留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LM-BPNN的高寒地区地下水微生物−毒理指标预测模型

贾卓鹏 毕俊擘 原勇 权昕 王帅伟 孙伟超

贾卓鹏,毕俊擘,原勇,等. 基于LM-BPNN的高寒地区地下水微生物−毒理指标预测模型[J]. 地质科技通报,2025,44(2):1-10 doi: 10.19509/j.cnki.dzkq.tb20240345
引用本文: 贾卓鹏,毕俊擘,原勇,等. 基于LM-BPNN的高寒地区地下水微生物−毒理指标预测模型[J]. 地质科技通报,2025,44(2):1-10 doi: 10.19509/j.cnki.dzkq.tb20240345
JIA Zhuopeng,BI Junbo,YUAN Yong,et al. Prediction model of groundwater microbiological toxicological indicators in alpine regions based on LM-BPNN[J]. Bulletin of Geological Science and Technology,2025,44(2):1-10 doi: 10.19509/j.cnki.dzkq.tb20240345
Citation: JIA Zhuopeng,BI Junbo,YUAN Yong,et al. Prediction model of groundwater microbiological toxicological indicators in alpine regions based on LM-BPNN[J]. Bulletin of Geological Science and Technology,2025,44(2):1-10 doi: 10.19509/j.cnki.dzkq.tb20240345

基于LM-BPNN的高寒地区地下水微生物−毒理指标预测模型

doi: 10.19509/j.cnki.dzkq.tb20240345
基金项目: 西藏阿里地区科学技术局资助项目(ALKJ-BJCZ-2024-04)
详细信息
    作者简介:

    贾卓鹏:E-mail:13088969796@163.com

    通讯作者:

    E-mail:bjunbo@mail.cgs.gov.cn

  • 中图分类号: X54

Prediction model of groundwater microbiological toxicological indicators in alpine regions based on LM-BPNN

More Information
  • 摘要:

    为建立高寒地区地下水微生物−毒理指标(细菌菌落总数(total bacteria count,简称TBC)、总大肠杆菌菌落总数(total coliforms count,简称TCC))预测模型,以我国西南高原地区某一水源地地下水微生物−毒理指标(TBC、TCC)为研究对象,通过正交试验设计,改变温度、pH值、孔隙率等外部环境条件,开展室内批试验,获取了不同孔隙率、取样深度,流出溶液的温度、pH值、化学需氧量(chemical oxygen demand,简称COD)、氧化还原电位(oxidation-reduction potential,简称ORP)等地下水水质指标及地下水中TBC和TCC值,然后分别以TBC、TCC为目标,以取样深度、溶液温度、pH值、土壤孔隙率、ORP、COD为影响因素,基于Levenberg-Marquardt(LM)优化的神经网络(BPNN)算法,建立了高寒地区地下水微生物−毒理指标的预测模型。结果表明,TBC、TCC模型的预测结果与试验结果的变化趋势一致,且最大相对误差均小于15%(TBC、TCC模型的最大相对误差分别为11.52%,14.55%),符合工程要求。该方法可用于高寒地区地下水微生物−毒理指标的预测,可为高原地区地下水资源可持续利用和污染的有效防治提供科学依据,并为地下水中TBC、TCC的测定提供新的思路。

     

  • 图 1  研究区位置示意图

    注:底图采用中华人民共和国自然资源部网站的公开地图(阿里地区地图政区简图版),审图号为:藏S(2023)004号,底图未修改

    Figure 1.  Location of study area

    图 2  土体相对密度测定

    Figure 2.  Determination of specific gravity of the soil sample

    图 3  室内土柱试验

    a. 试验装置示意图;b. 实际试验装置

    Figure 3.  Indoor soil column test

    图 4  TBC (a)、TCC (b)、溶液pH值 (c)与COD (d)测定试验

    Figure 4.  TBC (a), TCC (b), solution pH (c) and COD (d) determination

    图 5  BP神经网络结构

    Figure 5.  Schematic diagram of BP neural network structure

    图 6  BP神经网络结构层次图

    Figure 6.  Structure hierarchy diagram of BP neural network

    图 7  TBC (a)和TCC (b)预测模型的训练结果图

    Figure 7.  Training results of TBC (a) and TCC (b) predictive model

    图 8  TBC (a)和TCC (b)模型预测结果与试验结果对比图

    Figure 8.  Comparison between the predicted results of TBC (a) and TCC (b) model and the experimental results

    图 9  TBC (a)与TCC (b)模型预测结果与试验结果变化趋势图

    Figure 9.  Comparison between the predicted results of TBC (a) and TCC (b) model and the experimental results

    表  1  正交试验参数

    Table  1.   Orthogonal test table

    试验编号 温度/℃ 孔隙率 pH值
    1 5 0.50 6
    2 5 0.55 7
    3 5 0.60 8
    4 15 0.50 7
    5 15 0.55 8
    6 15 0.60 6
    7 25 0.50 8
    8 25 0.55 6
    9 25 0.60 7
    下载: 导出CSV

    表  2  室内试验结果

    Table  2.   Indoor test results

    序号 深度/m 温度/℃ 孔隙率 pH值 ORP/mV ρ(COD)/(mg·L−1) TBC/(CFU·mL−1) TCC/(MPN·100−1 mL−1)
    1 0.1 5 0.6 6.14 36 4.81 74900 33
    2 0.2 5 0.6 6.06 41 6.16 107300 22
    3 0.3 5 0.6 5.94 48 8.50 111000 19
    4 0.4 5 0.6 5.96 47 3.08 43700 27
    103 0.3 25 0.55 6.41 20 8.18 482000 376
    104 0.4 25 0.55 6.07 40 8.77 320000 368
    105 0.5 25 0.55 7.08 −19 8.65 250000 420
    下载: 导出CSV

    表  3  TBC、TCC模型预测结果与试验结果的误差

    Table  3.   Error between the predicted results of TBC and TCC model and the experimental results

    序号 TBC预测模型 TCC预测模型
    绝对误差 相对误差/% 绝对误差 相对误差/%
    1 2360 5.18 4 9.09
    2 600 0.94 4 7.69
    3 5100 6.71 −2 −5.13
    4 −1970 −6.75 3 4.62
    5 1500 4.17 −5 −10.42
    6 2670 8.14 −21 −9.29
    7 2950 7.20 −10 −3.60
    8 −200 −0.50 3 1.36
    9 70 0.25 28 7.55
    10 2560 10.64 −14 −3.52
    11 30000 6.22 30 7.98
    12 11000 −3.44 −34 −9.24
    13 15400 6.16 34 8.10
    14 15800 2.36 −37 −8.41
    15 17000 3.59 −14 −5.00
    16 50000 8.33 −14 −5.76
    17 3000 0.55 23 5.12
    18 9800 1.91 −40 −11.49
    19 25400 7.06 17 5.31
    20 14200 −5.92 10 2.78
    21 5000 −1.98 −6 −2.50
    22 8700 3.30 38 7.04
    23 17400 6.40 23 10.45
    24 22200 −7.12 32 14.55
    25 53000 11.52 26 8.13
    下载: 导出CSV
  • [1] 中华人民共和国水利部. 中国水资源公报·2022[M]. 北京:中国水利水电出版社,2023.

    Ministry of Water Resources of the People’s Republic of China. China water resources bulletin·2022[M]. Beijing:China Water & Power Press,2023. (in Chinese)
    [2] 中华人民共和国生态环境部,中国环境状况公报·2022[M]. 北京:中华人民共和国生态环境部出版社,2023.

    Ministry of Ecology and Environment of the People’s Republic of China,China Environmental Situation Bulletin·2022[M] Beijing:Publishing House of the Ministry of ecological environment of the People’s Republic of China,2023. (in Chinese)
    [3] 中华人民共和国生态环境部. 全国地下水污染防治规划(2011-2020年)[Z]. 北京:[出版社不详],2015.

    Ministry of Ecological Environment of the People’s Republic of China,National Groundwater Pollution Control Plan (2011-2020) [Z]. Beijing:[S. n.], 2015. (in Chinese)
    [4] 辛娇娇,索南顿珠,娄永志,等. 西藏牦牛粪便大肠杆菌毒力特性、耐药性与Ⅰ类整合子分子特征相关性分析[J]. 中国畜牧兽医,2023,50(10):4210-4222.

    XIN J J,SUO N D Z,LOU Y Z,et al. Correlation analysis on virulence characteristics,drug resistance and molecular features of class Ⅰ integrator of escherichia coli isolated from feces in Tibetan yak[J]. China Animal Husbandry & Veterinary Medicine,2023,50(10):4210-4222. (in Chinese with English abstract
    [5] 李荣. 高原地区藏族儿童感染性腹泻病原分析[J]. 中外医疗,2009,28(12):131. doi: 10.3969/j.issn.1674-0742.2009.12.116

    LI R. Pathogen analysis of infectious diarrhea in Tibetan children in plateau area[J]. China & Foreign Medical Treatment,2009,28(12):131. (in Chinese) doi: 10.3969/j.issn.1674-0742.2009.12.116
    [6] 陈家露,蔡重振,次旦,等. 西藏那曲市羊源大肠杆菌分离鉴定及耐药性研究[J]. 中国畜牧兽医,2019,46(12):3759-3767.

    CHEN J L,CAI C Z,CI D,et al. Isolation,identification and drug resistance analysis of sheep Escherichia coli in Naqu,Tibet[J]. China Animal Husbandry & Veterinary Medicine,2019,46(12):3759-3767. (in Chinese with English abstract
    [7] 毛惠玲,陈席敏,汤文慧,等. 川西北高原地区牦牛腹泻大肠埃希菌毒力基因检测及致病性分析[J]. 中国兽医学报,2023,43(8):1658-1665.

    MAO H L,CHEN X M,TANG W H,et al. Detection of virulence gene and pathogenicity analysis of Escherichia coli from yak diarrhea in northwest Sichuan Plateau[J]. Chinese Journal of Veterinary Science,2023,43(8):1658-1665. (in Chinese with English abstract
    [8] 王昱昊. 肠道菌群参与高原胃肠应激发病的相关作用研究[D]. 西安:中国人民解放军空军军医大学,2022.

    WANG Y H. Correlational research on gut microbiota in gastrointestinal stress on the Plateau[D]. Xi'an: Air Force Medical University of PLA,2022. (in Chinese with English abstract
    [9] 贡嘎,王刚,罗润波,等. 西藏牦牛源大肠杆菌分离株的致病性及遗传进化分析研究[J]. 中国农业大学学报,2018,23(10):57-62. doi: 10.11841/j.issn.1007-4333.2018.10.07

    GONGGA,WANG G,LUO R B,et al. Pathogenic and phylogenetic analysis on the Escherichia coli derived from Tibetan yak[J]. Journal of China Agricultural University,2018,23(10):57-62. (in Chinese with English abstract doi: 10.11841/j.issn.1007-4333.2018.10.07
    [10] 赵瑜. 西藏农村生活饮用水微生物污染状况调查分析[J]. 西藏科技,2009(10):26-28. doi: 10.3969/j.issn.1004-3403.2009.10.011

    ZHAO Y. Investigation and analysis on microbial pollution of drinking water in rural areas of Tibet[J]. Tibet's Science and Technology,2009(10):26-28. (in Chinese) doi: 10.3969/j.issn.1004-3403.2009.10.011
    [11] 程鹏鹏,孔理杨,尼玛朱杰,等. 拉萨市部分乡村生活饮用水卫生微生物调查[J]. 西藏科技,2016(11):40-41. doi: 10.3969/j.issn.1004-3403.2016.11.011

    CHENG P P,KONG L Y,NI M Z J,et al. Investigation on hygienic microorganisms of drinking water in some rural areas of Lhasa City[J]. Tibet Science and Technology,2016(11):40-41. (in Chinese) doi: 10.3969/j.issn.1004-3403.2016.11.011
    [12] 魏素珍,徐瑾,苏立彬,等. 西藏农村生活饮用水微生物安全状况及风险评估[J]. 中国给水排水,2015,31(17):57-60.

    WEI S Z,XU J,SU L B,et al. Safety status and risk assessment of microorganisms in drinking water in Tibetan rural areas[J]. China Water & Wastewater,2015,31(17):57-60. (in Chinese with English abstract
    [13] 王秀英,陈添弥,张伯玲,等. 西藏地区急性腹泻侵袭性大肠杆菌的鉴定及药敏试验[J]. 解放军预防医学杂志,1994,12(5):383-385.

    WANG X Y,CHEN T M,ZHANG B L,et al. Identification and drug sensitivity test of invasive Escherichia coli in acute diarrhea in Tibet[J]. Journal of Preventive Medicine of Chinese PLA,1994,12(5):383-385. (in Chinese)
    [14] 徐莉立,赵金华,王学文,等. 高原地区儿童脑炎脑膜炎症候群病原监测分析[J]. 中国公共卫生,2013,29(9):1260-1262. doi: 10.11847/zgggws2013-29-09-04

    XU L L,ZHAO J H,WANG X W,et al. Pathogen detection for syndromes of encephalitis and meningitis among child patients in plateau of Qinghai Province from 2010 to 2011[J]. Chinese Journal of Public Health,2013,29(9):1260-1262. (in Chinese with English abstract doi: 10.11847/zgggws2013-29-09-04
    [15] 秦菲. 高原地区胃肠肿瘤患者术后医院感染部位及病原体耐药情况分析[J]. 高原医学杂志,2019,29(2):46-49. doi: 10.3969/j.issn.1007-3809.2019.02.014

    QIN F. Analysis of nosocomial infection site and pathogen drug resistance in patients with gastrointestinal tumor after operation in plateau area[J]. Journal of High Altitude Medicine,2019,29(2):46-49. (in Chinese) doi: 10.3969/j.issn.1007-3809.2019.02.014
    [16] 张学慧. 高原地区儿童脑炎脑膜炎症候群病原监测结果研究[J]. 东方药膳,2020(9):122-123.

    ZHANG X H. Study on the results of pathogen monitoring of encephalitis and meningitis syndrome in children in plateau area[J]. Oriental Medicated Diet,2020(9):122-123. (in Chinese)
    [17] 刘娟娟. 环境条件对土壤微生物多样性和硝化作用的影响[D]. 南京:南京师范大学,2011.

    LIU J J. Effects of environmental conditions on soil microbial diversity and nitrification[D]. Nanjing:Nanjing Normal University,2011. (in Chinese with English abstract
    [18] 于小彦,杨艳芳,张平究,等. 不同水分条件下生物质炭添加对湿地土壤微生物群落结构的影响[J]. 生态与农村环境学报,2019,35(9):1163-1171.

    YU X Y,YANG Y F,ZHANG P J,et al. Effects of biochar addition on soil microbial community structure under different water conditions[J]. Journal of Ecology and Rural Environment,2019,35(9):1163-1171. (in Chinese with English abstract
    [19] 韩志捷,李洁,王伟荔,等. 微生物在多孔介质中的迁移机制及影响因素[J]. 安徽农业科学,2016,44(2):127-130. doi: 10.3969/j.issn.0517-6611.2016.02.045

    HAN Z J,LI J,WANG W L,et al. Study on transport mechanisms and influencing factors of microorganisms in porous media[J]. Journal of Anhui Agricultural Sciences,2016,44(2):127-130. (in Chinese with English abstract doi: 10.3969/j.issn.0517-6611.2016.02.045
    [20] 王杰,彭永臻,杨雄,等. 温度对活性污泥沉降性能与微生物种群结构的影响[J]. 中国环境科学,2016,36(1):109-116. doi: 10.3969/j.issn.1000-6923.2016.01.018

    WANG J,PENG Y Z,YANG X,et al. Effect of temperature on activated sludge settleability and microbial community structure[J]. China Environmental Science,2016,36(1):109-116. (in Chinese with English abstract doi: 10.3969/j.issn.1000-6923.2016.01.018
    [21] 王帅伟. 石漠化区耕作污染的地下水微生物−毒理联合响应机制及模拟[D]. 北京:中国地质科学院,2019.

    WANG S W. Microbial-toxicological combined response mechanism and simulation of groundwater polluted by farming in rocky desertification area[D]. Beijing:Chinese Academy of Geological Sciences,2019. (in Chinese with English abstract
    [22] 杨靖. 大肠杆菌对环境纳米颗粒及重金属铬共迁移的影响机制研究[D]. 江苏苏州:苏州科技大学,2021.

    YANG J. Effect of Escherichia coli on Co-transport of environmental nanoparticles and heavy metal chromium[D]. Suzhou Jiangsu:Suzhou University of Science and Technology,2021. (in Chinese with English abstract
    [23] 丁美月. 大肠杆菌O157:H7在不同土地利用类型的土壤中的存活行为及其影响因素[D]. 长春:吉林大学,2018.

    DING M Y. Survival behavior of Escherichia coli O157:H7 in soil from areas with different land use types [D]. Changchun:Jilin University,2018. (in Chinese with English abstract
    [24] 李梅. 水环境中ZnO纳米颗粒对大肠杆菌的毒性及影响因素[D]. 杭州:浙江大学,2012.

    LI M. The toxicity and impact factors of ZnO nanoparticles to Escherichia coli in aquatic environment[D]. Hangzhou:Zhejiang University,2012. (in Chinese with English abstract
    [25] 张驰,潘懋,胡水清,等. 融合储层纵向信息的机器学习岩性识别方法[J]. 地质科技通报,2023,42(3):289-299.

    ZHANG C,PAN M,HU S Q,et al. A machine learning lithologic identification method combined with vertical reservoir information[J]. Bulletin of Geological Science and Technology,2023,42(3):289-299. (in Chinese with English abstract
    [26] ZHANG Y,HU X H,JIANG X P. Multi-view clustering of microbiome samples by robust similarity network fusion and spectral clustering[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics,2017,14(2):264-271. doi: 10.1109/TCBB.2015.2474387
    [27] OUDAH M,HENSCHEL A. Taxonomy-aware feature engineering for microbiome classification[J]. BMC Bioinformatics,2018,19(1):227. doi: 10.1186/s12859-018-2205-3
    [28] ZIELIŃSKI B,PLICHTA A,MISZTAL K,et al. Deep learning approach to bacterial colony classification[J]. PLoS One,2017,12(9):e0184554. doi: 10.1371/journal.pone.0184554
    [29] JOHNSON H R,TRINIDAD D D,GUZMAN S,et al. A machine learning approach for using the postmortem skin microbiome to estimate the postmortem interval[J]. PLoS One,2016,11(12):e0167370. doi: 10.1371/journal.pone.0167370
    [30] 任俊帆,薛亮,聂捷,等. 基于随机森林算法的二氧化碳驱油与封存主控因素研究[J]. 地质科技通报,2024,43(3):147-156.

    REN J F,XUE L,NIE J,et al. Research on the main control factors of carbon dioxide flooding and storage based on random forest algorithm[J]. Bulletin of Geological Science and Technology,2024,43(3):147-156. (in Chinese with English abstract
    [31] KELEŞ Z,SONUGÜR G,ALÇIN M. The modeling of the rucklidge chaotic system with artificial neural networks[J]. Chaos Theory and Applications,2023,5(2):59-64. doi: 10.51537/chaos.1213070
    [32] 孙伟超,袁颖. 基于PCA-LM-BP融合的砂土液化预测评价模型[J]. 中国科技论文,2018,13(13):1511-1515. doi: 10.3969/j.issn.2095-2783.2018.13.013

    SUN W C,YUAN Y. Prediction model of sand liquefaction based on PCA-LM-BP fusion[J]. China Sciencepaper,2018,13(13):1511-1515. (in Chinese with English abstract doi: 10.3969/j.issn.2095-2783.2018.13.013
    [33] JEWETT D G,HILBERT T A,LOGAN B E,et al. Bacterial transport in laboratory columns and filters:Influence of ionic strength and pH on collision efficiency[J]. Water Research,1995,29(7):1673-1680. doi: 10.1016/0043-1354(94)00338-8
    [34] STRAUB T M,PEPPER I L,GERBA C P. Persistence of viruses in desert soils amended with anaerobically digested sewage sludge[J]. Applied and Environmental Microbiology,1992,58(2):636-641. doi: 10.1128/aem.58.2.636-641.1992
    [35] GANNON J,TAN Y H,BAVEYE P,et al. Effect of sodium chloride on transport of bacteria in a saturated aquifer material[J]. Applied and Environmental Microbiology,1991,57(9):2497-2501. doi: 10.1128/aem.57.9.2497-2501.1991
    [36] SATO Y,OKANO K,HONDA K. Effects of small heat shock proteins from thermotolerant bacteria on the stress resistance of Escherichia coli to temperature,pH,and hyperosmolarity[J]. Extremophiles,2024,28(1):12. doi: 10.1007/s00792-023-01326-y
    [37] 姚舜译. 大肠杆菌在饱和多孔介质中的迁移过程研究[D]. 四川雅安:四川农业大学,2016.

    YAO S Y. Transport of Escherichia coli in Saturated Porous Media[D]. Yaan Sichuan:Sichuan Agricultural University,2016. (in Chinese with English abstract
    [38] 袁雪梅. 纳米银和大肠杆菌在饱和多孔介质中的共迁移研究[D]. 四川雅安:四川农业大学,2017.

    YUAN X M. Co-transport of silver nanoparticles and Escherichia coli in saturated porous media[D]. Yaan Sichuan:Sichuan Agricultural University,2017. (in Chinese with English abstract
    [39] 百度文库. 1961-2018年西藏自治区阿里地区噶尔县月尺度温度和降雨气候数据集[J/OL]. https://wenku.baidu.com/view/57975686ef3a87c24028915f804d2b160b4e86cf.html?_wkts_=1715350672899&bdQuery=%E5%99%B6%E5%B0%94%E5%8E%BF%E5%8E%86%E5%B9%B4%E6%9C%88%E5%B9%B3%E5%9D%87%E6%B0%94%E6%B8%A9,2024-12-22.

    Baidu Wenku. Monthly Temperature and Rainfall Climatic Data Set of Gar County,Ali Prefecture,Xizang Autonomous Region,1961-2018[J/OL]. https://wenku.baidu.com/view/57975686ef3a87c24028915f804d2b160b4e 86cf.html?_wkts_=1715350672899&bdQuery=%E5%99%B6%E5%B0%94%E5%8E%BF%E5%8E%86%E5 %B9%B4%E6%9C%88%E5%B9%B3%E5%9D%87%E6%B0%94%E6%B8%A9,2024-12-22.(in Chinese)
    [40] 康小兵. 西藏阿里地区第四系地下水资源形成控制因素研究[D]. 成都:成都理工大学,2006.

    KANG X B. Study on the formation and controlling factors of groundwater resources in Quaternary of Ali area,Tibet[D]. Chengdu:Chengdu University of Technology,2006. (in Chinese with English abstract
    [41] 姜英杰,邹晓葵,彭增起. 大肠杆菌在猪背最长肌上生长预测模型的建立[J]. 食品科学,2008,29(12):115-119. doi: 10.3321/j.issn:1002-6630.2008.12.021

    JIANG Y J,ZOU X K,PENG Z Q. Construction of growth prediction model of escherichia coli in longissimus dorsi muscle[J]. Food Science,2008,29(12):115-119. (in Chinese with English abstract doi: 10.3321/j.issn:1002-6630.2008.12.021
    [42] 张辉,杨振泉,赵隽,等. 食源性大肠杆菌在即食食品中的生长预测模型[J]. 江苏农业学报,2011,27(5):1122-1127. doi: 10.3969/j.issn.1000-4440.2011.05.037

    ZHANG H,YANG Z Q,ZHAO J,et al. Establishment of a predictive growth model for foodborne Escherichia coli in ready-to-eat food[J]. Jiangsu Journal of Agricultural Sciences,2011,27(5):1122-1127. (in Chinese with English abstract doi: 10.3969/j.issn.1000-4440.2011.05.037
    [43] 胡振东,郭明强. 改进水循环优化BP神经网络的大坝变形预测[J]. 地理空间信息,2024,22(1):92-95. doi: 10.3969/j.issn.1672-4623.2024.01.022

    HU Z D,GUO M Q. Dam deformation prediction method based on IWCA-BP neural network[J]. Geospatial Information,2024,22(1):92-95. (in Chinese with English abstract doi: 10.3969/j.issn.1672-4623.2024.01.022
    [44] 高智慧,左璐. 原状黄土天然孔隙比定量评价方法[J]. 地质科技通报,2023,42(6):53-62.

    GAO Z H,ZUO L. A quantitative evaluation method regarding the natural void ratio of undisturbed loess[J]. Bulletin of Geological Science and Technology,2023,42(6):53-62. (in Chinese with English abstract
    [45] 魏玉明,党星海. BP神经网络在不等时距滑坡变形预报中的应用[J]. 科学技术与工程,2010,10(12):2959-2962. doi: 10.3969/j.issn.1671-1815.2010.12.036

    WEI Y M,DANG X H. BP neural network model for time-distance in the range of landslide deformation prediction of the applied research[J]. Science Technology and Engineering,2010,10(12):2959-2962. (in Chinese with English abstract doi: 10.3969/j.issn.1671-1815.2010.12.036
    [46] 盛仲飙,同晓荣. BP神经网络在曲线拟合中的应用[J]. 科学技术与工程,2011,11(28):6998-7000. doi: 10.3969/j.issn.1671-1815.2011.28.048

    SHENG Z B,TONG X R. The application of BP neural networks in curve fitting[J]. Science Technology and Engineering,2011,11(28):6998-7000. (in Chinese with English abstract doi: 10.3969/j.issn.1671-1815.2011.28.048
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  26
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-19
  • 录用日期:  2024-08-26
  • 修回日期:  2024-08-22
  • 网络出版日期:  2025-03-21

目录

    /

    返回文章
    返回