留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cr(Ⅲ)在不同氧化还原环境中的转化

李刚 王聪 解科峰 魏小雅 牛宏

李刚,王聪,解科峰,等. Cr(Ⅲ)在不同氧化还原环境中的转化[J]. 地质科技通报,2025,44(2):1-13 doi: 10.19509/j.cnki.dzkq.tb20240407
引用本文: 李刚,王聪,解科峰,等. Cr(Ⅲ)在不同氧化还原环境中的转化[J]. 地质科技通报,2025,44(2):1-13 doi: 10.19509/j.cnki.dzkq.tb20240407
LI Gang,WANG Cong,XIE Kefeng,et al. Transformation of Cr(Ⅲ) in different redox environments[J]. Bulletin of Geological Science and Technology,2025,44(2):1-13 doi: 10.19509/j.cnki.dzkq.tb20240407
Citation: LI Gang,WANG Cong,XIE Kefeng,et al. Transformation of Cr(Ⅲ) in different redox environments[J]. Bulletin of Geological Science and Technology,2025,44(2):1-13 doi: 10.19509/j.cnki.dzkq.tb20240407

Cr(Ⅲ)在不同氧化还原环境中的转化

doi: 10.19509/j.cnki.dzkq.tb20240407
基金项目: 中央高校基本科研业务费专项资金项目(CZY23011)
详细信息
    作者简介:

    李刚:E-mail:tonglin162@163.com

    通讯作者:

    E-mail:niuhong@scuec.edu.cn

  • 中图分类号: X50

Transformation of Cr(Ⅲ) in different redox environments

More Information
  • 摘要:

    当环境处在氧化还原波动时,含Fe(Ⅱ)黏土矿物如何影响Cr(Ⅲ)的吸附解吸和价态转化,值得深入研究。通过制备氧化态、还原态、还原再氧化态3种不同状态的蒙脱石,对Cr(Ⅲ)进行了吸附实验,测定吸附值、Fe(Ⅱ)/总Fe、羟基自由基浓度以及价态变化,并且对吸附前后的蒙脱石固体材料进行了X射线光电子能谱(XPS)、X射线衍射(XRD)、傅里叶变换红外吸收光谱仪(FTIR)表征。结果显示,氧化态和还原态蒙脱石对Cr(Ⅲ)的吸附率随pH值的增大而增加,还原态蒙脱石吸附率最高,因为铁含量最高,这2种状态下不发生价态变化。而还原再氧化态蒙脱石的吸附率最小,是由于Fe(Ⅱ)迅速将氧气活化产生羟基自由基,Cr(Ⅲ)被迅速氧化为Cr(Ⅵ),pH值越低,氧化率越高,在8 h测得Cr(Ⅵ)又被还原性物质Fe(Ⅱ)再次还原为Cr(Ⅲ)。通过Fe(Ⅱ)/总Fe值及羟基自由基浓度变化,验证了氧化还原环境发生改变,Fe(Ⅱ)的消耗率和羟基自由基的生成率有较高的相关性。通过实验可以发现,还原再氧化后会产生羟基自由基,影响Cr(Ⅲ)的吸附解吸,并且强氧化性的羟基自由基可以氧化Cr(Ⅲ)为有毒的Cr(Ⅵ),验证了地下环境氧化还原波动后会使铬出现“返黄”的假定。

     

  • 图 1  不同pH值条件下蒙脱石对Cr(Ⅲ)的吸附曲线

    Figure 1.  Adsorption curves of Cr(Ⅲ) by montmorillonite under different pH conditions

    图 2  不同pH值条件下蒙脱石吸附Cr(Ⅲ)过程中Fe(Ⅱ)/总Fe的变化

    Figure 2.  Variations of Fe(Ⅱ)/total Fe ratio during the adsorption of Cr(Ⅲ) by montmorillonite under different pH conditions

    图 3  蒙脱石中Fe的XPS谱图

    Figure 3.  XPS spectra of Fe in montmorilite

    图 4  蒙脱石吸附Cr(Ⅲ)的XRD谱图

    Figure 4.  XRD profiles of Cr(Ⅲ) adsorption by montmorillonite

    图 5  蒙脱石在原始状态下的FTIR谱图

    Figure 5.  FTIR spectra of montmorillonite in its original state

    图 6  不同pH值下蒙脱石吸附Cr(Ⅲ)过程中羟基自由基的变化

    Figure 6.  Changes in hydroxyl radical content during Cr(Ⅲ) adsorption by montmorillonite urder different pH conditions

    图 7  不同pH值下羟基自由基和Fe(Ⅱ)浓度变化的相关性

    Figure 7.  Correlations between hydroxyl radical and Fe(Ⅱ) concentration changes under different pH conditions

    图 8  不同状态蒙脱石吸附Cr(Ⅲ)过程中Cr(Ⅵ)的质量浓度变化

    Figure 8.  Concentration changes of Cr(Ⅵ) during the adsorption of Cr(Ⅲ) by montmorillonite under different pH conditions

    图 9  蒙脱石中铬的XPS光谱图

    Figure 9.  XPS spectra of chromium in montmorillonite

    表  1  不同pH值条件下蒙脱石对Cr(Ⅲ)的吸附率

    Table  1.   Adsorption rates of Cr(Ⅲ) by montmorillonite under different pH conditions 吸附率/%

    蒙脱石状态 pH=5 pH=7 pH=9
    氧化态 76.62 93.93 96.64
    还原态 96.19 96.80 99.76
    还原再氧化态 65.68 86.62 77.30
    下载: 导出CSV
  • [1] ZHOU L,CHI T Y,ZHOU Y Y,et al. Efficient removal of hexavalent chromium through adsorption-reduction-adsorption pathway by iron-clay biochar composite prepared from Populus nigra[J]. Separation and Purification Technology,2022,285:120386. doi: 10.1016/j.seppur.2021.120386
    [2] JAISHANKAR M,TSETEN T,ANBALAGAN N,et al. Toxicity,mechanism and health effects of some heavy metals[J]. Interdisciplinary Toxicology,2014,7(2):60-72. doi: 10.2478/intox-2014-0009
    [3] 尹元雪,赵雨溪,孙群群,等. Cr(Ⅲ)对锰氧化菌P. putida MnB1活性及功能的影响规律与机制[J]. 地质科技通报,2024,43(1):298-305.

    YIN Y X,ZHAO Y X,SUN Q Q,et al. Effect of Cr(Ⅲ) on the activity and function of Mn(Ⅱ)-oxidizing bacte-r ia Pseudomonas putida MnB1[J]. Bulletin of Geological Science and Technology,2024,43(1):298-305. (in Chinese with English abstract
    [4] MORTADA W I,EL-NAGGAR A,MOSA A,et al. Biogeochemical behaviour and toxicology of chromium in the soil-water-human nexus:A review[J]. Chemosphere,2023,331:138804. doi: 10.1016/j.chemosphere.2023.138804
    [5] BOLAN N S,ADRIANO D C,CURTIN D. Soil acidification and liming interactions with nutrientand heavy metal transformationand bioavailability[M]//Anon. Advances in agronomy. Amsterdam:Elsevier,2003:215-272.
    [6] CHOPPALA G,BOLAN N,KUNHIKRISHNAN A,et al. Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils[J]. Environmental Science and Pollution Research International,2015,22(12):8969-8978. doi: 10.1007/s11356-013-1653-6
    [7] HSU N H,WANG S L,LIN Y C,et al. Reduction of Cr(Ⅵ) by crop-residue-derived black carbon[J]. Environmental Science & Technology,2009,43(23):8801-8806.
    [8] SAHINKAYA E,KILIC A,ALTUN M,et al. Hexavalent chromium reduction in a sulfur reducing packed-bed bioreactor[J]. Journal of Hazardous Materials,2012,219:253-259.
    [9] ZHANG P,LIU J Y,YU H,et al. Kinetic models for hydroxyl radical production and contaminant removal during soil/sediment oxygenation[J]. Water Research,2023,240:120071. doi: 10.1016/j.watres.2023.120071
    [10] YU H L,ZHU H T,ZHANG D F,et al. Understanding and eliminating the reductant interference on chromium Ⅵ measurement with USEPA method 3060A[J]. Science of the Total Environment,2023,879:163192. doi: 10.1016/j.scitotenv.2023.163192
    [11] AYELE A,GODETO Y G. Bioremediation of chromium by microorganisms and its mechanisms related to functional groups[J]. Journal of Chemistry,2021,2021:7694157.
    [12] LIANG J L,HUANG X M,YAN J W,et al. A review of the formation of Cr(Ⅵ) via Cr(Ⅲ) oxidation in soils and groundwater[J]. Science of the Total Environment,2021,774:145762. doi: 10.1016/j.scitotenv.2021.145762
    [13] PAN C,GIAMMAR D. Interplay of transport processes and interfacial chemistry affecting chromium reduction and reoxidation with iron and manganese[J]. Frontiers of Environmental Science & Engineering,2020,14(5):81.
    [14] XIE W J,YUAN S H,TONG M,et al. Contaminant degradation by ·OH during sediment oxygenation:Dependence on Fe(Ⅱ)species[J]. Environmental Science & Technology,2020,54(5):2975-2984.
    [15] 张子傲,刘恩涛,许家省,等. 不同国别进口铁矿石矿物学特征分析:来自显微组分和元素分析的约束[J]. 地质科技通报,2023,42(2):33-40.

    ZHANG Z A,LIU E T,XU J X,et al. Analysis of mineralogical characteristics of imported iron ore from different countries:Constraints from maceral compositions and elemental analysis[J]. Bulletin of Geological Science and Technology,2023,42(2):33-40. (in Chinese with English abstract
    [16] ZHAO J J,AL T,CHAPMAN S W,et al. Determination of Cr(Ⅲ) solids formed by reduction of Cr(Ⅵ) in a contaminated fractured bedrock aquifer:Evidence for natural attenuation of Cr(Ⅵ)[J]. Chemical Geology,2017,474:1-8. doi: 10.1016/j.chemgeo.2017.10.004
    [17] DHAL B,THATOI H N,DAS N N,et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste:A review[J]. Journal of Hazardous Materials,2013,250:272-291.
    [18] CHEN N,FANG G D,LIU G X,et al. The degradation of diethyl phthalate by reduced smectite clays and dissolved oxygen[J]. Chemical Engineering Journal,2019,355:247-254. doi: 10.1016/j.cej.2018.08.160
    [19] SCHAEFER C E,HO P,BERNS E,et al. Mechanisms for abiotic dechlorination of trichloroethene by ferrous minerals under oxic and anoxic conditions in natural sediments[J]. Environmental Science & Technology,2018,52(23):13747-13755.
    [20] TONG M,YUAN S H,MA S C,et al. Production of abundant hydroxyl radicals from oxygenation of subsurface sediments[J]. Environmental Science & Technology,2016,50(1):214-221.
    [21] XIE W J,ZHANG P,LIAO W J,et al. Ligand-enhanced electron utilization for trichloroethylene degradation by ·OH during sediment oxygenation[J]. Environmental Science & Technology,2021,55(10):7044-7051.
    [22] 袁铎恩,边家辉,刘紫璇,等. 华北板块南缘早二叠世煤中微量元素赋存特征及主控机制[J]. 地质科技通报,2023,42(5):138-149.

    YUAN D E,BIAN J H,LIU Z X,et al. Occurrence characteristics and main control mechanism of trace elements in Early Permian coal in the southern margin of North China Plate[J]. Bulletin of Geological Science and Technology,2023,42(5):138-149. (in Chinese with English abstract
    [23] CHANG J J,ZHANG J,WANG H,et al. Cr(Ⅵ) adsorption and reduction by magnetite-humic acid adsorption complexes under mildly acidic conditions:Synergistic/antagonistic mechanism and multi-step reaction model[J]. Chemical Engineering Journal,2023,451:138648. doi: 10.1016/j.cej.2022.138648
    [24] LI Y,LIU J R,JIA S Y,et al. TiO2 pillared montmorillonite as a photoactive adsorbent of arsenic under UV irradiation[J]. Chemical Engineering Journal,2012,191:66-74. doi: 10.1016/j.cej.2012.02.058
    [25] IJAGBEMI C O,BAEK M H,KIM D S. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions[J]. Journal of Hazardous Materials,2009,166(1):538-546. doi: 10.1016/j.jhazmat.2008.11.085
    [26] DOGAN M,DOGAN A U,YESILYURT F I,et al. Baseline studies of the clay minerals society special clays:Specific surface area by the Brunauer Emmett Teller (BET) method[J]. Clays and Clay Minerals,2007,55(5):534-541. doi: 10.1346/CCMN.2007.0550508
    [27] WANG T,ZHAO D Y,CAO J,et al. FeS-mediated mobilization and immobilization of Cr(Ⅲ) in oxic aquatic systems[J]. Water Research,2022,211:118077. doi: 10.1016/j.watres.2022.118077
    [28] GAO S J,CAO W D,GAO J S,et al. Effects of long-term application of different green manures on ferric iron reduction in a red paddy soil in southern China[J]. Journal of Integrative Agriculture,2017,16(4):959-966. doi: 10.1016/S2095-3119(16)61509-5
    [29] HAI J,LIU L H,TAN W F,et al. Catalytic oxidation and adsorption of Cr(Ⅲ) on iron-manganese nodules under oxic conditions[J]. Journal of Hazardous Materials,2020,390:122166. doi: 10.1016/j.jhazmat.2020.122166
    [30] XU T,NAN F,JIANG X F,et al. Effect of soil pH on the transport,fractionation,and oxidation of chromium(Ⅲ)[J]. Ecotoxicology and Environmental Safety,2020,195:110459. doi: 10.1016/j.ecoenv.2020.110459
    [31] LI Q,ZHANG X M,ZHENG J H,et al. Phase transformation of Cr(Ⅵ) host-mineral driven by citric acid-aided mechanochemical approach for advanced remediation of chromium ore processing residue-contaminated soil[J]. Journal of Hazardous Materials,2024,461:132530. doi: 10.1016/j.jhazmat.2023.132530
    [32] LIU C R,LIU Y,SHEN W T,et al. Unveiling the interaction mechanism between facet-dependent pyrite nanoparticles and Cr(Ⅵ) under anaerobic environment:Adsorption,redox,and phase transformation[J]. Chemical Engineering Journal,2023,459:141586. doi: 10.1016/j.cej.2023.141586
    [33] PETIT S,BARON F,GRAUBY O,et al. Revisiting the cation mass-valence sum approach to assigning infrared OH- bands in dioctahedral smectites in the light of new data from synthetic Ga-Fe3+ smectites[J]. Vibrational Spectroscopy,2016,87:137-142. doi: 10.1016/j.vibspec.2016.09.022
    [34] ZHAO L D,DONG H L,KUKKADAPU R K,et al. Biological redox cycling of iron in nontronite and its potential application in nitrate removal[J]. Environmental Science & Technology,2015,49(9):5493-5501.
    [35] DRITS V A,MCCARTY D K,ZviAGINA B B. Crystal-chemical factors responsible for the distribution of octahedral cations over trans- and cis-sites in dioctahedral 2:1 layer silicates[J]. Clays and Clay Minerals,2006,54(2):131-152. doi: 10.1346/CCMN.2006.0540201
    [36] WOLTERS F,LAGALY G,KAHR G,et al. A comprehensive characterization of dioctahedral smectites[J]. Clays and Clay Minerals,2009,57(1):115-133. doi: 10.1346/CCMN.2009.0570111
    [37] DRITS V A,MANCEAU A. A model for the mechanism of Fe3+ to Fe2+ reduction in dioctahedral smectites[J]. Clays and Clay Minerals,2000,48(2):185-195. doi: 10.1346/CCMN.2000.0480204
    [38] FIALIPS C I,HUO D F,YAN L B,et al. Effect of Fe oxidation state on the IR spectra of Garfield nontronite[J]. American Mineralogist,2002,87(5/6):630-641.
    [39] NEUMANN A,PETIT S,HOFSTETTER T B. Evaluation of redox-active iron sites in smectites using middle and near infrared spectroscopy[J]. Geochimica et Cosmochimica Acta,2011,75(9):2336-2355. doi: 10.1016/j.gca.2011.02.009
    [40] MADEJOVÁ J. FTIR techniques in clay mineral studies[J]. Vibrational Spectroscopy,2003,31(1):1-10. doi: 10.1016/S0924-2031(02)00065-6
    [41] YAN L B,STUCKI J W. Structural perturbations in the solid-water interface of redox transformed nontronite[J]. Journal of Colloid and Interface Science,2000,225(2):429-439. doi: 10.1006/jcis.2000.6794
    [42] ROSE A L,WAITE T D. Kinetic model for Fe(Ⅱ) oxidation in seawater in the absence and presence of natural organic matter[J]. Environmental Science & Technology,2002,36(3):433-444.
    [43] LIU W Z,LI J,ZHENG J Y,et al. Different pathways for Cr(Ⅲ) oxidation:Implications for Cr(Ⅵ) reoccurrence in reduced chromite ore processing residue[J]. Environmental Science & Technology,2020,54(19):11971-11979.
    [44] SCHINDLER M,LUSSIER A J,PRINCIPE E,et al. Dissolution mechanisms of chromitite:Understanding the release and fate of chromium in the environment[J]. American Mineralogist,2018,103(2):271-283. doi: 10.2138/am-2018-6234
    [45] WADHAWAN A R,LIvi K J,STONE A T,et al. Influence of oxygenation on chromium redox reactions with manganese sulfide (MnS(s))[J]. Environmental Science & Technology,2015,49(6):3523-3531.
    [46] BARTLETT R J,JAMES B. Behavior of chromium in soils:Ⅲ. Oxidation[J]. Journal of Environmental Quality,1979,8:31-35.
    [47] ZHANG W F,ZHANG P X,LIU F,et al. Simultaneous oxidation of Cr(Ⅲ) and extraction of Cr(Ⅵ) from chromite ore processing residue by silicate-assisted hydrothermal treatment[J]. Chemical Engineering Journal,2019,371:565-574. doi: 10.1016/j.cej.2019.04.082
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  179
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-17
  • 录用日期:  2024-09-30
  • 修回日期:  2024-09-28
  • 网络出版日期:  2024-10-09

目录

    /

    返回文章
    返回