Shaking table test of dynamic responses and failure mechanism of hanging wall and footwall on rock slope across reverse faults
-
摘要:
强震作用下近断层滑坡常造成灾难性的后果。其中,逆断层活动影响下的地震诱发滑坡动力响应特性复杂,破坏性强。然而,目前国内外对逆冲型地震作用下,断层的存在和错动作用对此类滑坡动力响应规律和失稳破坏模式的影响缺乏系统的认识。开展了含软弱逆断层错动机制下岩质边坡大型振动台试验,对跨逆断层边坡的错动过程进行了模拟,结合粒子图像测速技术(PIV),深入分析了不同振幅值、下同频率的地震波作用下,模型边坡上下盘的动力响应规律和失稳破坏模式的差异性。试验结果表明,随着地震波加载振幅值和频率的增大,模型边坡加速度放大系数呈非线性增大趋势;在逆断层错动过程中,坡体发生显著破坏,且上下盘放大系数被显著增强,其中上盘加速度峰值被放大1.24倍,下盘被放大1.13倍;基于PIV观测模型边坡的失稳破坏过程分析表明,上盘以张拉破坏为主,坡体中上部发育大量张拉裂隙;而下盘则以先张拉后剪切破坏为主,在上盘的摩擦与挤压作用下产生由断层面向坡外贯穿的拉剪裂纹。模型试验有效地揭示了考虑断层错动作用下跨逆断层边坡的动力响应规律和失稳破坏模式,表现出明显的上下盘效应,且断层错动过程增强了模型边坡的上下盘效应,对滑坡破坏模式具有显著影响。本研究从试验的角度探究了考虑逆断层错动机制下斜坡的上下盘效应与破坏模式。
Abstract:Objective Near-fault landslides frequently result in catastrophic consequences under strong earthquakes, Among them, the dynamic response characteristics of earthquake-induced landslides under the influence of reverse fault activity are complex and destructive. However, there is a lack of systematic understanding, both domestically and internationally, concerning the influence of the presence and dislocation of faults on the dynamic response and failure mechanism of earthquake-induced landslides, specifically under thrust earthquakes.
Methods In this study, the large-scale shaking table tests were conducted on rock slopes considering weak reverse fault dislocation to simulate the fault dislocation process of cross–reverse fault slopes. Combined with particle image velocity (PIV) technology, the differences in the dynamic response law and failure mechanism between the hanging wall and footwall of cross-reverse fault slopes under the influence of seismic waves with varying amplitudes and frequencies were analyzed deeply.
Results The results show that with increasing loading amplitude and frequency, the slope amplification factors of the model increase nonlinearly. During the reverse fault dislocation process, the model slope experiences significant damage, with notable increases in amplification factors for both the hanging wall and footwall. Specifically, the peak acceleration of the hanging wall is amplified by a factor of 1.24, whereas that of the footwall increases by a factor of 1.13. Based on PIV observations, the failure mechanism of the model slope was discovered: the hanging wall was dominated by tension failure, and the tensile cracking failure was concentrated in the middle-higher edge of the slope. On the conteary, the failure of the footwall is caused mainly by tension and then shear. The footwall produces penetrating tensile-shear cracks under the friction and extrusion of the hanging wall.
Conclusion The model tests have effectively revealed the dynamic response laws and failure mechanisms of cross-reverse fault slopes under the action of fault dislocation. The observations revealed distinct hanging wall and footwall effects, and the fault dislocation process intensified these effects in the model slope, significantly impacting the landslide failure mechanism. This study experimentally explores the hanging wall and footwall effects, as well as the failure mechanisms, of cross-reverse fault slopes, considering the reverse fault dislocation mechanism.
-
图 7 断层上下盘东西向峰值加速度衰减特征(据文献[31]修改)
Figure 7. Attenuation characteristics of EW peak acceleration on the hanging wall and footwall
表 1 模型边坡相似关系
Table 1. Similarity relations of model slope
参数 相似关系 相似系数 备注 长度l $ {C}_{l} $ 100 基本量纲 密度ρ $ {C}_{\rho } $ 1 基本量纲 弹性模量Ε $ {C}_{{E}} $ 100 基本量纲 泊松比μ $ {C}_{\mu } $ 1 黏聚力c $ {C}_{c}={C}_{{E}} $ 100 内摩擦角φ $ {C}_{\varphi} $ 1 应力σ $ {C}_{{\sigma }}={C}_{{E}} $ 100 应变ε $ {C}_{\varepsilon} $ 1 位移u $ {C}_{u}={C}_{l} $ 100 速度v $ {C}_{v}={\mathrm{C}}_{\rho }^{-0.5}{\mathrm{C}}_{{E}}^{0.5} $ 10 位移加速度a $ {{C}_{a}=C}_{{E}}{\mathrm{C}}_{l}^{-1}{\mathrm{C}}_{{E}}^{-1} $ 1 时间t $ {C}_{t} $=Cl$ {\mathrm{C}}_{\rho }^{0.5}{\mathrm{C}}_{{E}}^{-0.5} $ 10 频率ƒ $ {{C}_{f}=\mathrm{C}}_{t}^{-1} $ 0.1 表 2 模型边坡主要物理力学参数
Table 2. Physico-parameters of model slope
岩性 类型 密度/(g·cm−3) 弹性模量/MPa 内摩擦角/(°) 黏聚力/kPa 泊松比 灰岩 原型 2.56 5×103~1×104 40 1×104~5×104 0.20~0.35 模型 2.56 56.3 40 120 0.23 断层 原型 2.00 — 18~23 50~100 0.29~0.34 模型 2.00 1 20 5.29 0.32 表 3 输入地震波加载工况
Table 3. Loading sequences of seismic waves
编号 加载波形 振幅/g 频率/Hz 备注 1 正弦波 0.1 5 2 汶川波 0.1 3 正弦波 0.2 5 4 汶川波 0.2 5 正弦波 0.3 5 6 汶川波 0.3 7 正弦波 0.3 7 8 汶川波 0.3 9 正弦波 0.3 12 10 汶川波 0.3 11 正弦波 0.3 15 12 汶川波 0.3 13 正弦波 0.4 12 14 汶川波 0.4 15 汶川波 0.5 错动前 16 汶川波 0.5 断层错动 17 正弦波 0.5 12 18 正弦波 0.6 12 19 正弦波 0.7 12 20 正弦波 0.8 12 21 正弦波 0.9 12 -
[1] 俞言祥,高孟潭. 台湾集集地震近场地震动的上盘效应[J]. 地震学报,2001,23(6):615-621.YU Y X,GAO M T. Effects of the hanging wall and footwall on peak acceleration during the Chi-Chi earthquake,Taiwan[J]. Acta Seismologica Sinica,2001,23(6):615-621. (in Chinese with English abstract [2] 王栋,谢礼立,胡进军. 倾斜断层不对称分布引起的几何效应—上下盘效应[J]. 地震学报,2008,30(3):271-278.WANG D,XIE L L,HU J J. Geometric effects resulting from the asymmetry of dipping fault:Hanging wall/footwall effects[J]. Acta Seismologica Sinica,2008,30(3):271-278. (in Chinese with English abstract [3] 黄润秋,李为乐. “5·12” 汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报,2008,27(12):2585-2592.HUANG R Q,LI W L. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May,2008[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(12):2585-2592. (in Chinese with English abstract [4] 许强,李为乐. 汶川地震诱发大型滑坡分布规律研究[J]. 工程地质学报,2010,18(6):818-826.XU Q,LI W L. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2010,18(6):818-826. (in Chinese with English abstract [5] 唐昭荣,袁仁茂,胡植庆,等. 台湾集集地震九份二山滑坡发生机制的三维数值模拟分析[J]. 工程地质学报,2012,20(6):940-954.TANG Z R,YUAN R M,HU Z Q,et al. 3-D distinct element modeling of sliding process and depositing behavior in Jiufenershan landslide induced by 1999 Taiwan Chi-Chi earthquake[J]. Journal of Engineering Geology,2012,20(6):940-954. (in Chinese with English abstract [6] 殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报,2008,16(4):433-444.YIN Y P. Researchs on the geo-hazards triggered by Wenchuan earthquake,Sichuan[J]. Journal of Engineering Geology,2008,16(4):433-444. (in Chinese with English abstract [7] 畅秀俊,张恒亮,贾欣丽. 汶川地震牛眠沟高速远程滑坡动力学过程研究[J]. 勘察科学技术,2013,184(4):10-15.CHANG X J,ZHANG H L,JIA X L. Study on dynamics of Niumiangou high speed and long distance landslides by Wenchuan earthquake[J]. Site Investigation Science and Technology,2013,184(4):10-15. (in Chinese with English abstract [8] 黄润秋,李为乐. 汶川大地震触发地质灾害的断层效应分析[J]. 工程地质学报,2009,17(1):19-28.HUANG R Q,LI W L. Fault effect analysis of geo-hazard triggered by Wenchuan earthquake[J]. Journal of Engineering Geology,2009,17(1):19-28. (in Chinese with English abstract [9] 许冲,戴福初,姚鑫,等. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报,2009,28(增刊2):3978-3985.XU C,DAI F C,YAO X,et al. GIS-based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(S2):3978-3985. (in Chinese with English abstract [10] 宋静园,刘洋,董秀军,等. “9.5”泸定地震人口密集区域地震诱发滑坡空间分布规律研究[J/OL]. 地质科技通报. [2024-07-05]. https://doi.org/10.19509/j.cnki.dzkq.tb20230619.SONG J Y,LIU Y,DONG X J,et al. Study on spatial distribution of earthquake-induced landslide in densely populated area of the Luding "9.5" earthquake[J/OL]. Bulletin of Geological Science and Technology. [2024-07-05]. https://doi.org/10.19509/j.cnki.dzkq.tb20230619. (in Chinese with English abstract [11] 王涛,吴树仁,石菊松,等. 地震滑坡危险性概念和基于力学模型的评估方法探讨[J]. 工程地质学报,2015,23(1):93-104.WANG T,WU S R,SHI J S,et al. Concepts and mechanical assessment method for seismic landslide hazard:A review[J]. Journal of Engineering Geology,2015,23(1):93-104. (in Chinese with English abstract [12] 王志民,罗刚,王媛,等. 切割斜坡断层的几何形态对斜坡地震响应影响研究[J]. 水文地质工程地质,2023,50(6):147-157.WANG Z M,LUO G,WANG Y,et al. A study of the influence of the crossing-slope fault geometry on the slope seismic response[J]. Hydrogeology & Engineering Geology,2023,50(6):147-157. (in Chinese with English abstract [13] 刘汉香,许强,周飞,等. 含软弱夹层斜坡地震动力响应特性的振动台试验研究[J]. 岩石力学与工程学报,2015,34(5):994-1005.LIU H X,XU Q,ZHOU F,et al. Shanking table test for seismic responses of slopes with a weak interlayer[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(5):994-1005. (in Chinese with English abstract [14] 雷津,崔圣华,裴向军. 基于射线理论的垂直P波入射过程滑坡滑带应力放大特征及成因分析[J]. 地质科技通报,2022,41(6):149-161.LEI J,CUI S H,PEI X J,et al. Stress amplification of the landslide slip zone during vertical P-wave incidence based on ray theory[J]. Bulletin of Geological Science and Technology,2022,41(6):149-161. (in Chinese with English abstract [15] 王志颖,郭明珠,曾金艳,等. 地震作用下含软弱夹层顺层岩质斜坡动力响应的试验研究[J]. 岩土力学,2023,44(9):2566-2578.WANG Z Y,GUO M Z,ZENG J Y,et al. Experimental study on dynamic response of bedding rock slope with weak interlayer under earthquake[J]. Rock and Soil Mechanics,2023,44(9):2566-2578. (in Chinese with English abstract [16] HUANG Q B,JIA X N,PENG J B,et al. Seismic response of loess-mudstone slope with bedding fault zone[J]. Soil Dynamics and Earthquake Engineering,2019,123:371-380. doi: 10.1016/j.soildyn.2019.05.009 [17] BAO Y J,HUANG Y,ZHU C Q. Effects of near-fault ground motions on dynamic response of slopes based on shaking table model tests[J]. Soil Dynamics and Earthquake Engineering,2021,149:106869. doi: 10.1016/j.soildyn.2021.106869 [18] 闫孔明,刘飞成,朱崇浩,等. 地震作用下含倾斜软弱夹层斜坡场地的动力响应特性研究[J]. 岩石力学与工程学报,2017,36(11):2686-2698.YAN K M,LIU F C,ZHU C H,et al. Dynamic responses of slopes with intercalated soft layers under seismic excitations[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(11):2686-2698. (in Chinese with English abstract [19] 黄蓓. 逆冲型地震强地面运动特性的研究[D]. 北京:中国地震局地质研究所,2015.HUANG B. Characteristics of strong ground motion of thrusting earthquakes:Case studies from 1999 Chi-Chi and 2008 Wenchuan[D]. Beijing:Institute of Geology,China Earthquake Administrator,2015. (in Chinese with English abstract [20] 郭明珠,邹玉,孙海龙. 振动台模型试验相似理论分析[J]. 沈阳建筑大学学报(自然科学版),2021,37(4):594-601.GUO M Z,ZOU Y,SUN H L. Analysis of similarity theory of shaking table model test[J]. Journal of Shenyang Jianzhu University (Natural Science),2021,37(4):594-601. (in Chinese with English abstract [21] 张敏政. 地震模拟实验中相似律应用的若干问题[J]. 地震工程与工程振动,1997,17(2):52-58.ZHANG M Z. Study on similitude laws for shaking table tests[J]. Earthquake Engineering and Engineering Vibration,1997,17(2):52-58. (in Chinese with English abstract [22] LIU H X,XU Q ,LI Y R,et al. Response of high-strength rock slope to seismic waves in a shaking table test[J]. The Bulletin of the Seismological Society of America. 2013,103:3012-3025. [23] 方林,蒋树屏,林志,等. 穿越断层隧道振动台模型试验研究[J]. 岩土力学,2011,32(9):2709-2713.FANG L,JIANG S P,LIN Z,et al. Shaking table model test of tunnel crossing fault[J]. Geotechnical Mechanics,2011,32(9):2709-2713. (in Chinese with English abstract [24] FAN L,CHEN J L,PENG S Q,et al. Seismic response of tunnel under normal fault slips by shaking table test technique[J]. Journal of Central South University,2020,27(4):1306-1319. doi: 10.1007/s11771-020-4368-0 [25] 刘学增,林亮伦. 75°倾角逆断层黏滑错动对公路隧道影响的模型试验研究[J]. 岩石力学与工程学报,2011,30(12):2523-2530.LIU X Z,LIN L L. Model test study on the influence of 75° angle reverse fault slip on highway tunnel[J]. Journal of Rock Mechanics and Engineering,2011,30(12):2523-2530. (in Chinese with English abstract [26] 胡辉,李冰天,仇文革. 一种模拟发震断层动力特性的隧道地震试验方法[J]. 隧道建设,2018,38(6):948-953.HU H,LI B T,CHOU W G. A tunnel seismic test method to simulate the dynamic characteristics of earthquake generating faults[J]. Tunnel Construction,2018,38(6):948-953. (in Chinese with English abstract [27] 张培震,闻学泽,徐锡伟,等. 2008年汶川8.0级特大地震孕育和发生的多单元组合模式[J]. 科学通报,2009,54(7):944-953. doi: 10.1360/csb2009-54-7-944ZHANG P Z,WEN X Z,XU X W,et al. Tectonic model of the great Wenchuan earthquake of May 12,2008,Sichuan,China[J]. Chinese Science Bulletin(Chinese Ver),2009,54(7):944-953. (in Chinese with English abstract doi: 10.1360/csb2009-54-7-944 [28] 黄润秋. 汶川 8.0 级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报,2009,28(6):1239-1249.HUANG R Q. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1239-1249. (in Chinese with English abstract [29] 马潇,罗永红,王运生,等. 青川窝前含断层斜坡地震动力响应与失稳模式模拟分析[J/OL]. 工程地质学报,2023. http://doi.org/10.13544/j.cnki.jeg.2022-0669.MA X,LUO Y H,WANG Y S,et al. Simulation and analysis of seismic dynamic response and instability mode of fault bearing slope in Woqian,Qingchuan[J/OL]. Journal of Engineering Geology,2023. http://doi.org/10.13544/j.cnki.jeg.2022-0669. (in Chinese with English abstract [30] 董金玉,杨国香,伍法权,等. 地震作用下顺层岩质边坡动力响应和破坏模式大型振动台试验研究[J]. 岩土力学,2011,32(10):2977-2988.DONG J Y,YANG G X,WU F Q,et al. The large-scale shaking table test study of dynamic response and failure mode of bedding rock slope under earthquake[J]. Rock and Soil Mechanics,2011,32(10):2977-2988. (in Chinese with English abstract [31] 罗永红. 地震作用下复杂斜坡响应规律研究[D]. 成都:成都理工大学,2011.LUO Y H. Study on complex slopes response law under earthquake action[D]. Chengdu:Chengdu University of Technology,2012. (in Chinese with English abstract [32] 阮博阳,杨盼瑞,郭会荣,等. 基于PIV技术研究不连通孔隙中残余DNAPL的溶解速率影响因素[J]. 地质科技通报,2023,42(4):241-249.RUAN B Y,YANG P R,GUO H R,et al. Factors influencing the dissolution rate of residual DNAPL in unconnected pores based on PIV technology[J]. Bulletin of Geological Science and Technology,2023,42(4):241-249. (in Chinese with English abstract [33] SUN Z L,KONG L W,GUO A G,et al. Centrifuge model test and numerical interpretation of seismic responses of a partially submerged deposit slope[J]. Journal of Rock Mechanics and Geotechnical Engineering,2020,12(2):381-394. doi: 10.1016/j.jrmge.2019.06.012 [34] FENG X Q,YE B,HE J,et al. Shaking table test on underwater slope failure induced by liquefaction[J]. Soils and Foundations,2023,63(4):101357. doi: 10.1016/j.sandf.2023.101357 [35] 喻畑,赵亚敏,陆鸣. 芦山地震地震动上下盘效应研究[J]. 震灾防御技术,2014,9(3):431-438.YU T,ZHAO Y M,LU M. Study of hall wall effect of fault in Lushan earthquake[J]. Technology for Earthquake Disaster Prevention,2014,9(3):431-438. (in Chinese with English abstract [36] 吴多华,刘亚群,李海波,等. 地震荷载作用下顺层岩体边坡动力放大效应和破坏机制的振动台试验研究[J]. 岩石力学与工程学报,2020,39(10):1945-1956.WU D H,LIU Y Q,LI H B,et al. Shaking table tests on dynamic amplification and failure mechanism of layered rock slopes under seismic actions[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(10):1945-1956. (in Chinese with English abstract [37] 贾向宁,黄强兵,王涛,等. 陡倾顺层断裂带黄土-泥岩边坡动力响应振动台试验研究[J]. 岩石力学与工程学报,2018,37(12):2721–2732.JIA X N,HUANG Q B,WANG T,et al. Shaking table test of dynamic response of loess-mudstone slope with steep dip bedding fault zone[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(12):2721–2732. (in Chinese with English abstract [38] ABRAHAMSON N A,SOMERVILLE P G. Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake[J]. Bulletin of the Seismological Society of America,1996,86(1):S93-S99. doi: 10.1785/BSSA08601B0S93 [39] 周飞,许强,刘汉香,等. 地震作用下含水平软弱夹层斜坡动力响应特性研究[J]. 岩土力学,2016,37(1):133-139.ZHOU F,XU Q LIU H X,et al. An experimental study of dynamic response characteristics of slope with horizontal weak interlayer under earthquake[J]. Rock and Soil Mechanics,2016,37(1):133-139. (in Chinese with English abstract -