留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动水冲刷作用下堆积体岸坡的渐进破坏过程分析

杜勇江 王运生 邹子南 孙耀明

杜勇江, 王运生, 邹子南, 孙耀明. 动水冲刷作用下堆积体岸坡的渐进破坏过程分析[J]. 地质科技通报, 2024, 43(6): 226-234. doi: 10.19509/j.cnki.dzkq.tb20240213
引用本文: 杜勇江, 王运生, 邹子南, 孙耀明. 动水冲刷作用下堆积体岸坡的渐进破坏过程分析[J]. 地质科技通报, 2024, 43(6): 226-234. doi: 10.19509/j.cnki.dzkq.tb20240213
DU Yongjiang, WANG Yunsheng, ZOU Zinan, SUN Yaoming. Progressive analysis of the progressive failure process of accumulated bank slope under dynamic water scour[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 226-234. doi: 10.19509/j.cnki.dzkq.tb20240213
Citation: DU Yongjiang, WANG Yunsheng, ZOU Zinan, SUN Yaoming. Progressive analysis of the progressive failure process of accumulated bank slope under dynamic water scour[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 226-234. doi: 10.19509/j.cnki.dzkq.tb20240213

动水冲刷作用下堆积体岸坡的渐进破坏过程分析

doi: 10.19509/j.cnki.dzkq.tb20240213
详细信息
    作者简介:

    杜勇江, E-mail: 848315205@qq.com

    通讯作者:

    王运生, E-mail: wangys60@163.com

  • 中图分类号: P642.22;TV223

Progressive analysis of the progressive failure process of accumulated bank slope under dynamic water scour

  • 摘要:

    西南地区峡谷大型堵江时有发生, 由堆积体组成的河道岸坡在堰塞坝溃决形成的超大洪水动水冲刷下的破坏机理及演化过程对水电、道路、城镇建设具有重要的现实意义。在前人研究的基础上, 从定性角度分析了河道岸坡在过洪工况下的破坏过程, 从理论角度推导了顺直河道岸坡、弯道凹岸岸坡在动水冲刷作用下的掏蚀槽发育机制, 并使用Geo-studio软件计算了丹巴县干海子滑坡在水位上涨情况下的多级滑动过程。建立了与时间、水流切应力、岸坡抗剪强度、岸坡起动切应力等因素有关的顺直河道岸坡冲刷程度函数; 从定性及定量的角度共同解析了河道岸坡在动水冲刷条件下的滑动过程: 岸坡近水面部分由表及里被掏蚀→掏蚀后缘土体发生牵引式滑坡→坡脚被冲蚀且坡体形态不断改变→多级牵引式滑坡; 干海子滑坡在水位攀高15 m且冲刷时间足够的情况下将发生多级牵引式滑坡。目前稳定的堆积体岸坡在某些极端过水工况下仍存在大规模滑移致灾的可能。研究成果为崩岸问题的理论分析提供了一种新的思路, 并对水库等水利建设的下游堆积体岸坡致灾预防提供了一定的理论指导。

     

  • 图 1  掏蚀槽发育与否而形成的2种潜在滑面(以靠椅式滑面滑坡为例)

    Figure 1.  Two potential slip surfaces formed by the development or non-development of erosion grooves

    图 2  动水条件下顺直河道岸坡的渐进破坏过程(a~e)

    Figure 2.  Progressive failure process of straight river slopes under dynamic water conditions(a-e)

    图 3  无黏性土岸坡[23](a)及黏性土岸坡(b)的横向展宽

    Figure 3.  Lateral widen of non-cohesive soil riverbank slopes[23](a) and cohesive soil riverbank slopes(b)

    图 4  顺直河道概化模型及受力分析(字母含义见正文)

    a.顺直河道概化模型;b.河道任意一剖面;c.剖面上任意一点A受力分析

    Figure 4.  Conceptual model and force analysis of a straight river channel

    图 5  弯道水流典型受力特征及水流结构(据文献[24]修改, 字母含义见正文)

    Figure 5.  Typical force characteristics and flow structure of curved water flow

    图 6  弯道概化模型及受力分析(字母含义见正文)

    Figure 6.  Conceptual model and force analysis of a river bend

    图 7  弯道凹岸任意点破坏判据示意(字母含义见正文)

    Figure 7.  Schematic of failure criteria at arbitrary point on concave bank of a river bend

    图 8  干海子滑坡平剖面图(源google earth)

    a. 干海子滑坡地理位置;b. 干海子滑坡全景;c. I-I′剖面图

    Figure 8.  Plan and profile view of Ganhaizi landslide

    图 9  干海子滑坡破坏过程计算

    a.初始形态;b.掏蚀槽发育及上部土体滑动;c.掏蚀槽后部土体启滑;d.继续滑动及原坡脚被冲蚀;e.多级牵引式滑坡破坏

    Figure 9.  Calculation of Ganhaizi landslide failure process

    表  1  干海子滑坡堆积体物理力学参数

    Table  1.   Physical and mechanical parameters of Ganhaizi landslide deposit

    岩土体类型 γs/(kN·m-3) C/kPa φ/(°)
    滑坡堆积物 21 31 28
    破碎岩带 24 60 40
    注:γs为岸坡土体容重;C为黏聚力;φ为内摩擦角; 下同
    下载: 导出CSV

    表  2  岸坡土体起动切应力τc及水流切应力τ计算

    Table  2.   Calculation of critical shear stress τc and water flow shear stress τ of riverbank slope

    γs/ (kN·m-3) γw/ (kN·m-3) d50/ m τc/ (N·m-1) 水流比降/‰ R/m τ/ (N·m-1)
    21 9.8 0.2 1.07 65 10.55 6.71
    注:γw为水体容重;d50为中值粒径;R为水力半径
    下载: 导出CSV
  • [1] 盛金保, 李宏恩, 盛韬桢. 我国水库溃坝及其生命损失统计分析[J]. 水利水运工程学报, 2023, (1): 1-15.

    SHENG J B, LI H E, SHENG T Z. Statistical analysis of dam failure and its loss of life in China[J]. Hydro-Science and Engineering, 2023, (1): 1-15. (in Chinese with English abstract)
    [2] 陈兰, 范宣梅, 熊俊麟, 等. 藏东南多依弄巴流域冰湖溃决危险性评价[J]. 地质科技通报, 2023, 42(2): 258-266. doi: 10.19509/j.cnki.dzkq.tb20220235

    CHEN L, FAN X M, XIONG J L, et al. Hazard assessment of glacial lake outbursts in the Doyinongba Basin, southeastern Tibetan Plateau[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 258-266. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220235
    [3] 中国科学院地理研究所. 长江中下游河道特性及其演变[M]. 北京: 科学出版社, 1985.

    Institute of Geography, Chinese Academy of Sciences. Characteristics and evolution of the middle and lower reaches of the Yangtze River[M]. Beijing: Science Press, 1985. (in Chinese)
    [4] 张幸农, 蒋传丰, 应强, 等. 江河崩岸问题研究综述[J]. 水利水电科技进展, 2008, 28(3): 80-83.

    ZHANG X N, JIANG C F, YING Q, et al. Review of research on bank collapse in natural rivers[J]. Advances in Science and Technology of Water Resources, 2008, 28(3): 80-83. (in Chinese with English abstract)
    [5] 张幸农, 假冬冬, 陈长英. 长江中下游崩岸时空分布特征与规律[J]. 应用基础与工程科学学报, 2021, 29(1): 55-63.

    ZHANG X N, JIA D D, CHEN C Y. The spatial and temporal distribution characteristic of bank collapses in the middle and lower reaches of the Yangtze River[J]. Journal of Basic Science and Engineering, 2021, 29(1): 55-63. (in Chinese with English abstract)
    [6] OSMAN A M, THORNE C R. Riverbank stability analysis. Ⅰ: Theory[J]. Journal of Hydraulic Engineering, 1988, 114(2): 134-150. doi: 10.1061/(ASCE)0733-9429(1988)114:2(134)
    [7] DARBY S E, THORNE C R. Numerical simulation of widening and bed deformation of straight sand-bed Rivers. Ⅰ: Model development[J]. Journal of Hydraulic Engineering, 1996, 122(4): 184-193. doi: 10.1061/(ASCE)0733-9429(1996)122:4(184)
    [8] DARBY S E, THORNE C R. Development and testing of riverbank-stability analysis[J]. Journal of Hydraulic Engineering, 1996, 122(8): 443-454. doi: 10.1061/(ASCE)0733-9429(1996)122:8(443)
    [9] DARBY S E, THORNE C R, SIMON A. Numerical simulation of widening and bed deformation of straight sand-bed rivers. Ⅱ: Model evaluation[J]. Journal of Hydraulic Engineering, 1996, 122(4): 194-202. doi: 10.1061/(ASCE)0733-9429(1996)122:4(194)
    [10] 孙启航, 夏军强, 邓珊珊, 等. 基于圆弧与平面滑动模式的上荆江崩岸过程模拟对比分析[J]. 应用基础与工程科学学报, 2023, 31(1): 38-51.

    SUN Q H, XIA J Q, DENG S S, et al. Comparison of simulated bank erosion processes in the upper Jingjiang reach using the circular and planar sliding modes[J]. Journal of Basic Science and Engineering, 2023, 31(1): 38-51. (in Chinese with English abstract)
    [11] 陈帮, 李志威, 鲁瀚友, 等. 黑河下游河岸侵蚀触发颈口裁弯的数值模拟概化研究[J]. 应用基础与工程科学学报, 2023, 31(1): 52-64.

    CHEN B, LI Z W, LU H Y, et al. Conceputually numerical simulation of neck cutoff triggered by bank erosion in the lower Black River[J]. Journal of Basic Science and Engineering, 2023, 31(1): 52-64. (in Chinese with English abstract)
    [12] 张翼, 夏军强, 宗全利, 等. 下荆江二元结构河岸崩退过程模拟及影响因素分析[J]. 泥沙研究, 2015, 40(3): 27-34.

    ZHANG Y, XIA J Q, ZONG Q L, et al. Modeling of the failure process of a composite riverbank and influencing factors analysis in the lower Jingjiang reach[J]. Journal of Sediment Research, 2015, 40(3): 27-34. (in Chinese with English abstract)
    [13] ZONG Q L, XIA J Q, ZHOU M R, et al. Modelling of the retreat process of composite riverbank in the Jingjiang reach using the improved BSTEM[J]. Hydrological Processes, 2017, 31(26): 4669-4681. doi: 10.1002/hyp.11387
    [14] 王新宏. 冲积河道纵向冲淤和横向变形数值模拟研究及应用[D]. 西安: 西安理工大学, 2000.

    WANG X H. Development and application of a numerical model for bank erosion and sediment transport in alluvial rivers[D]. Xi'an: Xi'an University of Technology, 2000. (in Chinese with English abstract)
    [15] MITCHENER H, TORFS H, WHITEHOUSE R. Erosion of mud/sand mixtures[J]. Coastal Engineering, 1997, 30(3/4): 319.
    [16] TURNER I L, MASSELINK G. Swash infiltration-exfiltration and sediment transport[J]. Journal of Geophysical Research(Oceans), 1998, 103(C13): 30813-30824.
    [17] 周双, 张根广, 王愉乐. 泥沙起动标准和起动参数的关系研究[J]. 泥沙研究, 2020, 45(5): 7-12.

    ZHOU S, ZHANG G G, WANG Y L. Study on standard and parameters of sediment incipient motion criteria[J]. Journal of Sediment Research, 2020, 45(5): 7-12. (in Chinese with English abstract)
    [18] MIAO F S, WU Y P, LI L W, et al. Centrifuge model test on the retrogressive landslide subjected to reservoir water level fluctuation[J]. Engineering Geology, 2018, 245: 169-179.
    [19] SONG K, WANG F W, YI Q L, et al. Landslide deformation behavior influenced by water level fluctuations of the Three Gorges Reservoir(China)[J]. Engineering Geology, 2018, 247: 58-68.
    [20] 许艺林, 李远耀, 李思德, 等. 库水位下降叠加降雨作用时堆积层滑坡渗流-变形机制[J]. 地质科技通报, 2024, 43(1): 216-228. doi: 10.19509/j.cnki.dzkq.tb20220417

    XU Y L, LI Y Y, LI S D, et al. Seepage-deformation mechanism of colluvial landslides under the action of reservoir water level decline and rainfall[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 216-228. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220417
    [21] HE C C, HU X L, TANNANT D D, et al. Response of a landslide to reservoir impoundment in model tests[J]. Engineering Geology, 2018, 247: 84-93.
    [22] 王明华, 晏鄂川. 水库蓄水对库岸滑坡的影响研究[J]. 岩土力学, 2007, 28(12): 2722-2725.

    WANG M H, YAN E C. Study on influence of reservoir water impounding on reservoir landslide[J]. Rock and Soil Mechanics, 2007, 28(12): 2722-2725. (in Chinese with English abstract)
    [23] DUAN G H. Simulation of alluvial channel migration processes with a two-dimensional numerical model[D]. Mississippi: University of Mississippi, 1998.
    [24] 周建银. 弯曲河道水流结构及河道演变模拟方法的改进和应用[D]. 北京: 清华大学, 2015.

    ZHOU J Y. Improvement and application of prediction methods for flow structure and fluvial processes in meander channels[D]. Beijing: Tsinghua University, 2015. (in Chinese with English abstract)
    [25] 舒安平, 周星, 余明辉, 等. 岸坡崩塌条件下弯道环流与水流剪切力的变化特征[J]. 水利学报, 2018, 49(3): 271-281.

    SHU A P, ZHOU X, YU M H, et al. Characteristics for circulating currents and water-flow shear stress under the condition of bank slope collapse[J]. Journal of Hydraulic Engineering, 2018, 49(3): 271-281. (in Chinese with English abstract)
    [26] 宋晓龙, 陈有俊, 黄海, 等. 外分单汊的常曲率弯道水流特征有效模拟[J]. 应用基础与工程科学学报, 2023, 31(5): 1095-1109.

    SONG X L, CHEN Y J, HUANG H, et al. Effective simulation of flow characteristics in a constant curved bend with outward single short-branch[J]. Journal of Basic Science and Engineering, 2023, 31(5): 1095-1109. (in Chinese with English abstract)
    [27] 何军. 大渡河干海子堰塞堆积体成因机制及稳定性研究[D]. 成都: 成都理工大学, 2009.

    HE J. Dadu river Ganhaizi accumulation of body study on formation mechanism and stability[D]. Chengdu: Chengdu University of Technology, 2009. (in Chinese with English abstract)
    [28] 孙耀明. 丹巴水电站引水隧洞稳定性分析及方案比选研究[D]. 成都: 成都理工大学, 2008.

    SUN Y M. The stability analysis and the scheme selection study of diversion tunnel of Danba Hydro-electrical Power Station[D]. Chengdu: Chengdu University of Technology, 2008. (in Chinese with English abstract)
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  46
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-30
  • 录用日期:  2024-07-01
  • 修回日期:  2024-06-24

目录

    /

    返回文章
    返回