留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

输电线路单群锚基础抗拔特征差异的现场足尺试验

张文翔 崔强 邱昊茨 陆洲 奚邦禄 张振华

张文翔, 崔强, 邱昊茨, 陆洲, 奚邦禄, 张振华. 输电线路单群锚基础抗拔特征差异的现场足尺试验[J]. 地质科技通报, 2024, 43(6): 114-124. doi: 10.19509/j.cnki.dzkq.tb20240221
引用本文: 张文翔, 崔强, 邱昊茨, 陆洲, 奚邦禄, 张振华. 输电线路单群锚基础抗拔特征差异的现场足尺试验[J]. 地质科技通报, 2024, 43(6): 114-124. doi: 10.19509/j.cnki.dzkq.tb20240221
ZHANG Wenxiang, CUI Qiang, QIU Haoci, LU Zhou, XI Banglu, ZHANG Zhenhua. On-site full-scale test research for difference of anti-pull bearing characteristics between single anchor and group anchors foundation of transmission lines[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 114-124. doi: 10.19509/j.cnki.dzkq.tb20240221
Citation: ZHANG Wenxiang, CUI Qiang, QIU Haoci, LU Zhou, XI Banglu, ZHANG Zhenhua. On-site full-scale test research for difference of anti-pull bearing characteristics between single anchor and group anchors foundation of transmission lines[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 114-124. doi: 10.19509/j.cnki.dzkq.tb20240221

输电线路单群锚基础抗拔特征差异的现场足尺试验

doi: 10.19509/j.cnki.dzkq.tb20240221
基金项目: 

国网福建省电力有限公司科技项目-适用于福建地区输电线路锚杆复合基础研究 521330210078

详细信息
    作者简介:

    张文翔, E-mail: 495529242@qq.com

    通讯作者:

    崔强, E-mail: everjsl@126.com

  • 中图分类号: TM75;TU470

On-site full-scale test research for difference of anti-pull bearing characteristics between single anchor and group anchors foundation of transmission lines

More Information
  • 摘要:

    为研究输电线路单锚与群锚基础抗拔承载特征差异, 采用理论分析和现场试验相结合的研究方法, 首先根据结构特点, 从受力与变形2方面分析了单锚与群锚的承载机制; 然后以输电线路基础工程中常用的全长黏结型锚杆为研究对象, 选取位于福建泉州地区的花岗岩地基作为试验场地, 分别开展了3组单锚、4组群锚的现场足尺拉拔试验, 采用位移传感器测试基础与地基变形、采用光频域反射光纤传感技术测试锚杆应变, 分析得到试验基础的荷载位移曲线以及锚杆界面内力分布; 最后对受力过程中2类锚杆基础的变形破坏机制进行对比分析。结果表明: 单锚与群锚荷载位移曲线特征存在差异, 群锚反映出的塑性变形特征较单锚明显; 加载前半段, 锚杆体系位移以锚筋拉伸为主, 加载后半段, 以锚岩界面滑移为主; 锚杆截面轴向应力沿深度方向逐渐减小, 且最终在2~3 m深度处趋于0;拉拔荷载作用下的单锚破坏模式与基岩饱和单轴抗压强度有关, 而群锚的破坏模式与组成的单锚数量有关; 工程中建议以群锚基础试验获得锚岩界面黏结强度为设计依据。研究成果可为输电线路岩石锚杆基础的选型与设计提供参考。

     

  • 图 1  现场岩土体芯样

    Figure 1.  On-site geotechnical core samples

    图 2  试验基础结构示意图

    a.单锚; b.群锚; c. 群锚平面布置图; d.锚孔直径;h.锚孔深度;h0.锚筋自由段长度;下同

    Figure 2.  Schematic diagram of test foundations

    图 3  试验基础现场制作工序

    Figure 3.  On-site construction process of test foundation

    图 4  试验加载装置

    Figure 4.  Test loading device

    图 5  测试元件布置图

    S1~S6.位移传感器符号;下同

    Figure 5.  Layout of testing components

    图 6  单锚与群锚荷载-位移曲线对比分析

    Figure 6.  Comparative analysis of load-displacement curves between single anchor and group anchors

    图 7  不同位置处位移分布曲线(Q为上拔荷载, Qde为破坏荷载,Q=90%Qde)

    Figure 7.  Displacement distribution curves at different locations

    图 8  锚杆轴向应力沿深度分布曲线

    Figure 8.  Axial stress distribution curve of anchor rod along depth

    图 9  锚杆基础拉拔试验4种常见的破坏模式

    Figure 9.  Four common failure modes in anchor foundation pullout tests

    图 10  地基破坏时地表形成的贯通裂缝

    Figure 10.  Surface cracks formed during foundation failure

    图 11  锚岩界面黏结强度随深度分布曲线

    Figure 11.  Distribution curve of anchor-rock interface bond strength with depth

    表  1  现场岩体物理力学参数(2 m深度处)

    Table  1.   Physical and mechanical parameters of on-site rockmass

    指标 试验值
    密度/(g·m-3) 2.66
    含水率/% 13
    劈裂抗拉强度/MPa 7.9
    单轴抗压强度/MPa 47
    饱和单轴抗压强度/MPa 35
    弹性模量/GPa 9.04
    黏聚力/MPa 11.3
    内摩擦角/(°) 50
    下载: 导出CSV

    表  2  7个试验基础尺寸参数

    Table  2.   Geometric size parameters of 7 test foundations

    类型 编号 d0/m d/m h/m h0/ m 锚杆数量/根
    单锚 DM1 0.032 0.13 4 0.5 1
    DM2 0.032 0.13 4 0.5 1
    DM3 0.032 0.13 4 0.5 1
    群锚 QM4-1 0.032 0.13 4 0.5 4
    QM4-2 0.032 0.13 4 0.5 4
    QM6-1 0.032 0.13 4 0.5 6
    QM6-2 0.032 0.13 4 0.5 6
    注:d0为锚筋直径;d为锚孔直径;h为锚孔深度;h0为锚筋自由段长度。锚筋与锚孔底部预留0.15 m保护层
    下载: 导出CSV

    表  3  不同加载阶段锚筋拉长量Δs1和锚筋与界面滑移量Δs2占比

    Table  3.   Proportion of anchor elongation and interface slippage at different loading stages

    编号 Q=30%Qde Q=60%Qde Q=90%Qde
    MΔs1 MΔs2 MΔs1 MΔs2 MΔs1 MΔs2
    DM1 69% 31% 65% 35% 28% 72%
    DM2 65% 35% 61% 39% 23% 77%
    DM3 68% 32% 67% 33% 34% 66%
    QM4-1 57% 43% 60% 40% 28% 72%
    QM6-2 59% 41% 57% 43% 34% 66%
    注: MΔs1MΔs2分别为Δs1、Δs2占总变形量的百分比; Q为上拔荷载;Qde为破坏荷载;下同
    下载: 导出CSV

    表  4  5根试验锚杆轴向应力零值点深度

    Table  4.   Depth of zero axial stress point of 5 test anchor rods

    编号 距地面深度/m
    首级荷载 Q=30%Qde Q=60%Qde 屈服前一级荷载
    DM1 2.4 2.5 2.7 2.8
    DM2 2.1 2.3 2.5 2.6
    DM3 1.5 1.6 1.8 2.0
    QM4-1 2.1 2.3 2.5 2.5
    QM6-1 2.6 2.8 2.8
    下载: 导出CSV

    表  5  4组锚杆拉拔试验结果对比

    Table  5.   Comparison of four sets of anchor pull-out test results

    基岩类型 饱和单轴抗压强度/MPa 破坏模式
    阳江灰岩[29] 97.57 锚筋拉断
    宜昌灰岩[30] 61.01 锚筋拉断
    宣城灰岩[31] 42.7 锚筋拉断
    泉州花岗岩 35 包裹体与岩体界面破坏
    注:锚筋均采用32,HRB400材质螺纹钢,锚孔直径为130 mm,包裹体为C30细石混凝土,锚杆黏结长度4 m
    下载: 导出CSV

    表  6  各试验基础极限抗拔承载力及极限位移

    Table  6.   Ultimate uplift bearing capacity and ultimate displacement of each test foundation

    编号 Ru/kN su/mm (Ru/Qde)/% 失效准则
    DM1 320 0.65 80
    DM2 330 3.34 70 ①+②
    DM3 280 2.53 70
    QM4-1 1 440 3.13 70
    QM4-2 1 440 2.36 70
    QM6-1 1 920 2.87 60
    QM6-2 1 920 4.54 60
    注:①锚筋屈服时前一级荷载;②荷载位移曲线陡变起始点对应荷载[5]; Ru.极限承载力; su.允许位移
    下载: 导出CSV

    表  7  锚岩界面黏结强度规范推荐值[5]

    Table  7.   Recommended values for the bond strength of the anchor-rock interfaces

    基岩类型 锚岩黏结强度标准值/kPa
    极软岩 [150, 250)
    软岩 [250, 600)
    较软岩 [600, 900)
    较硬岩 [900, 1 500)
    坚硬岩 [1 500, 2 500]
    注:包裹体为细石混凝土或水泥砂浆
    下载: 导出CSV

    表  8  锚岩界面黏结强度推算值

    Table  8.   Calculated values of anchor-rock interface bond strength

    编号 深度/m 黏结强度τ/kPa
    推算值 均值
    DM1 0~2.8 1 510
    DM2 0~2.6 1 674 1 902
    DM3 0~2.0 2 522
    QM4-1 0~2.6 1 186 1 186
    下载: 导出CSV
  • [1] 邬礼扬, 殷坤龙, 曾韬睿, 等. 不同栅格尺寸下输电线路地质灾害易发性评价[J]. 地质科技通报, 2024, 43(1): 241-252. doi: 10.19509/j.cnki.dzkq.tb20220307

    WU L Y, YIN K L, ZENG T R, et al. Evaluation of geological disaster susceptibility of transmission lines under different grid resolutions[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 241-252. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220307
    [2] 李思德, 李远耀, 殷坤龙, 等. 基于物理模型试验的杆塔基础滑坡防护措施效果研究[J]. 地质科技通报, 2022, 41(2): 209-218. doi: 10.19509/j.cnki.dzkq.2022.0044

    LI S D, LI Y Y, YIN K L, et al. Study on the effect of tower foundation landslide protection measures based on a physical model test[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 209-218. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0044
    [3] 朴昇昊, 张伟丽, 王永一, 等. 冻融循环对GFRP锚杆锚固性能影响的试验研究[J]. 地质科技通报, 2022, 41(6): 301-307. doi: 10.19509/j.cnki.dzkq.2021.0055

    PIAO S H, ZHANG W L, WANG Y Y, et al. Experimental study on the influence of freeze-thaw cycles on the anchoring performance of GFRP anchor[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 301-307. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0055
    [4] 鲁先龙, 崔强. 架空输电线路基础设计[M]. 北京: 中国电力出版社, 2021.

    LU X L, CUI Q. Design of foundation for overhead transmission line[M]. Beijing: China Eclectic Power Press, 2021. (in Chinese)
    [5] 中华人民共和国国家能源局. 架空输电线路基础设计规程: DL/T 5219-2023[S]. 北京: 中国计划出版社, 2023.

    National Energy Bureau of the People's Republic of China. Specification for design of foundation of overhead transmission line: DL/T 5219-2023[S]. Beijing: China Planning Press, 2023. (in Chinese)
    [6] ITO F, NAKAHARA F, KAWANO R, et al. Visualization of failure in a pull-out test of cable bolts using X-ray CT[J]. Construction and Building Materials, 2001, 15(5/6): 263-270.
    [7] KILIC A, YASAR E, CELIK A G. Effect of grout properties on the pull-out load capacityof fully grouted rock bolt[J]. Tunnelling and Underground Space Technology, 2002, 17(4): 355-362. doi: 10.1016/S0886-7798(02)00038-X
    [8] KIM D H, LEE S R. Uplift capacity of fixed shallow anchors subjected to vertical loading in rock[J]. International Journal of Offshore and Polar Engineering, 2005, 15(4): 312-320.
    [9] MA S Q, NEMCIK J, AZIZ N. An analytical model of fully grouted rock bolts subjected to tensile load[J]. Construction and Building Materials, 2013, 49: 519-526. doi: 10.1016/j.conbuildmat.2013.08.084
    [10] PARK J, QIU T, KIM Y. Field and laboratory investigation of pullout resistance of steel anchors in rock[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12): 2219-2224. doi: 10.1061/(ASCE)GT.1943-5606.0000953
    [11] CHEN Y. Experimental study and stress analysis of rock bolt anchorage performance[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(5): 428-437. doi: 10.1016/j.jrmge.2014.06.002
    [12] GHADIMI M, SHAHRIAR K, JALALIFAR H. Analysis profile of the fully grouted rock bolt in jointed rock using analytical and numerical methods[J]. International Journal of Mining Science and Technology, 2014, 24(5): 609-615. doi: 10.1016/j.ijmst.2014.07.009
    [13] HE L, AN X M, ZHAO Z Y. Fully grouted rock bolts: An analytical investigation[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1181-1196. doi: 10.1007/s00603-014-0610-0
    [14] 孙益振, 郑卫锋, 范志强. 输电线路节理化岩体注浆锚杆基础抗拔力模型试验研究[J]. 岩土力学, 2012, 33(1): 78-82.

    SUN Y Z, ZHENG W F, FAN Z Q. Tension model test research on grouted bolts foundation in jointed rock masses for transmission lines[J]. Rock and Soil Mechanics, 2012, 33(1): 78-82. (in Chinese with English abstract)
    [15] 曾华明, 李祺, 岳向红. 张拉荷载下砂浆锚固岩石锚杆的力学分析[J]. 岩石力学与工程学报, 2006, 25(增刊2): 3982-3986.

    ZENG H M, LI Q, YUE X H. Analysis of mechanical behavior of fully grouted rock bolt under tensile load[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3982-3986. (in Chinese with English abstract)
    [16] 孙长帅, 杨海巍, 徐光黎. 岩石锚杆基础抗拔承载力计算方法探究[J]. 岩土力学, 2009, 30(增刊1): 75-78.

    SUN C S, YANG H W, XU G L. Researches on pull-out capacity calculating method of rock bolt foundation[J]. Rock and Soil Mechanics, 2009, 30(S1): 75-78. (in Chinese with English abstract)
    [17] 许宏发, 王武, 江淼, 等. 灌浆岩石锚杆拉拔变形和刚度的理论解析[J]. 岩土工程学报, 2011, 33(10): 1511-1516.

    XU H F, WANG W, JIANG M, et al. Theoretical analysis of pullout deformation and stiffness of grouted rockbolts[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1511-1516. (in Chinese with English abstract)
    [18] 郑卫锋, 邓海骥, 何金业. 输电线路岩石锚杆基础试验研究[J]. 建筑科学, 2012, 28 (9): 57-59.

    ZHENG W F, DENG H J, HE J Y. Experiment research of rock anchor foundation in transmission line[J]. Building Science, 2012, 28(9): 57-59. (in Chinese with English abstract)
    [19] 冯自霞, 丁士君, 梅文明, 等. 输电铁塔岩石锚杆基础承载性能及影响因素试验研究[J]. 建筑科学, 2013, 29(3): 76-80.

    FENG Z X, DING S J, MEI W M, et al. Experimental study on bearing performance and influential factors for transmission-line rock anchor foundation[J]. Building Science, 2013, 29(3): 76-80. (in Chinese with English abstract)
    [20] 侯中伟, 郑卫锋. 特高压输电线路岩石锚杆基础选型与设计[J]. 电力建设, 2014, 35(10): 64-68.

    HOU Z W, ZHENG W F. Type selection and design of rock anchor foundation in UHV transmission line[J]. Electric Power Construction, 2014, 35(10): 64-68. (in Chinese with English abstract)
    [21] 程永锋, 赵江涛, 鲁先龙, 等. 特高压直流输电线路岩石锚杆群锚基础试验[J]. 中国电力, 2014, 47(12): 55-60.

    CHENG Y F, ZHAO J T, LU X L, et al. Field full-scale tests on group anchorage rock foundations of DC UHV transmission line project[J]. Electric Power, 2014, 47(12): 55-60. (in Chinese with English abstract)
    [22] 鲁先龙, 杨文智, 郑卫锋, 等. 锚杆间距对岩石群锚基础抗拔力影响的试验研究[J]. 工业建筑, 2018, 48(4): 84-88.

    LU X L, YANG W Z, ZHENG W F, et al. Experimental research on effect of bolt spacing on uplift resistance for group anchor foundation in rocks[J]. Industrial Construction, 2018, 48(4): 84-88. (in Chinese with English abstract)
    [23] 崔强, 邢明, 杨文智, 等. 喀斯特地区短桩锚杆复合基础现场抗拔试验及设计方法研究[J]. 岩石力学与工程学报, 2018, 37(11): 2621-2630.

    CUI Q, XING M, YANG W Z, et al. Field pull-out test and design method of the short pile and anchor composite foundation in the Karst area[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2621-2630. (in Chinese with English abstract)
    [24] 张盈哲, 刘燕平, 章李刚, 等. 输电杆塔直群锚结合承台锚杆基础抗拔承载机理研究[J]. 电力勘测设计, 2021(10): 1-7.

    ZHANG Y Z, LIU Y P, ZHANG L G, et al. Study on the uplift resistance mechanism of rock foundation of transmissionwith combined direct and group bolts by numerical simulations[J]. Electric Power Survey & Design, 2021(10): 1-7. (in Chinese with English abstract)
    [25] 丁士君, 杨文智, 朱照清, 等. 坚硬岩地基锚杆抗拔承载机制及破坏模式分析[J]. 工业建筑, 2023, 53(8): 191-198.

    DING S J, YANG W Z, ZHU Z Q, et al. Analysis on uplift bearing mechanisms and failure modes of anchor bolts in hard rock foundation[J]. Industrial Construction, 2023, 53(8): 191-198. (in Chinese with English abstract)
    [26] 中华人民共和国住房和城乡建设部. 建筑基桩检测技术规范: JGJ 106-2014[S]. 北京: 中国建筑工业出版社, 2014.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for testing of building foundation piles: JGJ 106-2014[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
    [27] 高磊, 周乐, 刘汉龙, 等. 灌注桩桩身变形高精度测量现场试验研究[J]. 岩土力学, 2021, 42(7): 2004-2014.

    GAO L, ZHOU L, LIU H L, et al. Field experimental study on the high-precision measurement of deformation of cast-in-place pile[J]. Rock and Soil Mechanics, 2021, 42(7): 2004-2014. (in Chinese with English abstract)
    [28] 崔强, 童瑞铭, 刘生奎, 等. 基础尺寸对碎石土地基扩底基础上拔承载力影响的现场试验研究[J]. 土木建筑与环境工程, 2016, 38(6): 17-23.

    CUI Q, TONG R M, LIU S K, et al. Experimental analysis of the influence of foundation size parameters on the uplift bearing capacity of the spread foundation in gravel soil[J]. Journal of Civil, Architectural & Environmental Engineering, 2016, 38(6): 17-23. (in Chinese with English abstract)
    [29] 崔强, 杨文智. 短桩-岩石锚杆复合基础研究技术报告[R]. 北京: 中国电力科学研究院, 2017.

    CUI Q, YANG W Z. Technical report on composite foundation of short pile and rock bolt research[R]. Beijing: China Electric Power Research Institute, 2017. (in Chinese)
    [30] 崔强, 陈培. 宜昌石灰岩地基中的岩石锚杆基础现场试验技术报告[R]. 北京: 中国电力科学研究院, 2015.

    CUI Q, CHEN P. Technical report on field testing of rock anchor foundation in Yichang limestone foundation[R]. Beijing: China Electric Power Research Institute, 2015. (in Chinese)
    [31] 杨文智, 郑卫锋, 满银, 等. 掏挖岩石锚杆复合基础上拔承载力计算中关键组合系数k1k2的取值研究技术报告[R]. 北京: 中国电力科学研究院, 2014.

    YANG W Z, ZHENG W F, MAN Y, et al. Research on the coefficients of k1 and k2 for the foundation composed by digged foundation and rock bolt foundation[R]. Beijing: China Electric Power Research Institute, 2014. (in Chinese)
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  88
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-04
  • 录用日期:  2024-08-10
  • 修回日期:  2024-08-01

目录

    /

    返回文章
    返回