留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

琼西南九所地热田水文地球化学特征及成因

周艺颖 欧阳正平 徐子东 王文梅 杨勇昌 王江思 黄泽佼 马荣林 梁海艳 林毅

周艺颖,欧阳正平,徐子东,等. 琼西南九所地热田水文地球化学特征及成因[J]. 地质科技通报,2025,44(1):216-228 doi: 10.19509/j.cnki.dzkq.tb20240242
引用本文: 周艺颖,欧阳正平,徐子东,等. 琼西南九所地热田水文地球化学特征及成因[J]. 地质科技通报,2025,44(1):216-228 doi: 10.19509/j.cnki.dzkq.tb20240242
ZHOU Yiying,OUYANG Zhengping,XU Zidong,et al. Hydrogeochemical characteristics and genesis of Jiusuo geothermal field in southwestern Hainan, China[J]. Bulletin of Geological Science and Technology,2025,44(1):216-228 doi: 10.19509/j.cnki.dzkq.tb20240242
Citation: ZHOU Yiying,OUYANG Zhengping,XU Zidong,et al. Hydrogeochemical characteristics and genesis of Jiusuo geothermal field in southwestern Hainan, China[J]. Bulletin of Geological Science and Technology,2025,44(1):216-228 doi: 10.19509/j.cnki.dzkq.tb20240242

琼西南九所地热田水文地球化学特征及成因

doi: 10.19509/j.cnki.dzkq.tb20240242
详细信息
    作者简介:

    周艺颖:E-mail:823643376@qq.com

    通讯作者:

    E-mail:13976244080@163.com

  • 中图分类号: P314.1

Hydrogeochemical characteristics and genesis of Jiusuo geothermal field in southwestern Hainan, China

More Information
  • 摘要:

    海南岛地热资源丰富,以往的地热勘查大多停留在生产层面,而对地热水化学成分的来源、水-岩作用、多方法评价热储温度和地热田成因机制等未深入研究。基于前人资料的深入分析,可以加深对成因机制的认识,为地热田开发提供参考。利用离子的比值及相关性、Piper图、F浓度分布图、硅-焓图解与SiO2混合模型和硅-焓方程法,探讨了九所地热田热水化学组分的来源、阳离子交换、F成因、热储温度和循环深度,提出了成因概念模型。结果显示:热水化学类型为SO4·HCO3-Na 型;SO42−主要源于安山岩、流纹岩区硫化物氧化;含F矿物溶解、离子交换是F浓度的控制因素;热储温度99~169℃,冷水混合比例80%~93%,冷、热水混合前蒸汽损失的质量分数约10%;循环深度1.8~3.8 km。概念模型揭示:热水沿构造运移,从花岗岩区流向安山岩、流纹岩区,同时汲取热能,发生矿物溶滤和离子交换,导致F、SO42−等组分浓度改变,引起水化学类型演化,在水力差和浮力差双重驱动下上升,于地下浅部与孔隙冷水混合存储于沉积盖层之下形成地热田。关于琼西南地热田的热源是否存在幔源热的问题目前没有充分证据,需进一步深入研究。

     

  • 图 1  九所地热田取样位置和区域地质概况

    Figure 1.  Sampling location and regional geological overview of the Jiusuo geothermal fields

    图 2  九所及邻近地热田热水Piper图(a)及F质量浓度分布(b)

    a. Ⅰ、Ⅱ、Ⅲ代表水化学类型分组;b. 各地热田的ρ(F)取平均值,地热水的流动路径依据文献[7,17]绘出

    Figure 2.  Piper diagram (a) and F concentration distribution (b) of geothermal water in Jiusuo and neighboring areas

    图 3  地热水离子交换的判定

    Figure 3.  Determination of ion exchange in geothermal water

    图 4  地热水中SO42−来源的判断

    Figure 4.  Determination of the source of SO42− in geothermal water

    图 5  F/Clc(Na+)与ρ(F)关系图

    Figure 5.  Plots of F/Cl versus F concentration, and Na+ concentration versus F concentration

    图 6  硅-焓图解与二氧化硅混合模型确定热储温度(D1~D5为点编号)

    Figure 6.  Geothermal reservoir temperature determined by silicon-enthalpy diagram with silica mixing model

    图 7  硅-焓方程计算出的热储温度和冷水混入比例

    Figure 7.  Geothermal reservoir temperature and cold water mixing ratios calculated by silicon-enthalpy equations

    图 8  δD−δ18O关系图(a)及钻孔深度和温度关系图(b)

    GMWL. 全球雨水线;LMWL2. 海南岛雨水线;LMWL1. 雷州半岛雨水线

    Figure 8.  δD−δ18O relationship of gethermal water (a) and relationship between depth and temperature of borehole (b)

    图 9  九所地热系统概念模型

    剖面线A-B位置见图2b;ZK为钻孔;N+Q为新近系和第四系沉积地层;Kγ为白垩纪花岗岩;F1为九所-陵水断裂带;F2为石门山断裂带;F3为芙蓉田-王下构造带;F5为乐东-西昌断裂带;样点大小表示ρ(F)大小。

    Figure 9.  A conceptual model of the Jiusuo geothermal system

    表  1  九所及邻近地热田水化学参数表

    Table  1.   Hydrochemical parameters of geothermal fields in Jiusuo and neighboring areas

    地热田 样品编号 K+ Na+ Ca2+ Mg2+ Cl SO42− CO32− HCO3 NO3 F
    ρB/(mg·L−1
    千家 Q-ZK1 3.2 40.1 57.3 11.8 19.4 8.9 0.0 290.0 4.8 0.8
    福报 F-ZK2 2.9 25.4 75.4 4.0 15.9 7.3 0.0 296.0 <0.2 0.3
    F-ZK4 1.1 28.8 63.4 12.1 28.7 29.3 16.0 207.0 5.0 0.4
    崖城 Y-8 3.9 135.0 8.9 0.5 30.2 123.0 16.0 133.0 1.6 11.0
    Y-1 3.4 136.0 7.4 0.3 27.2 121.0 11.0 138.0 1.4 11.0
    Y-7 3.5 139.0 8.6 0.4 28.7 125.0 16.0 127.0 0.3 11.0
    Y-ZK1 3.6 140.0 7.3 0.4 28.2 118.0 15.0 128.0 0.6 18.0
    Y-ZK2 6.1 54.2 42.1 4.4 25.1 43.4 9.8 184.0 2.1 4.6
    Y-ZK3 5.0 135.0 11.9 0.9 29.5 123.0 20.0 139.0 <0.2 16.0
    九所 J-B03 2.9 79.1 9.8 0.9 26.6 6.2 15.0 173.0 2.1 0.7
    J-B05 1.4 82.4 5.9 0.6 17.2 <0.2 5.0 198.0 2.7 0.7
    J-A04 1.7 134.0 9.3 0.4 26.2 137.0 9.4 110.0 <0.2 12.0
    J-ZK1a 1.8 129.0 9.6 0.5 24.6 132.0 14.0 129.0 1.4 8.3
    J-ZK1b 2.0 134.0 9.0 0.4 26.2 141.0 19.0 105.0 6.3 12.0
    J-ZK2a 2.5 104.0 9.5 0.9 19.7 73.2 14.0 172.0 8.6 0.9
    J-ZK2b 2.0 137.0 8.4 0.6 26.2 130.0 19.0 110.0 4.4 12.0
    J-ZK2c 3.0 154.0 9.0 0.5 32.8 166.0 14.0 110.0 3.3 19.0
    J-ZK3a 2.9 127.0 13.0 0.7 27.9 157.0 9.4 101.0 5.0 9.0
    J-ZK3b 2.1 144.0 10.5 0.4 29.5 157.0 14.0 101.0 3.3 19.0
    J-ZK3c 3.4 150.0 7.7 0.4 32.8 167.0 14.0 96.7 5.4 19.0
    下载: 导出CSV
    地热田 样品编号 温度/°C pH TDS SiO2 修正SiO2 δ18OV-SMOW/‰ δDV-SMOW/‰ 水化学类型
    ρB/(mg·L−1
    千家 Q-ZK1 42 8.21 354 HCO3-Ca·Na
    福报[17] F-ZK2 47 7.56 502 HCO3-Ca
    F-ZK4 35 8.39 440 HCO3-Ca
    崖城[7] Y-8 55 7.00 466 SO4·HCO3-Na
    Y-1 50 8.10 457 SO4·HCO3-Na
    Y-7 57 8.09 465 SO4·HCO3-Na
    Y-ZK1 58 8.46 470 SO4·HCO3-Na
    Y-ZK2 34 8.35 315 SO4·HCO3-Na
    Y-ZK3 46 8.14 477 SO4·HCO3-Na
    九所 J-B03 35 8.43 252 21.6 HCO3-Na
    J-B05 36 8.96 234 18.8 HCO3-Na
    J-A04 44 8.72 420 34.2 29.7 −7.84 −53.5 SO4·HCO3-Na
    J-ZK1a 45 8.72 415 27.5 23.6 −7.84 −52.8 SO4·HCO3-Na
    J-ZK1b 45 8.81 444 35.7 29.9 −7.86 −53.2 SO4·HCO3-Na
    J-ZK2a 39 8.85 359 30.6 −7.50 −51.6 HCO3·SO4-Na
    J-ZK2b 40 8.85 422 24.3 20.5 −7.94 −53.0 SO4·HCO3-Na
    J-ZK2c 41 8.73 507 49.3 43.1 −8.09 −52.8 SO4·HCO3-Na
    J-ZK3a 42 8.68 443 29.4 −7.94 −53.9 SO4·HCO3-Na
    J-ZK3b 42 8.71 476 45.4 39.7 −8.10 −53.3 SO4·HCO3-Na
    J-ZK3c 38 8.75 509 57.5 50.5 −8.11 −52.2 SO4·HCO3-Na
    J-A06(望楼河) 28 7.01 131 45.2 −3.71 −25.8
    雨水 −6.33 −38.9
    注:J-ZK1a、J-ZK1b,J-ZK2a、J-ZK2b、J-ZK2c,J-ZK2c、J-ZK3a、J-ZK3b、J-ZK3c分别为钻孔ZK1、ZK2和ZK3不同深度水样
    下载: 导出CSV

    表  2  硅-焓图解与二氧化硅混合模型绘图数据

    Table  2.   Mapping data for silicon-enthalpy diagram with silica mixing model

    ρ(SiO2)/
    (mg·L−1[37]
    焓/
    (J·g−1[37]
    T/°C 100°C下蒸气足量
    损失的焓/(J·g−1
    点编号 修正后焓/
    (J·g−1
    修正后ρ(SiO2)/
    (mg·L−1
    13.5 209.3 56.3 234.4 A 115.0 37.9
    26.6 314.0 78.8 330.7 D1 419.0 127.5
    48.0 419.1 100.9 423.3 D2 607.0 127.5
    80.0 525.0 122.5 514.4 D3 607.0 115.0
    125.0 632.2 143.5 604.3 D4 419.0 68.0
    185.0 741.1 163.9 693.0 D5 485.0 68.0
    265.0 852.4 184.4 780.9
    365.0 966.7 204.3 870.4
    486.0 1085.2 223.7 962.0
    614.0 1210.0 240.7 1042.0
    下载: 导出CSV

    表  3  不同方法计算的热储温度

    Table  3.   Temperature of geothermal reservoir calculated by different methods

    样品编号 硅-焓方程法热储
    温度/℃
    冷水混入比例
    (硅-焓方程)
    硅-焓图解与SiO2混合
    模型热储温度/℃
    冷水混入比例
    (混合模型)
    最可能的热储
    温度均值/℃
    冷水混入
    比例均值
    J-ZK2c 123 0.87 116 0.85 120 0.86
    J-ZK3b 99 0.80 98 0.79 99 0.80
    J-ZK3c 194 0.94 144 0.91 169 0.93
    均值 139 0.87 119 0.85 129 0.86
    下载: 导出CSV
  • [1] HU H Y,LU G P,LU Q Y,et al. Hydrogeochemical characteristics and geothermometry of hot springs in the tensile tectonic region Leizhou Peninsula and Hainan Island in South China[J]. Geofluids,2022(1):1-21.
    [2] 卫兴,师红杰,陈松,等. 水文地球化学方法在地热勘查中的应用:以湖北省应城市为例[J]. 地质科技通报,2024,43(3):68-80.

    WEI X,SHI H J,CHEN S,et al. Application of hydrogeo- chemical methods in geothermal resource exploration:A case study of Yingcheng City,Hubei Province[J]. Bulletin of Geological Science and Technology,2024,43(3):68-80. (in Chinese with English abstract
    [3] BA J J,SU C T,LI Y Q,et al. Characteristics of heat flow and geothermal fields in Ruidian,western Yunnan Province,China[J]. International Journal of Heat and Technology,2018,36(4):1203-1211. doi: 10.18280/ijht.360407
    [4] 王云. 滇东南地热流体地球化学特征研究[D]. 北京:中国地震局地球物理研究所,2021.

    WANG Y. A research on geochemical characteristics of geothermal fluids in southeast Yunnan Province,China[D]. Beijing:Institute of Geophysics,China Earthquake Administration,2021. (in Chinese with English abstract
    [5] 路畅,周晓成,李营,等. 玛多Ms7.4地震地表破裂带与东昆仑断裂带温泉的水文地球化学特征[J]. 地震地质,2021,43(5):1101-1126.

    LU C,ZHOU X C,LI Y,et al. Hydrogeochemical characteristics of groundwater in the surface rupture zone of Madoi Ms7.4 earthquake and hot springs in the east Kunlun fault[J]. Seismology and Geology,2021,43(5):1101-1126. (in Chinese with English abstract
    [6] FOURIER R O,ROWE J J. Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells[J]. American Journal of Science,1966,264:685-697.
    [7] 王文梅,徐子东,欧阳正平,等. 海南省三亚市崖城地热田地球化学特征及成因分析[J]. 工程勘察,2017(10):38-45.

    WANG W M,XU Z D,OUYANG Z P,et al. Analysis of geochemical characteristics and formation reasons of Yacheng geothermal field in Sanya of Hainan Province[J]. Geotechnical Investigation & Surveying,2017(10):38-45. (in Chinese with English abstract
    [8] 徐单. 海南省龙沐湾地热田的水文地球化学研究[D]. 南昌:东华理工大学,2017.

    XU D. Hydrogeochemistry of geothermal field of Longmu Bay,Hainan Province[D]. Nanchang:East China University of Technology,2017. (in Chinese with English abstract
    [9] 高芳蕾,杨小强,吴爱国,等. 海南岛温泉特征与地下热水成因[J]. 吉林大学学报(地球科学版),2009,39(2):281-287.

    GAO F L,YANG X Q,WU A G,et al. Characteristics of thermal springs and genesis of thermal underground water Hainan Island[J]. Journal of Jilin University (Earth Science Edition),2009,39(2):281-287. (in Chinese with English abstract
    [10] 张颖. 海南岛温泉特征及成因研究[D]. 北京:中国地质大学(北京),2019.

    ZHANG Y. A study of the characteristics and formation of the hot springs in Hainan Island[D]. Beijing:China University of Geosciences(Beijing),2019. (in Chinese with English abstract
    [11] 袁晓博,方念乔,董海龙. 海南岛高峰、保城地区花岗岩年代学、地球化学特征及构造意义[J]. 现代地质,2019,33(1):85-97.

    YUAN X B,FANG N J,DONG H L. Geochronology,geochemistry and tectonic significance of Gaofeng and Baocheng granite batholiths in Hainan Island[J]. Geoscience,2019,33(1):85-97. (in Chinese with English abstract
    [12] 汪啸风,马大铨,蒋大海,等. 海南岛地质之三构造地质[M]. 北京:地质出版社,1991.

    WANG X F,MA D Q,JIANG D H,et al. The geology of Hainan Island(3):Tectonic geology [M]. Beijing:Geological Publishing House,1991. (in Chinese)
    [13] 梁定勇,许国强,肖瑶,等. 海口江东新区新近纪-第四纪标准地层与组合分区[J]. 科学技术与工程,2021,21(26):11053-11063.

    LIANG D Y,XU G Q,XIAO Y,et al. Neogene-Quaternary stratigraphic standard and combined zoning of Haikou Jiangdong New District[J]. Science Technology and Engineering,2021,21(26):11053-11063. (in Chinese with English abstract
    [14] 陈哲培,钟盛中,何圣华,等. 海南省岩石地层[M]. 武汉:中国地质大学出版社,1997.

    CHEN Z P,ZHONG S Z,HE S H,et al. Petrostratigraphy in Hainan Province[M]. Wuhan:China University of Geosciences Press,1997. (in Chinese with English abstract
    [15] 钱会,马致远,李培月. 水文地球化学[M]. 北京:地质出版社,2012.

    QIAN H,MA Z Y,LI P Y. Hydrogeochemistry[M]. Beijing:Geological Publishing House,2012. (in Chinese)
    [16] 王贵玲,蔺文静,张薇,等. 中国地热志(华南卷)[M]. 北京:科学出版社,2022.

    WANG G L,LIN W J,ZHANG W,et al. Geothermal atlas of China (South China)[M]. Beijing:Science Press,2022. (in Chinese)
    [17] 王江思,欧阳正平,徐子东,等. 基于水文地球化学信息和环境同位素的地下热水成因分析[J]. 地球与环境,2018,46(1):7-13.

    WANG J S,OUYANG Z P,XU Z D,et al. Geothermal water genesis analysis using hydrogeochemical information and environmental isotopes[J]. Earth and Environment,2018,46(1):7-13. (in Chinese with English abstract
    [18] HE P,ZHANG H R,LI S H,et al. Geological and hydrochemical controls on water chemistry and stable isotopes of hot springs in the Three Parallel Rivers region,southeast Tibetan Plateau:The genesis of geothermal waters[J]. Science of the Total Environment,2024,906(1):1-13.
    [19] 王晨光,郑绵平,张雪飞,等. 西藏南部古堆高温地热田水化学特征及其成因研究[J]. 地质学报,2024,98(2):558-578.

    WANG C G,ZHENG M P,ZHANG X F,et al. Hydrochemical characteristics and origin of geothermal fluids in the Gudui high-temperature geothermal system in Comei County,southern Tibet[J]. Acta Geologica Sinica,2024,98(2):558-578. (in Chinese with English abstract
    [20] 陶兰初,朱星强,张七道,等. 滇东富源古敢水族乡热水塘锶-氟-硅-氡型理疗热矿水的地球化学特征及成因[J]. 地质评论,2023,69(3):959-972.

    TAO L C,ZHU X Q,ZHANG Q D,et al. Geochemical characteristics and genesis of Sr-F-Si-Rn physiotherapy hot mineral water of reshuitang in Gugan Shui Nationality Township,Fuyuan County,eastern Yunnan[J]. Geological Review,2023,69(3):959-972. (in Chinese with English abstract
    [21] 祁士华. 地热地球化学勘查[M]. 北京:科学出版社,2021.

    QI S H. Geothermal geochemical exploration[M]. Beijing:Science Press,2021. (in Chinese)
    [22] 王贝贝,卢国平,胡晓农,等. 粤西深大断裂温热泉水化学分析[J]. 环境化学,2019,38(5):1150-1160.

    WANG B B,LU G P,HU X N,et al. Hydrochemical characterization of the thermal spring waters in the deep fault region in western Guangdong[J]. Environmental Chemistry,2019,38(5):1150-1160. (in Chinese with English abstract
    [23] LI D N,GAO X B,WANG Y X,et al. Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China[J]. Environmental Pollution,2018,237:430-441. doi: 10.1016/j.envpol.2018.02.072
    [24] 李明礼,多吉,王祝,等. 西藏日多温泉水化学特征及其物质来源[J]. 中国岩溶,2015,34(3):209-216.

    LI M L,DUO J,WANG Z,et al. Hydrochemical characteristics and material sources of the Riduo thermal spring in Tibet[J]. Carsologica Sinica,2015,34(3):209-216. (in Chinese with English abstract
    [25] 章旭,郝红兵,刘康林,等. 西藏沃卡地堑地下水水文地球化学特征及其形成机制[J]. 中国地质,2020,47(6):1702-1714. doi: 10.12029/gc20200608

    ZHANG X,HAO H B,LIU K L,et al. Hydrogeochemical characteristics and genetic model of Oiga Graben geothermal waters system in Tibet[J]. Geology in China,2020,47(6):1702-1714. (in Chinese with English abstract doi: 10.12029/gc20200608
    [26] 李义曼,罗霁,陈凯,等. 广东省丰良地热田高氟地热流体成因及热储温度评价[J]. 地质评论,2023,69(4):1337- 1348.

    LI Y M,LUO J,CHEN K,et al. Genesis of geothermal fluid with high fluorine content and reservoir temperature assessment in Fengliang geothermal field,eastern Guangdong[J]. Geological Review,2023,69(4):1337-1348. (in Chinese with English abstract
    [27] 许金昭,刘桂建,司雯,等. 安徽涡河流域水化学与同位素特征及水体转化关系[J]. 环境科学,2024,45(6):3196- 3204.

    XU J Z,LIU G J,SI W,et al. Hydrochemical and stable isotopic characteristics and transformation relationship of water bodies in the Guohe River Basin,Anhui Province [J]. Environmental Science,2024,45(6):3196-3204. (in Chinese with English abstract
    [28] NDOYE S,FONTAIN C,GAYE C B,et al. Groundwater quality and suitability for different uses in the Saloum area of Senegal[J]. Water,2018,10:1-20.
    [29] LUO J,LI Y M,TIAN J,et al. Geochemistry of geothermal fluid with implications on circulation and evolution in Fengshun-Tangkeng geothermal field,South China[J]. Geothermics,2022,100:1-14.
    [30] 潘欢迎,邹常健,毕俊擘,等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报,2021,40(3):194-203.

    PAN H Y,ZOU C J,BI J B,et al. Hydrochemical characteristics and fluoride enrichment mechanisms of high-fluoride groundwater in a typical piedmont proluvial fan in Aksu area,Xinjiang,China[J]. Bulletin of Geological Science and Technology,2021,40(3):194-203. (in Chinese with English abstract
    [31] 刘英俊,曹励明,李兆麟,等. 元素地球化学[M]. 北京:科学出版社,1984.

    LIU Y J,CAO L M,LI Z L,et al. Elementary geochemistry [M]. Beijing:Science Press,1984. (in Chinese)
    [32] 叶海龙,樊柄宏,白细民,等. 石城地热带水文地球化学特征与成因分析[J]. 地质学报,2023,97(1):238-249. doi: 10.3969/j.issn.0001-5717.2023.01.016

    YE H L,FAN B H,BAI X M,et al. Analysis of hydrogeo-chemical characteristics and origin in the Shicheng geothermal belt[J]. Acta Geological Sinica,2023,97(1):238-249. (in Chinese with English abstract doi: 10.3969/j.issn.0001-5717.2023.01.016
    [33] 梁礼革,朱明占,朱思萌,等. 桂东地区地热水中氟的分布及其富集过程研究[J]. 安全与环境工程,2015,22(1):1-6.

    LIANG L G,ZHU M Z,ZHU S M,et al. Spatial distribution and enrichment of fluoride in geothermal water from eastern Guangxi,China[J]. Safety and Environmental Engineering,2015,22(1):1-6. (in Chinese with English abstract
    [34] GIZAW B. The origin of high bicarbonate and fluoride concentration in waters of the Main Ethiopian Rift Valley,East African Rift System[J]. Journal of African Earth Sciences,1996,22(4):391-402. doi: 10.1016/0899-5362(96)00029-2
    [35] 郑西来,郭建青. 二氧化硅地热温标及其相关问题的处理方法[J]. 地下水,1993,18(2):85-88.

    ZHENG X L,GUO J Q. The treatment of silica geothermometer and its related problems[J]. Groundwater,1993,18(2):85-88. (in Chinese with English abstract
    [36] 汪集旸,熊亮萍,庞忠和. 中低温对流型地热系统[M]. 北京:科学出版社,1993.

    WANG J Y,XIONG L P,PANG Z H. Medium-low temperature convective geothermal system[M]. Beijing:Science Press,1993. (in Chinese)
    [37] 宋红利,杨宇,李海福,等. 基于硅-焓混合模型热储温度估算方法[J],天然气勘探与开发,2021,44(3):112-117.

    SONG H L,YANG Y,LI H F,et al. Methods to estimate the temperature in geothermal reservoirs based on the silicon-enthalpy hybrid model[J]. Natural Gas Exploration and Development,2021,44(3):112-117. (in Chinese with English abstract
    [38] 严家禄,余晓福,王永青. 水和水蒸气性质图表[M]. 北京:高等教育出版社,2004.

    YAN J L,XU X F,WANG Y Q. Thermodynamic property tables and diagram for water and steam[M]. Beijing:Higher Education Press,2004. (in Chinese)
    [39] 张彦鹏,黎清华,余绍文. 海南岛东海岸官塘地区地热水水化学学特征及其循环演化过程识别[J]. 地球科学,2024,49(3):952-964.

    ZHANG Y P,LI Q H,XU S W. Hydrochemical characteristics constraints on evolution of geothermal water in Guantang area on the east coast of Hainan Island[J]. Earth Science,2024,49(3):952-964. (in Chinese with English abstract
    [40] FOURNIER R O,TRUESDELLl A H,PARK M,et al. Geochemical indicators of subsurface temperature:Part 2. Estimate of temperature and fractions of hot water mixed with cold water[J]. Journal Research U. S. Geo. Survey,1974,2(3):263-270.
    [41] WANG X,LU G P,HU BILL X,et al. Hydrogeochemical characteristics geothermometry application of thermal water in coastal Xinzhou and Shenzao geothermal fields,Guangdong,China[J]. Geofluids,2018(1):1-24.
    [42] CRAIG H. Isotopic variations in meteoric waters[J]. Science,1961,133:1702-1703. doi: 10.1126/science.133.3465.1702
    [43] 柳长柱,文健,薛桂澄,等. 海南岛地热资源研究[M]. 广州:广东旅游出版社,2022.

    LIU C Z,WEN J,XUE G C,et al. Study on geothermal resources in Hainan Island[M]. Guangzhou:Guangdong Travel & Tourism Press,2022. (in Chinese)
    [44] 雷栋,潘良云,陈强,等. 海南岛隆起山地型地热资源地质条件及潜力[J/OL]. 地质通报. (2023-9-7)[2024-5-8]. https://link.cnki. net/urlid/11.4648.P.20230906.2107.002.

    LEI D,PAN L Y,CHEN Q,et al. Geological conditions and potential of upland geothermal resources in Hainan Island [J/OL]. (2023-9-7)[2024-5-8]. https://link.cnki.net/urlid/11.4648.P.20230906.2107.002. (in Chinese with English abstract
    [45] LI Y M,LUO J,TIAN J,et al. Formation of the hydrothermal system from granite reservoir for power generation in igneous rock areas of South China[J]. Geothermics,2023,110:1-15.
    [46] 史浙明,叶海龙,吕少杰,等. 断裂带水力特性研究进展[J]. 地质科技通报,2023,42(4):47-54.

    SHI Z M,YE H L,LÜ S J,et al. Advances in fault zone hydraulic properties[J]. Bulletin of Geological Science and Technology,2023,42(4):47-54. (in Chinese with English abstract
    [47] LU G P,WANG X,LI F S,et al. Deep geothermal processes acting on faults and solid tides in coastal Xinzhou geothermal field,Guangdong,China[J]. Physics of the Earth and Planetary Interiors,2017,264:76-88. doi: 10.1016/j.pepi.2016.12.004
    [48] CHEN L,MA T,DU Y,et al. Hydrochemical and isotopic (2H,18O and 37Cl)constraints on evolution of geothermal water in coastal plain of southwestern Guangdong Province,China[J]. Journal of Volcanology Geothermal Research,2016,318:45-54. doi: 10.1016/j.jvolgeores.2016.03.003
    [49] 胡亚轩,郝明,秦姗兰,等. 海南岛现今三维地壳运动与断裂活动性研究[J]. 地球物理学报,2018,61(6):2310-2321. doi: 10.6038/cjg2018L0274

    HU Y X,HAO M,QIN S L,et al. Present-day 3D crustal motion and fault activity in the Hainan Island[J]. Chinese Journal of Geophysics,2018,61(6):2310-2321. (in Chinese with English abstract doi: 10.6038/cjg2018L0274
    [50] 毛绪美,叶建桥,董亚群,等. 地热驱动力:广东阳江新洲地热田驱动地热水运移的一种额外非重力作用的分析方法[J]. 地质科技通报,2022,41(1):137-145.

    MAO X M,YE J Q,DONG Y Q,et al. Geothermal driving force:A new additional non-gravity action driving the migration of geothermal water in the Xinzhou geothermal field of Yangjiang,Guangdong[J]. Bulletin of Geological Science and Technology,2022,41(1):137-145. (in Chinese with English abstract
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  237
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-09
  • 录用日期:  2024-07-06
  • 修回日期:  2024-07-05
  • 网络出版日期:  2024-07-25

目录

    /

    返回文章
    返回