留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玛纳斯河流域河水−地下水转化驱动下的水文地球化学空间演化

马文静 王文科 侯昕悦 季德帅 马稚桐

马文静,王文科,侯昕悦,等. 玛纳斯河流域河水−地下水转化驱动下的水文地球化学空间演化[J]. 地质科技通报,2025,44(2):1-11 doi: 10.19509/j.cnki.dzkq.tb20240360
引用本文: 马文静,王文科,侯昕悦,等. 玛纳斯河流域河水−地下水转化驱动下的水文地球化学空间演化[J]. 地质科技通报,2025,44(2):1-11 doi: 10.19509/j.cnki.dzkq.tb20240360
MA Wenjing,WANG Wenke,HOU Xinyue,et al. Spatial evolution of hydrogeochemistry driven by river water-groundwater transformations in the Manas River Basin[J]. Bulletin of Geological Science and Technology,2025,44(2):1-11 doi: 10.19509/j.cnki.dzkq.tb20240360
Citation: MA Wenjing,WANG Wenke,HOU Xinyue,et al. Spatial evolution of hydrogeochemistry driven by river water-groundwater transformations in the Manas River Basin[J]. Bulletin of Geological Science and Technology,2025,44(2):1-11 doi: 10.19509/j.cnki.dzkq.tb20240360

玛纳斯河流域河水−地下水转化驱动下的水文地球化学空间演化

doi: 10.19509/j.cnki.dzkq.tb20240360
基金项目: 国家自然科学基金青年项目(42202275)
详细信息
    作者简介:

    马文静:E-mail:mwj991120@163.com

    通讯作者:

    E-mail:wenkew@chd.edu.cn

  • 中图分类号: P641.3

Spatial evolution of hydrogeochemistry driven by river water-groundwater transformations in the Manas River Basin

More Information
  • 摘要:

    河水−地下水的相互转换影响着水化学的成分组成及演化规律,进而影响着水生态环境,因此了解其水化学成分的来源及演化机制具有重要意义。以中国典型干旱区玛纳斯河流域为研究区,运用水化学图解、离子比例系数分析和反向水文地球化学演化等方法,对该流域不同地貌的河水−地下水水化学特征、主要离子组分来源和演化规律开展了研究。结果表明,随地貌和河水−地下水转化关系的变化,河水和地下水水化学类型主要从HCO3·SO4-Ca型逐渐演化为Cl-Na型,水化学变化的自然驱动因素由水岩作用变为蒸发浓缩;在脱节段,水体水化学类型主要为HCO3·SO4-Ca型,主要受到溶滤作用;在河水−地下水交换段上游,主要为SO4·Cl-Na型,主要发生溶滤和混合作用;交互段下游水化学类型主要为Cl-Na型,主要受蒸发作用影响;反向演化结果进一步定量分析了研究区水岩作用的影响,沿地下水流方向,发生了钠长石和钙长石的沉淀,白云石、石膏、Ca-蒙脱石和岩盐的溶解,以及Na-Mg、Ca-Mg的正向阳离子交换。研究结果可为干旱半干旱地区的水环境保护和可持续管理提供科学依据。

     

  • 图 1  研究区范围及采样点位置

    Figure 1.  Extent of the study area and location of sampling points

    图 2  研究区典型剖面及不同地貌单元河水与地下水转换关系图

    a. 玛纳斯河流域典型剖面[17];b. 河水与地下水脱节示意图;c. 地下水溢出形成泉示意图;d. 河水补给地下水示意图;e. 地下水补给河水示意图

    Figure 2.  Typical profiles of the study area and the relationship between river water and groundwater conversion in different geomorphologic units

    图 3  研究区河水和地下水的水化学成分空间变化

    Figure 3.  Spatial variations in water chemistry of river water and groundwater in the study area

    图 4  研究区Piper图

    Figure 4.  Piper diagram of the study area

    图 5  研究区Gibbs图

    Figure 5.  Gibbs diagram of the study area

    图 6  研究区离子比值关系图

    实线表示纵坐标与横坐标比值为1;虚线表示纵坐标与横坐标比值为0.5;meq/L=mmol/L×离子价

    Figure 6.  Crossplot of ion ratio in the study area

    图 7  研究区矿物饱和指数(SI)与水中TDS质量浓度的关系

    a. 河水;b. 地下水;圆圈代表方解石;正方形代表白云石;三角形代表石膏;菱形代表岩盐

    Figure 7.  Relationship between mineral saturation index (SI) and TDS concentration in water in the study area

    图 8  研究区阳离子交换比值图

    实线表示纵坐标与横坐标比值为−1;meq/L=mmol/L×离子价

    Figure 8.  Plot of cation exchange ratio in the study area

    图 9  研究区河水−地下水循环与水化学类型演化图

    Figure 9.  Evolution of river-groundwater cycle and hydrochemical types in the study area

    表  1  地下水路径反向模拟矿物质浓度结果

    Table  1.   Groundwater pathway inverse simulation results of mineral concentration CB/(mmol·L−1)

    矿物质 化学式 路径1 路径2 路径3 路径4
    山间洼地 冲洪积扇 溢出带 细土平原
    方解石 Calcite CaCO3 4.051×101
    白云石Dolomite CaMg(CO3)2 2.776×101 7.497×100 2.775×101 2.773×101
    石膏 Gypsum CaSO4·2H2O 4.225×10−3 7.161×10−4 9.040×10−3 2.590×10−2
    钠长石 Albite NaAlSi3O8 −3.718×101 −3.718×101 −3.719×101 −3.716×101
    钙长石 Anorthite CaAl2Si2O8 −4.607×101 −4.607×101 −4.606×101 −4.603×101
    Ca-蒙脱石 (Na,Ca)0.33 (Al,Mg)2
    [Si4O10] (OH)2·nH2O
    5.550×101 5.551×101 5.549×101 5.546×101
    岩盐Halite NaCl 1.407×10−3 4.819×10−4 2.213×10−3 4.246×10−2
    CO2 −5.550×101 −5.550×101 −5.549×101 −5.545×101
    阳离子交换 CaX2 9.157×100 −1.110×101 9.153×100 9.133×100
    MgX2 −2.775×101 −7.496×100 −2.776×101 −2.772×101
    NaX 3.719×101 3.719×101 3.718×101 3.719×101
    注:正值表示溶解;负值表示沉淀;“—”表示矿物未参加反应
    下载: 导出CSV
  • [1] 张艺武,苏小四,王骞迎,等. 伊犁河谷西部平原区地表水与地下水转化关系研究[J]. 北京师范大学学报(自然科学版),2020,56(5):664-674.

    ZHANG Y W,SU X S,WANG Q Y,et al. Surface water-groundwater interactions in the western plain of the Ili Valley[J]. Journal of Beijing Normal University (Natural Science),2020,56(5):664-674. (in Chinese with English abstract
    [2] 郑涛,秦先燕,吴剑雄. 店埠河流域地表水−地下水水化学特征及其成因分析[J]. 环境科学,2024,45(2):813-825.

    ZHENG T,QIN X Y,WU J X. Hydrochemical characteristics and its origin of surface water and groundwater in Dianbu River Basin[J]. Environmental Science,2024,45(2):813-825. (in Chinese with English abstract
    [3] 李杰彪,周志超,郭永海,等. 高放废物处置北山预选区地下水化学形成机制模拟研究[J/OL]. 地质科技通报,1-16[2024-12-24]. https://doi. org/10.19509/j. cnki. dzkq. tb20240194.

    LI J B,ZHOU Z C,GUO Y H,et al. Simulation research on the formation mechanism of hydrochemistry in the Beishan preselected area forgeological disposal of high-level radioactive waste in China [J/OL]. Bulletin of Geological Science and Technology,1-16[2024-12-24]. https://doi.org/10.19509/j.cnki.dzkq.tb20240194.(in Chinese withEnglish abstract
    [4] QU S,DUAN L M,SHI Z M,et al. Hydrochemical assessments and driving forces of groundwater quality and potential health risks of sulfate in a coalfield,northern Ordos Basin,China[J]. Science of the Total Environment,2022,835:155519. doi: 10.1016/j.scitotenv.2022.155519
    [5] EWUSI A,SUNKARI E D,SEIDU J,et al. Hydrogeochemical characteristics,sources and human health risk assessment of heavy metal dispersion in the mine pit water-surface water-groundwater system in the largest manganese mine in Ghana[J]. Environmental Technology & Innovation,2022,26:102312.
    [6] LI P Y,QIAN H,HOWARD K W F,et al. Building a new and sustainable "Silk Road economic belt"[J]. Environmental Earth Sciences,2015,74(10):7267-7270. doi: 10.1007/s12665-015-4739-2
    [7] ZHOU Z W,ZHOU Z F. Investigating the hydrodynamic and biogeochemical evolutions of the hyporheic zone due to large-scale reservoir impoundment[J]. Journal of Hydrology,2023,620:129475. doi: 10.1016/j.jhydrol.2023.129475
    [8] 卢小慧,王梦瑶,龚绪龙,等. 基于氢氧同位素的平原湖荡地表水与地下水转化研究[J]. 水利学报,2024,55(4):416-427.

    LU X H,WANG M Y,GONG X L,et al. Hydrogen and oxygen isotope based transformation studies of surface water and groundwater in plains lakes and swamps[J]. Journal of Hydraulic Engineering,2024,55(4):416-427. (in Chinese with English abstract
    [9] YU X W,LIU H M,WANG Q,et al. Hydrochemical and stable isotope characteristics of surface water and groundwater in Xiliugou and Wulagai River basin,North China[J]. Ecohydrology & Hydrobiology,2024,24(1):62-72.
    [10] WANG W K,WANG Z,HOU R Z,et al. Modes,hydrodynamic processes and ecological impacts exerted by river–groundwater transformation in Junggar Basin,China[J]. Hydrogeology Journal,2018,26(5):1547-1557. doi: 10.1007/s10040-018-1784-4
    [11] WANG J J,LIANG X,MA B,et al. Using isotopes and hydrogeochemistry to characterize groundwater flow systems within intensively pumped aquifers in an arid inland basin,Northwest China[J]. Journal of Hydrology,2021,595:126048. doi: 10.1016/j.jhydrol.2021.126048
    [12] QIAO L,JIN-LONG Z,YE-XIN G,et al. Groundwater hydro-geochemistry in plain of Manasi River Basin,Xinjiang[J]. Geoscience,2015,29(2):238-44.
    [13] WANG J J,LIANG X,LIU Y F,et al. Hydrogeochemical evolution along groundwater flow paths in the Manas River Basin,Northwest China[J]. Ground Water,2019,57(4):575-589. doi: 10.1111/gwat.12829
    [14] ZHOU Y Z,TU Z,ZHOU J L,et al. Distribution,dynamic and influence factors of groundwater arsenic in the Manas River Basin in Xinjiang,P. R. China[J]. Applied Geochemistry,2022,146:105441. doi: 10.1016/j.apgeochem.2022.105441
    [15] 雷米,周金龙,梁杏,等. 新疆天山北麓中段孔隙水水化学特征及苏打水的成因[J]. 地球科学,2022,47(2):674-688.

    LEI M,ZHOU J L,LIANG X,et al. Hydrochemical characteristics of pore water and genesis of soda water in the middle of the northern piedmont of Tianshan Mountain,Xinjiang[J]. Earth Science,2022,47(2):674-688. (in Chinese with English abstract
    [16] WANG P,ZHANG W,ZHU Y C,et al. Evolution of groundwater hydrochemical characteristics and formation mechanism during groundwater recharge:A case study in the Hutuo River alluvial-pluvial fan,North China Plain[J]. Science of the Total Environment,2024,915:170159. doi: 10.1016/j.scitotenv.2024.170159
    [17] 侯昕悦. 变化环境下玛纳斯河流域地下水环境演化及调控机制研究[D]. 西安:长安大学,2023.

    HOU X Y. Study on groundwater environment evolution and regulation mechanism in Manas River Basin under changing environment[D]. Xi'an:Changan University,2023. (in Chinese with English abstract
    [18] 崔亚莉,邵景力,李慈君. 玛纳斯河流域地表水、地下水转化关系研究[J]. 水文地质工程地质,2001,28(2):9-13.

    CUI Y L,SHAO J L,LI C J. Relation of transform between surface water and ground water in Manasi River valley[J]. Hydrogeology and Engineering Geology,2001,28(2):9-13. (in Chinese with English abstract
    [19] 管春兴. 玛纳斯河流域地表水-地下水转化的水化学及同位素证据[D]. 西安:长安大学,2019.

    GUAN C X. Hydrochemical and ssotope evidence of surface water and groundwater conversion in Manas River Basin[D]. Xi'an:Changan University,2019. (in Chinese with English abstract
    [20] 王战. 玛纳斯河流域河流−地下水相互作用对河岸带植被生态的影响[D]. 西安:长安大学,2021.

    WANG Z. The effect of river-groundwater interaction on riparian plants ecology in Manasi River Baisn[D]. Xi'an:Changan University,2021. (in Chinese with English abstract
    [21] PIPER A M. A graphic procedure in the geochemical interpretation of water-analyses[J]. Transactions,American Geophysical Union,1944,25(6):914-928. doi: 10.1029/TR025i006p00914
    [22] GIBBS R J. Mechanisms controlling world water chemistry[J]. Science,1970,170:1088-1090. doi: 10.1126/science.170.3962.1088
    [23] 周艺颖,欧阳正平,徐子东,等. 琼西南九所地热田水文地球化学特征及成因[J]. 地质科技通报,2025,44(1):216-228.

    Zhou Y Y,Ouyang Z P,Xu Z D,et al. Study on hydrogeochemical characteristics and genesis of Jiusuo geothermal field in southwestern Hainan[J]. Bulletin of Geological Scienceand Technology,2025,44(1):216-228.(in Chinese with English abstract
    [24] 赵翠,覃红亮,朱昱桦,等. 黔中安江地下河系统水化学特征及污染分析[J]. 地质科技通报,2024,43(6):281-291.

    ZHAO C,QIN H L,ZHU Y H,et al. Hydrochemical analysis and pollution assessment of the Anjiang underground river system in central Guizhou[J]. Bulletin of Geological Science and Technology,2024,43(6):281-291. (in Chinese with English abstract
    [25] 徐国平. 孙疃煤矿地下水水化学成分形成特征及其成因分析[D]. 安徽淮南:安徽理工大学,2020.

    XU G P. A Dissertation in Geological engineering Suntuan coal mine groundwater chemicalcomposition formation characteristics and its cause analysis[D]. Huainan Anhui:Anhui University of Science & Technology,2020. (in Chinese with English abstract
    [26] 赵焕,王仕琴,孔晓乐,等. 华北低山丘陵区潴龙河流域地下水水质特征及成因分析[J]. 水文地质工程地质,2016,43(2):17-24.

    ZHAO H,WANG S Q,KONG X L,et al. A study of the water quality characteristics and factors in the Zhulong River Basin in the hilly region of North China[J]. Hydrogeology & Engineering Geology,2016,43(2):17-24. (in Chinese with English abstract
    [27] 屈伸,史浙明,梁向阳,等. 大海则井田多层含水层系统水化学特征及演化规律[J]. 环境化学,2022,41(8):2614-2624.

    QU S,SHI Z M,LIANG X Y,et al. Hydrochemical characteristics and evolution of groundwater in multilayer aquifer system in the Dahaize Coalfield[J]. Environmental Chemistry,2022,41(8):2614-2624. (in Chinese with English abstract
    [28] 宋晨,马斌,梁杏,等. 玛纳斯河流域山前平原地下水水化学特征与补给来源[J]. 干旱区资源与环境,2021,35(1):160-168.

    SONG C,MA B,LIANG X,et al. Hydrochemical characteristics and recharge of groundwater in piedmont plain in the Manas River Basin[J]. Journal of Arid Land Resources and Environment,2021,35(1):160-168. (in Chinese with English abstract
    [29] 康文辉,周殷竹,周金龙,等. 新疆玛纳斯河流域平原区地下水无机组分分布特征、源解析及健康风险评价[J]. 环境科学,2025,45(2):843-853.

    KANG W H,ZHOU Y Z,ZHOU J L,et al. Distribution,source apportionment,and health risk assessment of inorganic components in groundwater in the plain area of Manas River Basin in Xinjiano[J]. Environmental Science,2025,46(2):843-853. (in Chinese with English abstract
    [30] LI Z J,YANG Q C,YANG Y S,et al. Isotopic and geochemical interpretation of groundwater under the influences of anthropogenic activities[J]. Journal of Hydrology,2019,576:685-697. doi: 10.1016/j.jhydrol.2019.06.037
    [31] 冯泽超. 榆神矿区地下水水化学演化特征及水质评价研究[D]. 西安:长安大学,2023.

    FENG Z C. Study on the characteristics of groundwater hydrochemical evolution and water quality evaluation in Yushen mining area[D]. Xi'an:Changan University,2023. (in Chinese with English abstract
    [32] 鲁涵,曾妍妍,周金龙,等. 塔里木盆地绿洲带地下水咸化机制[J]. 中国环境科学,2023,43(10):5377-5388.

    LU H,ZENG Y Y,ZHOU J L,et al. Mechanism of groundwater salinization in the oasis zone of the Tarim Basin[J]. China Environmental Science,2023,43(10):5377-5388. (in Chinese with English abstract
    [33] 王苏民. 世界咸水湖的物理与化学特性[J]. 湖泊科学,1993,5(3):278-286. doi: 10.18307/1993.0311

    WANG S M. Physics and chemistry of saline lakes[J]. Journal of Lake Sciences,1993,5(3):278-286. (in Chinese with English abstract doi: 10.18307/1993.0311
    [34] 杨永强. 渭河流域咸阳段地下水水质评价与水文地球化学演化模拟[D]. 西安:长安大学,2023.

    YANG Y Q. Evaluation of groundwater quality and simulation of hydrogeochemical evolutionin the Xianyang section of the Weihe River Basin,China[D]. Xi'an:Chang'an University,2023. (in Chinese with English abstract
    [35] HUANG T M,PANG Z H. Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles:A case study at Guyuan and Xifeng in the Loess Plateau of China[J]. Hydrogeology Journal,2011,19(1):177-186. doi: 10.1007/s10040-010-0643-8
    [36] 高宗军,万志澎,贺可强,等. 大汶河流域中上游地区岩溶地下水水化学特征及其控制因素分析[J]. 地质科技通报,2022,41(5):264-272.

    GAO Z J,WAN Z P,HE K Q,et al. Hydrochemical characteristics and controlling factors of karst groundwater in middle and upper reaches of Dawen River Basin[J]. Bulletin of Geological Science and Technology,2022,41(5):264-272. (in Chinese with English abstract
    [37] FISHER R S,MULLICAN I. Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan Desert,trans-Pecos,Texas,USA[J]. Hydrogeology Journal,1997,5(2):4-16. doi: 10.1007/s100400050102
    [38] ISLAM M N,JO Y T,PARK J H. Leaching and redistribution of Cu and Pb due to simulated road runoff assessed by column leaching test,chemical analysis,and PHREEQC modeling[J]. Environmental Earth Sciences,2016,75(12):1041. doi: 10.1007/s12665-016-5804-1
    [39] SABARATHINAM C,RASHED T,DASHTI F,et al. Equilibrium states of groundwater chemistry in coastal region of Kuwait[J]. Desalination and Water Treatment,2022,263:248-256. doi: 10.5004/dwt.2022.28236
    [40] 刘志明,刘少玉,王贵玲. 新疆玛纳斯河流域平原地下水水−岩作用模拟[J]. 地质学报,2006,80(6):885-892.

    LIU Z M,LIU S Y,WANG G L. Water-rock interaction simulation of ground water in the plain of Manasi River Basin,Xinjiang[J]. Acta Geologica Sinica,2006,80(6):885-892. (in Chinese with English abstract
    [41] 王明振,吴朝东,王陆新,等. 准噶尔盆地南缘侏罗系泥岩黏土矿物组合及地球化学特征[J]. 矿物岩石地球化学通报,2014,33(4):421-430. doi: 10.3969/j.issn.1007-2802.2014.04.002

    WANG M Z,WU C D,WANG L X,et al. Jurassic clay mineral assambleges in mudstones and geochemical characteristics in the southern part of Junggar Basin[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2014,33(4):421-430. (in Chinese with English abstract doi: 10.3969/j.issn.1007-2802.2014.04.002
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  47
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-26
  • 录用日期:  2024-09-30
  • 修回日期:  2024-09-25
  • 网络出版日期:  2025-03-21

目录

    /

    返回文章
    返回