留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镉在不同氧化还原环境中的吸附解吸行为

李刚 王聪 解科峰 伍杭 牛宏

李刚,王聪,解科峰,等. 镉在不同氧化还原环境中的吸附解吸行为[J]. 地质科技通报,2025,44(1):241-250 doi: 10.19509/j.cnki.dzkq.tb20240369
引用本文: 李刚,王聪,解科峰,等. 镉在不同氧化还原环境中的吸附解吸行为[J]. 地质科技通报,2025,44(1):241-250 doi: 10.19509/j.cnki.dzkq.tb20240369
LI Gang,WANG Cong,XIE Kefeng,et al. Adsorption and desorption behavior of cadmium in different redox environments[J]. Bulletin of Geological Science and Technology,2025,44(1):241-250 doi: 10.19509/j.cnki.dzkq.tb20240369
Citation: LI Gang,WANG Cong,XIE Kefeng,et al. Adsorption and desorption behavior of cadmium in different redox environments[J]. Bulletin of Geological Science and Technology,2025,44(1):241-250 doi: 10.19509/j.cnki.dzkq.tb20240369

镉在不同氧化还原环境中的吸附解吸行为

doi: 10.19509/j.cnki.dzkq.tb20240369
详细信息
    作者简介:

    李刚:E-mail:tonglin162@163.com

    通讯作者:

    E-mail:niuhong@scuec.edu.cn

  • 中图分类号: X142

Adsorption and desorption behavior of cadmium in different redox environments

More Information
  • 摘要:

    地下氧化还原环境变化影响重金属在土壤中的吸附解吸,其影响机制尚不明朗。制备了不同氧化还原环境的蒙脱石,采用静态吸附实验及表征手段探究了不同氧化还原环境对镉吸附的影响。结果显示,还原态蒙脱石M-RD和氧化态蒙脱石M-OX氧化还原性变化不大,还原再氧化态蒙脱石M-RO中发生的氧化还原反应最强烈,还原性逐渐下降。M-RD吸附效果比M-OX更好,尽管M-RD再次氧化后,部分被吸附的Cd会被释放出来,但效果还是高于M-OX。M-RD再次接触氧气时,与氧气发生氧化反应,产出大量羟基自由基,而M-OX和M-RD几乎不产生羟基自由基。M-RD再次氧化后,Fe(Ⅱ)-Fe(Ⅱ)-Fe(Ⅱ)-OH重排-OH弯曲振动特征吸收峰和Si-O四面体结构的特征吸收峰产生变动,表明蒙脱石发生了结构摄动,判断是其中的Fe(Ⅱ)失去电子被氧化成Fe(Ⅲ),导致了蒙脱石结构的变化,使得蒙脱石比表面积、孔容和平均孔径均增大了,氧化还原条件变化影响其吸附性能,削弱了蒙脱石对Cd的吸附,导致吸附的Cd被再次释放。本研究揭示了地下环境氧化还原条件影响Cd吸附解吸的机理,可为氧化还原环境不断变化的土壤污染修复治理提供理论指导。

     

  • 图 1  蒙脱石吸附过程中Fe(Ⅱ)/Fe(Ⅲ)曲线

    M-OX. 氧化态蒙脱石;M-RD. 还原态蒙脱石;M-RO为还原再氧化蒙脱石;下同

    Figure 1.  Fe2+/Fe3+ curves during the adsorption by montmorillonite

    图 2  蒙脱石对Cd的吸附曲线

    C0表示吸附实验开始前Cd浓度;C表示吸附过程中Cd浓度

    Figure 2.  Adsorption curves of Cd by montmorillonite

    图 3  蒙脱石吸附过程中羟基自由基的变化曲线

    Figure 3.  Change curve of hydroxyl radicals during the adsorption by montmorillonite

    图 4  三种材料吸附前后的氮气洗脱附等温线

    Figure 4.  Nitrogen adsorption and desorption isotherms before and after adsorption of the three materials

    图 5  三种材料吸附前后的介孔孔径分布图

    Figure 5.  Mesoporous pore size distribution before and after adsorption of the three materials

    图 6  三种材料吸附前后的XRD谱图

    Figure 6.  XRD pattern before and after adsorption of the three materials

    图 7  三种材料吸附前的FTIR谱图

    Figure 7.  FTIR pattern before adsorption of the three materials

    图 8  M-RO材料在吸附反应前、后的红外光谱图

    Figure 8.  FTIR pattern of M-RO materials before and after the adsorption reaction

    表  1  三种材料吸附前后的比表面积、孔容及平均孔径

    Table  1.   Specific surface area, pore volume and average pore size before and after adsorption of the three materials

    编号 比表面积/(m2·g−1 孔容/(cm3·g−1 平均孔径/nm
    M-OX0 14.619 0.052 4.129
    M-RD0 6.804 0.022 3.885
    M-RO0 9.522 0.037 4.154
    M-OX48 16.050 0.027 3.884
    M-RD48 4.059 0.037 3.933
    M-RO48 7.618 0.038 4.126
    下载: 导出CSV
  • [1] LI Q,WANG C,DAI T,et al. Prediction of soil cadmium distribution across a typical area of Chengdu Plain,China[J]. Scientific Reports,2017,7(1):1-12.
    [2] TARAKINA N V,VERBERCK B. A portrait of cadmium[J]. Nature Chemistry,2016,9(1):96.
    [3] HU B,SHAO S,FU Z,et al. Identifying heavy metal pollution hot spots in soil-rice systems:A case study in south of Yangtze River Delta,China[J]. Science of the Total Environment,2019,658:614-625. doi: 10.1016/j.scitotenv.2018.12.150
    [4] ZHANG X,ZHONG T,LIU L,et al. Impact of soil heavy metal pollution on food safety in China[J]. PloS One,2015,10(8):e0135182. doi: 10.1371/journal.pone.0135182
    [5] QIN G,NIU Z,YU J,et al. Soil heavy metal pollution and food safety in China:Effects,sources and removing technology[J]. Chemosphere,2021,267:129205. doi: 10.1016/j.chemosphere.2020.129205
    [6] HUANG,WANG L,WANG W,et al. Current status of agricultural soil pollution by heavy metals in China:A meta-analysis[J]. Science of the Total Environment,2019,651:3034-3042. doi: 10.1016/j.scitotenv.2018.10.185
    [7] 刘剑峰,谷宁,张可慧. 土壤重金属空间分异及迁移研究进展与展望[J]. 地理与地理信息科学,2012,28(2):99-103.

    LIU J F,GU N,ZHANG K H. Progress and prospect of soil heavy metal spatial differentiation and migration[J]. Geography and Geo-Information Science,2012,28(2):99-103. (in Chinese with English abstract
    [8] 赵萌,姜永海,冯帆,等. 典型地球化学与水文地质特征对污染物自然衰减影响研究进展[J]. 地质科技通报,2023,42(3):250-261.

    ZHAO M,JIANG Y H,FENG F,et al. Resarch advances on the influence of typical geochemical and hydrogeological characteristics on the natural attenuation of pollutants[J]. Bulletin of Geological Science and Technology,2023,42(3):250-261. (in Chinese with English abstract
    [9] 尹元雪,赵雨溪,孙群群,等. Cr(Ⅲ)对锰氧化菌P. putida MnB1活性及功能的影响规律与机制[J]. 地质科技通报,2024,43(1):298-305.

    YIN Y X,ZHAO Y X,SUN Q Q,et al. Effect of Cr(Ⅲ) on the activity and function of Mn(Ⅱ)-oxidizing bacteria Pseudomonas putida MnB1[J]. Bulletin of Geological Science and Technology,2024,43(1):298-305. (in Chinese with English abstract
    [10] 巩宗强,李培军,台培东. 污染土壤的淋洗法修复研究进展[J]. 环境污染治理技术与设备,2002,3(7):45-50.

    GONG Z Q,LI P J,TAI P D. Advance ment of soil washing process for contaminated soil[J]. Techniques and Equipment for Environmental Pollution Control,2002,3(7):45-50. (in Chinese with English abstract
    [11] 刘慧. 巯基化蒙脱石的制备及其对镉的吸附/解吸机理研究 [D]. 成都:成都理工大学,2013.

    LIU H. Preparation of thiol-dodified montmorillonite and mechanism study of cadmium adsorption/desorption [D]. Chengdu:Chengdu University of Technology,2013. (in Chinese with English abstract
    [12] 曹春艳. 改性膨润土吸附处理 含六价铬废水的研究[J]. 化学工程师,2008(10):43-45. doi: 10.3969/j.issn.1002-1124.2008.10.016

    CAO C Y. Study on adsorption of charomium in wastewater by modified bentonite[J]. Chemical Engineer,2008(10):43-45. (in Chinese with English abstract doi: 10.3969/j.issn.1002-1124.2008.10.016
    [13] 施和平,吴瑞凤,杨威. 蒙脱石的开发与应用[J]. 内蒙古石油化工,2004,30(2):32-34. doi: 10.3969/j.issn.1006-7981.2004.02.011

    SHI H P,WU R F,YANG W. Development and application of montmorillonite[J]. Inner Mongolia Petrochemicals,2004,30(2):32-34. (in Chinese with English abstract doi: 10.3969/j.issn.1006-7981.2004.02.011
    [14] LIU X,YUAN S,TONG M,et al. Oxidation of trichloroethylene by the hydroxyl radicals produced from oxygenation of reduced nontronite[J]. Water Research,2017,113:72-79. doi: 10.1016/j.watres.2017.02.012
    [15] GAN H,STUCKI J W,BAILEY G W. Reduction of structural iron in ferruginous smectite by free radicals[J]. Clays and Clay Minerals,1992,40(6):659-665. doi: 10.1346/CCMN.1992.0400605
    [16] STUCKI J W,GOLDEN D,ROTH C B. Preparation and handling of dithionite-reduced smectite suspensions[J]. Clays and Clay Minerals,1984,32(3):191-197. doi: 10.1346/CCMN.1984.0320306
    [17] JOO S H,FEITZ A J,SEDLAK D L,et al. Quantification of the oxidizing capacity of nanoparticulate zero-valent iron[J]. Environmental Science & Technology,2005,39(5):1263-1268.
    [18] KING D W,LOUNSBURY H A,MILLERO F J. Rates and mechanism of Fe (Ⅱ) oxidation at nanomolar total iron concentrations[J]. Environmental Science & Technology,1995,29(3):818-824.
    [19] PHAM A N,WAITE T D. Oxygenation of Fe (Ⅱ) in natural waters revisited:Kinetic modeling approaches,rate constant estimation and the importance of various reaction pathways[J]. Geochimica et Cosmochimica Acta,2008,72(15):3616-3630. doi: 10.1016/j.gca.2008.05.032
    [20] MINELLA M,DE LAURENTIIS E,MAURINO V,et al. Dark production of hydroxyl radicals by aeration of anoxic lake water[J]. Science of the Total Environment,2015,527:322-327.
    [21] TONG M,YUAN S,MA S,et al. Production of abundant hydroxyl radicals from oxygenation of subsurface sediments[J]. Environmental Science & Technology,2016,50(1):214-221.
    [22] MOPPER K,ZHOU X. Hydroxyl radical photoproduction in the sea and its potential impact on marine processes[J]. Science,1990,250:661-664. doi: 10.1126/science.250.4981.661
    [23] WANG X,DONG H,ZENG Q,et al. Reduced iron-containing clay minerals as antibacterial agents[J]. Environmental Science & Technology,2017,51(13):7639-7647.
    [24] HESTER E T,GOOSEFF M N. Moving beyond the banks:Hyporheic restoration is fundamental to restoring ecological services and functions of streams[J]. Environmental Science & Technology,2010,44(5):1521-1525.
    [25] BECK M,DELLWIG O,SCHNETGER B,et al. Cycling of trace metals (Mn,Fe,Mo,U,V,Cr) in deep pore waters of intertidal flat sediments[J]. Geochimica et Cosmochimica Acta,2008,72(12):2822-2840. doi: 10.1016/j.gca.2008.04.013
    [26] KUMAR A R,RIYAZUDDIN P. Seasonal variation of redox species and redox potentials in shallow groundwater:A comparison of measured and calculated redox potentials[J]. Journal of Hydrology,2012,444:187-198.
    [27] ZHANG P,YUAN S,LIAO P. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions[J]. Geochimica et Cosmochimica Acta,2016,172:444-457.
    [28] CHENG D,YUAN S,LIAO P,et al. Oxidizing impact induced by mackinawite (FeS) nanoparticles at oxic conditions due to production of hydroxyl radicals[J]. Environmental Science & Technology,2016,50(21):11646-11653.
    [29] ZHAO L,DONG H,KUKKADAPU R,et al. Biological oxidation of Fe (Ⅱ) in reduced nontronite coupled with nitrate reduction by Pseudogulbenkiania sp. Strain 2002[J]. Geochimica et Cosmochimica Acta,2013,119:231-247. doi: 10.1016/j.gca.2013.05.033
    [30] ZHAO L,DONG H,KUKKADAPU R K,et al. Biological redox cycling of iron in nontronite and its potential application in nitrate removal[J]. Environmental Science & Technology,2015,49(9):5493-5501.
    [31] VANTELON D,MONTARGèS-PELLETIER E,MICHOT L,et al. Iron distribution in the octahedral sheet of dioctahedral smectites: An Fe K-edge X-ray absorption spectroscopy study[J]. Physics and Chemistry of Minerals,2003,30(1):44-53. doi: 10.1007/s00269-002-0286-y
    [32] NEUMANN A,HOFSTETTER T B,LÜSSI M,et al. Assessing the redox reactivity of structural iron in smectites using nitroaromatic compounds as kinetic probes[J]. Environmental Science & Technology,2008,42(22):8381-8387.
    [33] NEUMANN A,PETIT S,HOFSTETTER T B. Evaluation of redox-active iron sites in smectites using middle and near infrared spectroscopy[J]. Geochimica et Cosmochimica Acta,2011,75(9):2336-2355.
    [34] MANCEAU A,LANSON B,DRITS V,et al. Oxidation-reduction mechanism of iron in dioctahedral smectites:I. Crystal chemistry of oxidized reference nontronites[J]. American Mineralogist,2000,85(1):133-152. doi: 10.2138/am-2000-0114
    [35] FIALIPS C I,HUO D,YAN L,et al. Effect of Fe oxidation state on the IR spectra of Garfield nontronite[J]. American Mineralogist,2002,87(5/6):630-641.
    [36] MADEJOVá J. FTIR techniques in clay mineral studies[J]. Vibrational Spectroscopy,2003,31(1):1-10. doi: 10.1016/S0924-2031(02)00065-6
    [37] YAN L,STUCKI J W. Structural perturbations in the solid-water interface of redox transformed nontronite[J]. Journal of Colloid and Interface Science,2000,225(2):429-439.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  43
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-03
  • 录用日期:  2024-09-19
  • 修回日期:  2024-09-17
  • 网络出版日期:  2025-02-18

目录

    /

    返回文章
    返回