留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于物理模型试验的库岸滑坡水阻力系数研究

谢云轩 汪洋 王梦瑶 冯霄 彭铿 付昱衡

谢云轩,汪洋,王梦瑶,等. 基于物理模型试验的库岸滑坡水阻力系数研究[J]. 地质科技通报,2025,44(2):1-8 doi: 10.19509/j.cnki.dzkq.tb20240247
引用本文: 谢云轩,汪洋,王梦瑶,等. 基于物理模型试验的库岸滑坡水阻力系数研究[J]. 地质科技通报,2025,44(2):1-8 doi: 10.19509/j.cnki.dzkq.tb20240247
XIE Yunxuan,WANG Yang,WANG Mengyao,et al. Water resistance coefficient of bank slope landslides via physical model experiments[J]. Bulletin of Geological Science and Technology,2025,44(2):1-8 doi: 10.19509/j.cnki.dzkq.tb20240247
Citation: XIE Yunxuan,WANG Yang,WANG Mengyao,et al. Water resistance coefficient of bank slope landslides via physical model experiments[J]. Bulletin of Geological Science and Technology,2025,44(2):1-8 doi: 10.19509/j.cnki.dzkq.tb20240247

基于物理模型试验的库岸滑坡水阻力系数研究

doi: 10.19509/j.cnki.dzkq.tb20240247
基金项目: 国家自然科学基金项目(42077277);中国地质大学(武汉)教学试验室开放基金资助项目
详细信息
    作者简介:

    谢云轩:E-mail:761194047@qq.com

    通讯作者:

    E-mail:wangyangcug@126.com

  • 中图分类号: P642.22

Water resistance coefficient of bank slope landslides via physical model experiments

More Information
  • 摘要:

    水阻力是影响库岸滑坡运动速度的关键因素之一,为了量化库岸滑坡入水的阻力计算,并进一步为库岸滑坡入水速度的分析提供试验数据和理论基础,设计了入水阻力系数的测试试验,基于水下试块动力学与运动学方程建立了水阻力系数计算模型。采用无量纲化分析方法对试验结果进行了分析,研究了各无量纲因子对水阻力系数的影响,通过多元线性回归分析得出了水阻力系数理论公式。以2018年10月11日西藏自治区达江县白格滑坡第1次滑坡为例,应用水阻力系数理论公式对白格滑坡速度进行了计算,并与其他方法得出的速度计算结果进行了对比分析。结果表明:随着相对速度的增加,水阻力系数整体呈现先上升后下降的趋势;随着相对横截面积增加,水阻力系数减小。水阻力系数理论公式的拟合度R2=0.77,表明理论公式具有较好准确度。与现有计算结果相比,在考虑水阻力的情况下白格滑坡最大运动速度减小了23.5%,最大速度差值为8.5 m/s,最大速度时刻延后了7.7 s。研究提出了水阻力系数计算模型,初步解决了水阻力系数取值困难的问题,有利于提高库岸滑坡入水速度的预测精度。

     

  • 图 1  基于试验数据的水阻力系数计算模型

    f. 动摩擦阻力;Ep. 势能;Ek. 动能;Ef. 摩擦热能;Ew. 被水阻力消耗的能量;R. 水阻力;Ni. 浮重度

    Figure 1.  Calculation model of the water resistance coefficient the basis of experimental data

    图 2  物理模型试验系统示意图

    Figure 2.  Schematic diagram of the physical model test system

    图 3  速度控制刻度 (a) 与试块 (b~g)

    Figure 3.  Speed control scale (a) and test block (b-g)

    图 4  动摩擦阻力系数频数统计

    Figure 4.  Frequency statistics of the dynamic friction coefficients

    图 5  水阻力系数与相对速度 (a)、相对横截面积 (b) 的相关关系

    Figure 5.  Hydrodynamic resistance coefficients correlation with relative velocity (a) and relevant cross-sectional area (b)

    图 6  水阻力系数试验值与计算值比值

    Figure 6.  Ratio of experimental to calculated values of the water resistance coefficients

    图 7  白格滑坡遥感图

    Figure 7.  Remote sensing image of the Baige landslide

    图 8  白格滑坡剖面图 (a) 与条分图 (b)

    Figure 8.  Cross-sectional profile (a) and strip map (b) of the Baige landslide

    图 9  白格滑坡运动速度

    Figure 9.  Movement velocity of the Baige landslide

    表  1  试验工况

    Table  1.   Experimental Conditions

    参数 水平 备注
    滑体入水速度v/(cm·s−1) 171(速度1),151(速度2),
    131(速度3),111(速度4),91(速度5)
    刻度与地面
    垂直高度
    河道水
    h/cm
    无水工况:0 无水工况下地
    面为湿润状态
    有水工况:10(水深1),
    15(水深2),20(水深3)
    横截面
    面积A/cm2
    7.7,9.5,30.3,33.8,42.0,48.9
    下载: 导出CSV

    表  2  试块参数

    Table  2.   Parameters of the test samples

    试块 横截面面积A/cm2 试验室质量/g ρ/(g·cm−3) 厚度/cm
    试块1 7.7 73.4 2.8 2.4
    试块2 9.5 118.1 2.7 3.1
    试块3 30.3 506.1 2.7 3.6
    试块4 33.8 663.0 2.6 4.6
    试块5 42.0 1202.2 2.6 5.4
    试块6 48.9 1027.7 2.7 6.2
    下载: 导出CSV
  • [1] COLLINS B D,REID M E. Enhanced landslide mobility by basal liquefaction:The 2014 State Route 530 (Oso),Washington,landslide[J]. Geological Society of America Bulletin,2020,132(3/4):451-476.
    [2] SITAR N,MACLAUGHLIN M M,DOOLIN D M. Influence of kinematics on landslide mobility and failure mode[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(6):716-728. doi: 10.1061/(ASCE)1090-0241(2005)131:6(716)
    [3] LIN C H. Insight into landslide kinematics from a broadband seismic network[J]. Earth,Planets and Space,2015,67(1):8.
    [4] SCHUSTER R L,FLEMING R W. Economic losses and fatalities due to landslides[J]. Environmental & Engineering Geoscience,1986,xxiii(1):11-28.
    [5] 廖德武,郑冰,杜艳松,等. 兴仁“6·10” 彭家洞高速滑坡运动特征与形成机理[J]. 地质科技通报,2022,41(6):66-76.

    LIAO D W,ZHENG B,DU Y S,et al. Movement characteristics and formation mechanism of the “6·10” Pengjiadong high speed landslide in Xingren[J]. Bulletin of Geological Science and Technology,2022,41(6):66-76. (in Chinese with English abstract
    [6] 许艺林,李远耀,李思德,等. 库水位下降叠加降雨作用时堆积层滑坡渗流−变形机制[J]. 地质科技通报,2024,43(1):216-228.

    XU Y L,LI Y Y,LI S D,et al. Seepage-deformation mechanism of colluvial landslides under the action of reservoir water level decline and rainfall[J]. Bulletin of Geological Science and Technology,2024,43(1):216-228. (in Chinese with English abstract
    [7] 谢洋义,殷坤龙,杜娟,等. 基于不同地质环境分区的重庆市滑坡降雨阈值模型研究[J]. 地质科技通报,2025,44(1):126-137.

    XIE Y Y,YIN K L,DU J,et al. Threshold model of landslide rainfall in Chongqing based on different geological environment zones[J]. Bulletin of Geological Science and Technology,2025,44(1):126-137. (in Chinese with English abstract
    [8] 张抒,唐辉明,龚文平,等. 基于物理力学机制的滑坡数值预报模式:综述、挑战与机遇[J]. 地质科技通报,2022,41(6):14-27.

    ZHANG S,TANG H M,GONG W P,et al. Landslide numerical forecasting mode based on physical- mechanical mechanism:Overviews,challenges and opportunities[J]. Bulletin of Geological Science and Technology,2022,41(6):14-27. (in Chinese with English abstract
    [9] WEN B P,WANG S J,WANG E Z,et al. Characteristics of rapid giant landslides in China[J]. Landslides,2004,1(4):247-261. doi: 10.1007/s10346-004-0022-4
    [10] SCHULZ W H,MCKENNA J P,KIBLER J D,et al. Relations between hydrology and velocity of a continuously moving landslide:Evidence of pore-pressure feedback regulating landslide motion?[J]. Landslides,2009,6(3):181-190. doi: 10.1007/s10346-009-0157-4
    [11] SCHEIDEGGER A E. On the prediction of the reach and velocity of catastrophic landslides[J]. Rock Mechanics,1973,5(4):231-236. doi: 10.1007/BF01301796
    [12] YAMADA M,MANGENEY A,MATSUSHI Y,et al. Estimation of dynamic friction and movement history of large landslides[J]. Landslides,2018,15(10):1963-1974. doi: 10.1007/s10346-018-1002-4
    [13] 唐岳灏,姜清辉. SPH-DEM流固耦合方法模拟金沙江白格滑坡应用研究[J]. 长江工程职业技术学院学报,2023,40(2):1-8.

    TANG Y H,JIANG Q H. Study on application of SPH-DEM fluid-structure interaction to simulating baige landslide in Jinsha River[J]. Journal of Changjiang Institute of Technology,2023,40(2):1-8. (in Chinese with English abstract
    [14] 唐岳灏,姜清辉. 金沙江白格滑坡残留体稳定性及堵江风险分析[J]. 水利水电快报,2023,44(5):38-44.

    TANG Y H,JIANG Q H. Stability and risk assessment of the residual body landslide and river blockage in Baige,Jinsha River[J]. Express Water Resources & Hydropower Information,2023,44(5):38-44. (in Chinese with English abstract
    [15] 钟启明,吴昊,单熠博,等. 基于物质点法的白格滑坡堰塞坝形成过程数值模拟[J]. 人民长江,2024,55(4):25-31.

    ZHONG Q M,WU H,SHAN Y B,et al. Numerical simulation of Baige landslide barrier dam formation process based on material point method[J]. Yangtze River,2024,55(4):25-31. (in Chinese with English abstract
    [16] 杨云建,周学铖,何中海,等. 多时相数字孪生滑坡变形监测方法与应用研究:以金沙江白格滑坡为例[J]. 水文地质工程地质,2024,51(2):132-143.

    YANG Y J,ZHOU X C,HE Z H,et al. Multi-temporal digital twin method and application of landslide deformation monitoring:A case study on Baige landslide in Jinsha River[J]. Hydrogeology & Engineering Geology,2024,51(2):132-143. (in Chinese with English abstract
    [17] 林子钰,范刚,陈骎,等. 基于地震动信号分析的滑坡堵江过程研究:以白格滑坡堰塞湖为例[J]. 人民长江,2023,54(10):90-97.

    LIN Z Y,FAN G,CHEN Q,et al. Study on landslide blocking process based on ground motion signals analysis:Case of Baige landslide dammed lake[J]. Yangtze River,2023,54(10):90-97. (in Chinese with English abstract
    [18] 殷坤龙,张宇,汪洋. 水库滑坡涌浪风险研究现状和灾害链风险管控实践[J]. 地质科技通报,2022,41(2):1-12.

    YIN K L,ZHANG Y,WANG Y. A review of landslide-generated waves risk and practice of management of hazard chain risk from reservoir landslide[J]. Bulletin of Geological Science and Technology,2022,41(2):1-12. (in Chinese with English abstract
    [19] 胡大儒,吴述彧,罗超鹏,等. 澜沧江某巨型堆积体蓄水失稳诱发涌浪预测[J]. 地质科技通报,2024,43(6):78-88.

    HU D R,WU S Y,LUO C P,et al. Prediction of the wave induced by a gaint accumulation impoundment instability in Lantsang River[J]. Bulletin of Geological Science and Technology,2024,43(6):78-88. (in Chinese with English abstract
    [20] 代云霞,殷坤龙,汪洋. 滑坡速度计算及涌浪预测方法探讨[J]. 岩土力学,2008,29(增刊1):407-411.

    DAI Y X,YIN K L,WANG Y. Discussion on method of landslide velocity calculation and surge prediction[J]. Rock and Soil Mechanics,2008,29(S1):407-411. (in Chinese with English abstract
    [21] 汪洋,殷坤龙,刘艺梁,等. 考虑水阻力的库岸滑坡运动速度计算模型研究[J]. 工程地质学报,2012,20(6):903-908.

    WANG Y,YIN K L,LIU Y L,et al. Model test speed model of fording landslide taking into account water resistance[J]. Journal of Engineering Geology,2012,20(6):903-908. (in Chinese with English abstract
    [22] 汪洋,刘艺梁. 平面滑动型涉水岩质滑坡速度计算模型研究[J]. 灾害学,2012,27(3):22-24.

    WANG Y,LIU Y L. Study on speed model of fording rock landslide moving along the planar slip surface[J]. Journal of Catastrophology,2012,27(3):22-24. (in Chinese with English abstract
    [23] 倪崇本. 基于CFD的船舶阻力性能综合研究[D]. 上海:上海交通大学,2011.

    NI C B. A comprehensive investigation of ship resistance prediction based on CFD theory[D]. Shanghai:Shanghai Jiaotong University,2011. (in Chinese with English abstract
    [24] BAŠIĆ J,BLAGOJEVIĆ B,ANDRUN M. Improved estimation of ship wave-making resistance[J]. Ocean Engineering,2020,200:107079. doi: 10.1016/j.oceaneng.2020.107079
    [25] 吴广怀,吴培德,蒋耀军,等. 基于兴波阻力的三体船片体位置快速优化方法[J]. 船舶力学,2005,9(4):1-8. doi: 10.3969/j.issn.1007-7294.2005.04.001

    WU G H,WU P D,JIANG Y J,et al. Fast method of positional optimization on distance between hulls of a trimaran based on wave resistance[J]. Journal of Ship Mechanics,2005,9(4):1-8. (in Chinese with English abstract doi: 10.3969/j.issn.1007-7294.2005.04.001
    [26] LI M X,CHEN Y,YUAN Z M,et al. Interference effects on the upstream wave generated by the catamaran moving across a depth change[J]. Ocean Engineering,2023,287:115939.
    [27] PENG H,NI S Y,QIU W. Wave pattern and resistance prediction for ships of full form[J]. Ocean Engineering,2014,87:162-173. doi: 10.1016/j.oceaneng.2014.06.004
    [28] 卢晓平,王中,孙永华,等. Rankine源Dawson型方法求解三体船兴波阻力[J]. 华中科技大学学报(自然科学版),2008,36(11):103-107. doi: 10.3321/j.issn:1671-4512.2008.11.027

    LU X P,WANG Z,SUN Y H,et al. Solution to wave resistance to trimanan using-Rankine source method of Dawson type[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition),2008,36(11):103-107. (in Chinese with English abstract doi: 10.3321/j.issn:1671-4512.2008.11.027
    [29] 陈京普,朱德祥,刘晓东. 兴波阻力数值预报方法研究及其在集装箱船船型优化中的应用[J]. 水动力学研究与进展(A辑),2006,21(1):113-121.

    CHEN J P,ZHU D X,LIU X D. A research on numerical prediction method for wave-making resistance and its application to container ship hull form optimization[J]. Journal of Hydrodynamics (Ser A),2006,21(1):113-121. (in Chinese with English abstract
    [30] LIU S,HE G H,WANG Z K,et al. Resistance and flow field of a submarine in a density stratified fluid[J]. Ocean Engineering,2020,217:107934. doi: 10.1016/j.oceaneng.2020.107934
    [31] ZENG Q S,HEKKENBERG R,THILL C,et al. Scale effects on the wave-making resistance of ships sailing in shallow water[J]. Ocean Engineering,2020,212:107654. doi: 10.1016/j.oceaneng.2020.107654
    [32] 周礼,范宣梅,许强,等. 金沙江白格滑坡运动过程特征数值模拟与危险性预测研究[J]. 工程地质学报,2019,27(6):1395-1404.

    ZHOU L,FAN X M,XU Q,et al. Numerical simulation and hazard prediction on movement process characteristics of Baige landslide in Jinsha River[J]. Journal of Engineering Geology,2019,27(6):1395-1404. (in Chinese with English abstract
    [33] 冯文凯,张国强,白慧林,等. 金沙江“10·11” 白格特大型滑坡形成机制及发展趋势初步分析[J]. 工程地质学报,2019,27(2):415-425.

    FENG W K,ZHANG G Q,BAI H L,et al. A preliminary analysis of the formation mechanism and development tendency of the huge Baige landslide in Jinsha River on October 11,2018[J]. Journal of Engineering Geology,2019,27(2):415-425. (in Chinese with English abstract
    [34] 崔玉龙,许冲,焦其松,等. 金沙江白格两次滑坡几何形态分析与体积计算[J]. 工程地质学报,2019,27(增刊1):269-275.

    CUI Y L,XU C,JIAO Q S,et al. Geometric shape analysis and volume calculation of the two successive Baige landslides in Jinsha River[J]. Journal of Engineering Geology,2019,27(S1):269-275. (in Chinese with English abstract
    [35] 杨仲康,魏进兵,高云建,等. 金沙江白格滑坡裂缝区失稳概率分析[J]. 工程科学与技术,2020,52(6):95-101.

    YANG Z K,WEI J B,GAO Y J,et al. Instability probability analysis of the cracking zones at the site of the Baige landslide in Jinsha River[J]. Advanced Engineering Sciences,2020,52(6):95-101. (in Chinese with English abstract
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  33
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-11
  • 录用日期:  2024-07-01
  • 修回日期:  2024-06-26
  • 网络出版日期:  2025-03-21

目录

    /

    返回文章
    返回