures in risk assessment of highway tunnel design stage[J]. Highways & Automotive Applications, 2020(1): 134-138. (in Chinese with English abstract)
    [26] 刘冠男, 王玉田, 姜福香, 等. 山岭公路隧道施工安全动态风险评估方法研究[J]. 北方交通, 2019(10): 84-88.

    LIU G N, WANG Y T, JIANG F X, et al. Research on dynamic risk evaluation method of mountain highway tunnel construction safety[J]. Northern Communications, 2019(10): 84-88. (in Chinese with English abstract)
    [27] SHI S S, ZHAO R J, LI S C, et al. Intelligent prediction of surrounding rock deformation of shallow buried highway tunnel and its engineering application[J]. Tunnelling and Underground Space Technology, 2019, 90: 1-11.
    [28] 朱捷, 曾国伟, 胡国忠, 等. 基于事故统计分析的隧道坍塌施工安全风险评估[J]. 公路交通科技(应用技术版), 2019(9): 237-240.

    ZHU J, ZENG G W, HU G Z, et al. Safety risk assessment of tunnel collapse construction based on accident statistical analysis[J]. Highway Transportation Technology(Applied Technology Edition), 2019(9): 237-240. (in Chinese with English abstract)
    [29] 许章隆. 基于指标体系的隧道施工与运营安全风险评估方法研究[D]. 重庆: 重庆交通大学, 2019.

    XU Z L. Research on security risk assessment methods of tunnel construction and operation based on index system[D]. Chongqing: Chongqing Jiaotong University, 2019. (in Chinese with English abstract)
    [30] GAO C L, LI S C, WANG J, et al. The risk assessment of tunnels based on grey correlation and entropy weight method[J]. Geotechnical and Geological Engineering, 2018, 36(3): 1621-1631.
    [31] 胡长明, 贡少瑞, 梅源, 等. 山岭隧道穿越冲沟段塌方风险预测与分析[J]. 安全与环境学报, 2013, 13(3): 235-239.

    HU C M, GONG S R, MEI Y, et al. Collapse risk forecast and analysis of cross-mountainous tunnel construction via gully sections[J]. Journal of Safety and Environment, 2013, 13(3): 235-239. (in Chinese with English abstract)
    [32] 王建. 初步设计阶段公路隧道安全风险评估研究[D]. 西安: 长安大学, 2018.

    WANG J. Study on safety risk assessment of primary design of highway tunnel[D]. Xi'an: Chang'an University, 2018. (in Chinese with English abstract)
    [33] 张国威. 基于统计分析的隧道塌方规律及围岩压力分布特征研究[D]. 北京: 北京交通大学, 2017.

    ZHANG G W. Study on tunnel collapse law and distribution characteristics of surrounding rock pressure based on statistical analysis[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese with English abstract)
    [34] 程远, 朱合华, 刘松玉, 等. 基于模糊理论大跨浅埋公路隧道施工风险评估[J]. 地下空间与工程学报, 2016, 12 (6): 1616-1622.

    CHENG Y, ZHU H H, LIU S Y, et al. Risk assessment for construction of large-span and shallow buried highway tunnels based on fuzzy theory[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(6): 1616-1622. (in Chinese with English abstract)
    [35] 岳诚东. 隧道工程施工塌方风险评估研究[D]. 兰州: 兰州大学, 2016.

    YUE C D. Study on the collapse risk assessment of tunnel construction project[D]. Lanzhou: Lanzhou University, 2016. (in Chinese with English abstract)
    [36] 刘喜春. 西山隧道工程建设期安全风险评估研究[D]. 西安: 长安大学, 2016.

    LIU X C. Research on security risk assessment during construction of Xishan Tunnel[D]. Xi'an: Chang'an University, 2016. (in Chinese with English abstract)
    [37] 王超. 山岭公路隧道施工安全风险评估与应用研究[D]. 武汉: 武汉理工大学, 2015.

    WANG C. Research on risk assessment and its application in mountain highway tunnel construction[D]. Wuhan: Wuhan University of Technology, 2015. (in Chinese with English abstract)
    [38] 苏永华, 刘科伟, 张进华. 基于粗糙集重心理论的公路隧道塌方风险分析[J]. 湖南大学学报(自然科学版), 2013, 40(1): 21-26.

    SU Y H, LIU K W, ZHANG J H. Fuzzy evaluation of collapse incidents in highway tunnel construction based on rough set and barycenter theory[J]. Journal of Hunan University (Natural Sciences), 2013, 40(1): 21-26. (in Chinese with English abstract)
    [39] 周宗青, 李术才, 李利平, 等. 浅埋隧道塌方地质灾害成因及风险控制[J]. 岩土力学, 2013, 34(5): 1375-1382.

    ZHOU Z Q, LI S Z, LI L P, et al. Causes of geological hazards and risk control of collapse in shallow tunnels[J]. Rock and Soil Mechanics, 2013, 34(5): 1375-1382. (in Chinese with English abstract)
    [40] 刘科伟. 公路隧道建造期塌方风险分析及控制的系统研究[D]. 长沙: 湖南大学, 2012.

    LIU K W. The systemic landslide risk analysis and control in the construction of highway tunnels[D]. Changsha: Hunan University, 2012. (in Chinese with English abstract)
    [41] 何美丽, 刘霁, 刘浪, 等. 隧道坍方风险评价的未确知测度模型及工程应用[J]. 中南大学学报(自然科学版), 2012, 43(9): 3665-3671.

    HE M L, LIU J, LIU L, et al. Unascertained measure model of assessment tunnel collapse risk and its application in engineering[J]. Journal of Central South University (Science and Technology), 2012, 43(9): 3665-3671. (in Chinese with English abstract)
    [42] 李风云. 隧道塌方风险预测与控制研究[D]. 长沙: 中南大学, 2011.

    LI F Y. Research on risk prediction and control of tunnel collapse[D]. Changsha: Central South University, 2011. (in Chinese with English abstract)
    [43] 袁龙. 基于模糊层次综合评估法的隧道洞口段塌方风险评估[D]. 西安: 长安大学, 2010.

    YUAN L. Risk assessment in tunnel portal landslide based on fuzzy AHP comprehensive evaluation[D]. Xi'an: Chang'an University, 2010. (in Chinese with English abstract)
    [44] 王迎超. 山岭隧道塌方机制及防灾方法[D]. 杭州: 浙江大学, 2010.

    WANG Y C. Mechanism andcontrol measures of collapse of mountain tunnel[D]. Hangzhou: Zhejiang University, 2010. (in Chinese with English abstract)
    [45] 周峰. 山岭隧道塌方风险模糊层次评估研究[D]. 长沙: 中南大学, 2008.

    ZHOU F. Research on fuzzy analytic hierarchy process evaluation of mountain tunnel collapse risk[D]. Changsha: Central South University, 2008. (in Chinese with English abstract)
    [46] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 工程岩体分级标准: GB/T50218-2014[S]. 北京: 中国计划出版社, 2014.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standard for engineering classification of rock mass: GB/T50218-2014[S]. Beijing: China Planning Press, 2014. (in Chinese)
    [47] 包毅辉. 弄莫隧道隧址区岩溶水文地质条件及隧道涌水研究[D]. 成都: 成都理工大学, 2018.

    BAO Y H. Study on karst hydrogeological conditions and tunnel water gushing in Nongmo Tunnel[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese with English abstract)
    [48] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 降水量等级: GB/T28592-2012[S]. 北京: 中国标准出版社, 2012.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Grade of precipitation: GB/T 28592-2012[S]. Beijing: Standards Press of China, 2012. (in Chinese)
    [49] 中华人民共和国交通运输部. 公路隧道施工技术规范: JTG/T 3660-2020[S]. 北京: 人民交通出版社股份有限公司, 2020.

    Ministry of Transport of the People's Republic of China. Technical Specifications for Construction of Highway Tunnel: JTG/T3660-2020[S]. Beijing: China Communications Press Co., Ltd., 2020. (in Chinese)
    [50] 李朝阳. 基于数据学习的岩溶隧道突涌水风险评估及预警研究[D]. 江苏徐州: 中国矿业大学, 2020.

    LI Z Y. Risk assessment and warning research of water inrush in karst tunnels based on data learning[D]. Xuzhou Jiangsu: China University of Mining and Technology, 2020. (in Chinese with English abstract)
    [51] 刘敦文, 曹敏, 唐宇, 等. 基于云模型的富水岩溶隧道涌水风险评价[J]. 中国安全生产科学技术, 2021, 17(1): 109-115.

    LIU D W, CAO M, TANG Y, et al. Risk evaluation of water inrush in water-rich karst tunnel based on cloud model[J]. Journal of Safety Science and Technology, 2021, 17(1): 109-115. (in Chinese with English abstract)
    [52] 王密田. 运营期隧道病害风险评估及预警系统开发[D]. 江苏徐州: 中国矿业大学, 2021.

    WANG M T. Development of risk assessment and early warning system for tunnel diseases during operation period[D]. Xuzhou Jiangsu: China University of Mining and Technology, 2021. (in Chinese with English abstract)
    [53] 中华人民共和国交通运输部. 公路隧道设计细则: JTG/T D70-2010[S]. 北京: 人民交通出版社, 2010.

    Ministry of Transport of the People's Republic of China. Guidelines for design of highway tunnel: JTG/T D70-2010[S]. Beijing: China Communications Press, 2010. (in Chinese with English abstract)
    [54] 姚道洪. 基于ISM的可达矩阵简易算法及实现[J]. 价值工程, 2015, 34(28): 212-213.

    YAO D H. The simple algorithm and implementation of reachability matrix based on ISM[J]. Value Engineering, 2015, 34(28): 212-213. (in Chinese with English abstract)
    [55] 百色市应急管理局. 关于百色市乐业县乐业大道道路工程(含隧道工程)一期工程"9·10"较大隧道坍塌事故结案的通知[EB/OL]. (2020-12-29)[2024-4-15]. http://www.baise.gov.cn/zwgk/zdlyxxgk/qtzdxx/scaqsgxx/aqsgdcbg/t7481058.shtml.

    Baise Emergency Management Bureau. About Baise City Leye County Leye Avenue road project (including tunnel project) a project "9-10" larger tunnel collapse accident closure notice[EB/OL]. (2020-12-29)[2024-4-15].http://www.baise.gov.cn/zwgk/zdlyxxgk/qtzdxx/scaqsgxx/aqsgdcbg/t7481058.shtml .(in Chinese with English abstract)
    [56] 姜雯. 公路隧道围岩分级及失稳风险评估与系统开发[D]. 江苏徐州: 中国矿业大学, 2023.

    JIANG W. Highway tunnel surrounding rock classification and instability risk assessment and application developmen[D]. Xuzhou Jiangsu: China University of Mining and Technology, 2023. (in Chinese with English abstract)
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  151
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-29
  • 录用日期:  2024-07-01
  • 修回日期:  2024-06-17

目录

    /

    返回文章
    返回