留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地下水与湖泊交互作用的研究趋势与前沿

杨泽森 林晶晶 常启昕 周爱国 黄小龙

杨泽森, 林晶晶, 常启昕, 周爱国, 黄小龙. 地下水与湖泊交互作用的研究趋势与前沿[J]. 地质科技通报, 2024, 43(6): 306-317. doi: 10.19509/j.cnki.dzkq.tb20240463
引用本文: 杨泽森, 林晶晶, 常启昕, 周爱国, 黄小龙. 地下水与湖泊交互作用的研究趋势与前沿[J]. 地质科技通报, 2024, 43(6): 306-317. doi: 10.19509/j.cnki.dzkq.tb20240463
YANG Zesen, LIN Jingjing, CHANG Qixin, ZHOU Aiguo, HUANG Xiaolong. Research trends and frontiers of groundwater-lake interaction[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 306-317. doi: 10.19509/j.cnki.dzkq.tb20240463
Citation: YANG Zesen, LIN Jingjing, CHANG Qixin, ZHOU Aiguo, HUANG Xiaolong. Research trends and frontiers of groundwater-lake interaction[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 306-317. doi: 10.19509/j.cnki.dzkq.tb20240463

地下水与湖泊交互作用的研究趋势与前沿

doi: 10.19509/j.cnki.dzkq.tb20240463
基金项目: 

国家自然科学基金长江水科学研究联合基金项目 U2240213

详细信息
    作者简介:

    杨泽森, E-mail: zesen_yang@foxmail.com

    通讯作者:

    林晶晶, E-mail: jjlin90@163.com

  • 中图分类号: P641.2

Research trends and frontiers of groundwater-lake interaction

More Information
  • 摘要:

    为了解地下水与湖泊交互作用的研究趋势与前沿, 基于Web of Science数据库对相关文献进行了总结回顾, 依据VOSviewer辅助梳理了地下水与湖泊交互作用研究主题的发展历程, 结合CNKI数据库核心文献综合探讨了领域内的热点主题和难点问题, 总结了主要的热门研究手段, 并对该领域的未来发展趋势进行了预测和展望。分析发现, 地下水与湖泊交互作用研究依次经历了个体论、还原论、整体论3个发展阶段。当前的热点研究主题主要包括地下水与湖泊的水量交互、溶质传输以及生境互馈三大方面, 并将面临交互的时空异质性、交互界面的生物地球化学过程以及含水层对湖泊生态修复的时滞性等难点问题。稳定/放射性同位素、温度示踪、卫星遥感和数值模型是目前研究的热门手段, 且存在数据精度与覆盖范围相矛盾的共有应用缺陷。未来该领域的研究将迎来其发展的第Ⅳ阶段, 即大数据论。在这个阶段, 首先要依靠智慧数据进行精细监测, 提高地下水与湖泊交互动态变化过程的刻画精度; 其次应增效界面的数据挖掘, 准确量化地下水与湖泊交互界面的溶质传输通量; 然后还要建全数字生态文明, 全面赋能地下水与湖泊的生境互馈研究与生态环境保护, 促进该领域的综合发展。

     

  • 图 1  地下水与湖泊交互作用研究的主题关键词共现图

    area.面积; basin.流域; catchment.集水区; climate.气候; climate-change.气候变化; contamination.污染; dynamics.动态; eutrophication.富营养化; evaporation.蒸发; evapotranspiration.蒸发蒸腾; evolution.演变; flux.通量; groundwater flow.地下水流; groundwater quality.地下水水质; groundwater recharge.地下水补给; groundwater-lake interaction.地下水与湖泊交互作用; impact.影响; irrigation.灌溉; lacustrine groundwater discharge.湖底地下水排泄; long-term.长期的; nitrogen.氮; nutrients.营养成分; origin.起源; patterns.模式; phosphorus.磷; quality.质量; region.区域; resources.资源; runoff.径流; salinity.含盐量; scale.尺度; solute transport.溶质运移; system.系统; transport.传输; uncertainty.不确定性; variability.变化性; water management.水资源管理; water quality.水质; water-rock interaction.水岩相互作用; zone.区域

    Figure 1.  Keywords co-occurrence map of research topics in field of groundwater-lake interaction

    图 2  地下水与湖泊交互作用研究的研究手段关键词共现图

    arsenic.砷; chemistry.化学; chloride.氯化物; environmental isotopes.环境同位素; equation.方程; fluoride.氟化物; fractionation.分馏; geochemistry.地球化学; gas-exchange.气体交换; geochemical evolution.地球化学进程; geometry.几何; hydrogen isotope.氢同位素; hydrogeochemistry.水文地球化学; hydrogeology.水文地质学; hydrology.水文学; indicators.指示剂; meter.量计; mass-balance.质量平衡; model.模型; modflow.modflow模型; numerical modeling.数值模拟; oxidation.氧化作用; oxygen-18.18O; radium.镭; radon.氡; rates.率; remote sensing.遥感技术; seepage meter.渗流计; simulation.模拟; stable-isotope.稳定同位素; strontium.锶; strontium isotope.锶同位素; swat.swat模型; temperature.温度; tracer.示踪剂; tritium.氚; water budget.水均衡; water chemistry.水化学

    Figure 2.  Keywords co-occurrence map of research methods in field of groundwater-lake interaction

  • [1] LEWANDOWSKI J, MEINIKMANN K, KRAUSE S. Groundwater-surface water interactions: Recent advances and interdisciplinary challenges[J]. Water, 2020, 12(1): 296. doi: 10.3390/w12010296
    [2] WINTER T C, HARVEY J W, FRANKE O L, et al. Ground water and surface water: A single resource[R]. Reston: US Geologocal Survey, 1998.
    [3] SCIBEK J, ALLEN D M, CANNON A J, et al. Groundwater-surface water interaction under scenarios of climate change using a high-resolution transient groundwater model[J]. Journal of Hydrology, 2007, 333(2): 165-181.
    [4] STEFANIA G A, ROTIROTI M, FUMAGALLI L, et al. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): The effect of groundwater abstraction on surface-water resources[J]. Hydrogeology Journal, 2018, 26: 147-162. doi: 10.1007/s10040-017-1633-x
    [5] XU S, FREY S K, ERLER A R, et al. Investigating groundwater-lake interactions in the Laurentian Great Lakes with a fully-integrated surface water-groundwater model[J]. Journal of Hydrology, 2021, 594: 125911. doi: 10.1016/j.jhydrol.2020.125911
    [6] BLÖSCHL G, ARDOIN-BARDIN S, BONELL M, et al. At what scales do climate variability and land cover change impact on flooding and low flows?[J]. Hydrological Processes, 2007, 21(9): 1241-1247. doi: 10.1002/hyp.6669
    [7] 马文静, 王文科, 侯昕悦, 等. 玛纳斯河流域河流-地下水转化驱动下的水文地球化学空间演化[J/OL]. 地质科技通报: 1-12[2024-11-04]. https://doi.org/10.19509/j.cnki.dzkq.tb20240360.

    MA W J, WANG W K, HOU X Y, et al. Spatial evolution of hydrogeochemistry driven by river-groundwater transformations in the Manas River basin[J/OL]. Bulletin of Geological Science and Technology: 1-12[2024-11-04]. https://doi.org/10.19509/j.cnki.dzkq.tb20240360. (in Chinese with English abstract)
    [8] WOOLWAY R I, KRAEMER B M, LENTERS J D, et al. Global lake responses to climate change[J]. Nature Reviews Earth & Environment, 2020, 1: 388-403.
    [9] 张运林, 秦伯强, 朱广伟, 等. 论湖泊重要性及我国湖泊面临的主要生态环境问题[J]. 科学通报, 2022, 67(30): 3503-3519.

    ZHANG Y L, QIN B Q, ZHU G W, et al. Importance and main ecological and environmental problems of lakes in China[J]. Chinese Science Bulletin, 2022, 67(30): 3503-3519. (in Chinese with English abstract)
    [10] KUNDZEWICZ Z W, SU B D, WANG Y J, et al. Flood risk and its reduction in China[J]. Advances in Water Resources, 2019, 130: 37-45. doi: 10.1016/j.advwatres.2019.05.020
    [11] WU J H, XUE C Y, TIAN R, et al. Lake water quality assessment: A case study of Shahu Lake in the semiarid loess area of Northwest China[J]. Environmental Earth Sciences, 2017, 76(5): 232. doi: 10.1007/s12665-017-6516-x
    [12] VINÇON-LEITE B, CASENAVE C. Modelling eutrophication in lake ecosystems: A review[J]. Science of the Total Environment, 2019, 651: 2985-3001. doi: 10.1016/j.scitotenv.2018.09.320
    [13] ROSENBERRY D O, LEWANDOWSKI J, MEINIKMANN K, et al. Groundwater: The disregarded component in lake water and nutrient budgets. Part 1: Effects of groundwater on hydrology[J]. Hydrological Processes, 2015, 29(13): 2895-2921. doi: 10.1002/hyp.10403
    [14] 朱金峰, 刘悦忆, 章树安, 等. 地表水与地下水相互作用研究进展[J]. 中国环境科学, 2017, 37(8): 3002-3010. doi: 10.3969/j.issn.1000-6923.2017.08.024

    ZHU J F, LIU Y Y, ZHANG S A, et al. Review on the research of surface water and groundwater interactions[J]. China Environmental Science, 2017, 37(8): 3002-3010. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2017.08.024
    [15] NTONA M M, BUSICO G, MASTROCICCO M, et al. Modeling groundwater and surface water interaction: An overview of current status and future challenges[J]. Science of the Total Environment, 2022, 846: 157355. doi: 10.1016/j.scitotenv.2022.157355
    [16] BARTHEL R, BANZHAF S. Groundwater and surface water interaction at the regional-scale: A review with focus on regional integrated models[J]. Water Resources Management, 2016, 30(1): 1-32. doi: 10.1007/s11269-015-1163-z
    [17] LEWANDOWSKI J, MEINIKMANN K, NVTZMANN G, et al. Groundwater: The disregarded component in lake water and nutrient budgets. Part 2: Effects of groundwater on nutrients[J]. Hydrological Processes, 2015, 29(13): 2922-2955. doi: 10.1002/hyp.10384
    [18] ROSENBERRY D, LABAUGH J. Field techniques for estimating water fluxes between surface water and ground water[R]. Reston: US Geological Survey, 2014.
    [19] LIU B, LI Y L, JIANG W Y, et al. Understanding groundwater behaviors and exchange dynamics in a linked catchment-floodplain-lake system[J]. Science of the Total Environment, 2022, 853: 158558. doi: 10.1016/j.scitotenv.2022.158558
    [20] SONG Y Y, ZHANG Q, MELACK J M, et al. Groundwater dynamics of a lake-floodplain system: Role of groundwater flux in lake water storage subject to seasonal inundation[J]. Science of the Total Environment, 2023, 857: 159414. doi: 10.1016/j.scitotenv.2022.159414
    [21] WANG Z C, YANG Y, CHEN G, et al. Variation of lake-river-aquifer interactions induced by human activity and climatic condition in Poyang Lake basin, China[J]. Journal of Hydrology, 2021, 595: 126058. doi: 10.1016/j.jhydrol.2021.126058
    [22] QIAO S F, MA R, SUN Z Y, et al. The effect of water transfer during non-growing season on the wetland ecosystem via surface and groundwater interactions in arid northwestern China[J]. Remote Sensing, 2020, 12(16): 2516. doi: 10.3390/rs12162516
    [23] SUN B, YANG Z Y, ZHAO S N, et al. Water balance analysis of Hulun Lake, a semi-arid UNESCO wetland, using multi-source data[J]. Remote Sensing, 2023, 15(8): 2028. doi: 10.3390/rs15082028
    [24] CAO L, NIE Z L, SHEN J M, et al. Stable isotopes reveal the lake shrinkage and groundwater recharge to lakes in the Badain Jaran Desert, NW China[J]. Journal of Hydrology, 2022, 612: 128289. doi: 10.1016/j.jhydrol.2022.128289
    [25] CHEN J S, SUN X X, GU W Z, et al. Isotopic and hydrochemical data to restrict the origin of the groundwater in the Badain Jaran Desert, Northern China[J]. Geochemistry International, 2012, 50(5): 455-465. doi: 10.1134/S0016702912030044
    [26] DONG Z B, QIAN G Q, LV P, et al. Investigation of the sand sea with the tallest dunes on Earth: China's Badain Jaran Sand Sea[J]. Earth-Science Reviews, 2013, 120: 20-39. doi: 10.1016/j.earscirev.2013.02.003
    [27] 王旭升, 胡晓农, 金晓媚, 等. 巴丹吉林沙漠地下水与湖泊的相互作用[J]. 地学前缘, 2014, 21(4): 91-99.

    WANG X S, HU X N, JIN X M, et al. Interactions between groundwater and lakes in Badain Jaran Desert[J]. Earth Science Frontiers, 2014, 21(4): 91-99. (in Chinese with English abstract)
    [28] 常启昕, 杨泽森, 李凡, 等. 基于文献计量的寒区流域地下水研究态势分析[J]. 冰川冻土, 2024, 46(1): 298-311.

    CHANG Q X, YANG Z S, LI F, et al. Research status and development trends of groundwater in cold regions: A bibliometric review[J]. Journal of Glaciology and Geocryology, 2024, 46(1): 298-311. (in Chinese with English abstract)
    [29] SUN X L, DU Y, DENG Y M, et al. Contrasting nutrients input along with groundwater discharge to East Dongting Lake, central China: A geological perspective[J]. Ecological Indicators, 2022, 145: 109658. doi: 10.1016/j.ecolind.2022.109658
    [30] GAN Y Q, SUN X L, WU J, et al. Spatio-temporal variations of lacustrine groundwater discharge and related nutrient fluxes in a typical lake in front of hillocks[J]. Journal of Hydrology, 2024, 635: 131166. doi: 10.1016/j.jhydrol.2024.131166
    [31] SUN P B, DU Y, SUN X L, et al. Spatial variability of lacustrine groundwater discharge in the largest urban lake in Asia: Coupled influence from land use and hydrogeology[J]. Hydrological Processes, 2023, 37(7): e14942. doi: 10.1002/hyp.14942
    [32] MEINIKMANN K, HUPFER M, LEWANDOWSKI J. Phosphorus in groundwater discharge: A potential source for lake eutrophication[J]. Journal of Hydrology, 2015, 524: 214-226. doi: 10.1016/j.jhydrol.2015.02.031
    [33] KAZMIERCZAK J, POSTMA D, MVLLER S, et al. Groundwater-controlled phosphorus release and transport from sandy aquifer into lake[J]. Limnology and Oceanography, 2020, 65(9): 2188-2204. doi: 10.1002/lno.11447
    [34] ZHU C, SCHWARTZ F W. Hydrogeochemical processes and controls on water quality and water management[J]. Elements, 2011, 7(3): 169-174. doi: 10.2113/gselements.7.3.169
    [35] HAYASHI M, ROSENBERRY D O. Effects of ground water exchange on the hydrology and ecology of surface water[J]. Ground Water, 2002, 40(3): 309-316. doi: 10.1111/j.1745-6584.2002.tb02659.x
    [36] 吴婧, 甘义群, 杜尧, 等. 长湖地下水排泄及其携带营养盐通量的季节性变化[J]. 地质科技通报, 2024, 43(5): 206-215. doi: 10.19509/j.cnki.dzkq.tb20230205

    WU J, GAN Y Q, DU Y, et al. Seasonal variations of groundwater discharge and associated nutrient fluxes in Changhu Lake[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 206-215. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230205
    [37] SHAW R D, SHAW J F H, FRICKER H, et al. An integrated approach to quantify groundwater transport of phosphorus to Narrow Lake, Alberta[J]. Limnology and Oceanography, 1990, 35(4): 870-886. doi: 10.4319/lo.1990.35.4.0870
    [38] SCHUSTER P F, REDDY M M, LABAUGH J W, et al. Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in north central Minnesota[J]. Hydrological Processes, 2003, 17(4): 823-838. doi: 10.1002/hyp.1211
    [39] NARANJO R C, NISWONGER R G, SMITH D, et al. Linkages between hydrology and seasonal variations of nutrients and periphyton in a large oligotrophic subalpine lake[J]. Journal of Hydrology, 2019, 568: 877-890. doi: 10.1016/j.jhydrol.2018.11.033
    [40] RAKHIMBEKOVA S, O'CARROLL D M, OLDFIELD L E, et al. Spatiotemporal controls on septic system derived nutrients in a nearshore aquifer and their discharge to a large lake[J]. Science of the Total Environment, 2021, 752: 141262. doi: 10.1016/j.scitotenv.2020.141262
    [41] KAZMIERCZAK J, NILSSON B, POSTMA D, et al. Transport of geogenic phosphorus to a groundwater-dominated eutrophic lake[J]. Journal of Hydrology, 2021, 598: 126175. doi: 10.1016/j.jhydrol.2021.126175
    [42] NAKAYAMA T, WATANABE M. Missing role of groundwater in water and nutrient cycles in the shallow eutrophic Lake Kasumigaura, Japan[J]. Hydrological Processes, 2008, 22(8): 1150-1172. doi: 10.1002/hyp.6684
    [43] YE S S, GAO L, ZAMYADI A, et al. Multi-proxy approaches to investigate cyanobacteria invasion from a eutrophic lake into the circumjacent groundwater[J]. Water Research, 2021, 204: 117578. doi: 10.1016/j.watres.2021.117578
    [44] YANG Z, KONG F X, ZHANG M. Groundwater contamination by microcystin from toxic cyanobacteria blooms in Lake Chaohu, China[J]. Environmental Monitoring and Assessment, 2016, 188(5): 280. doi: 10.1007/s10661-016-5289-0
    [45] VAHEDDOOST B, AKSOY H, ABGHARI H, et al. Decision tree for measuring the interaction of hyper-saline lake and coastal aquifer in lake urmia[C]//Anon. Watershed Management 2015. Reston, VA: American Society of Civil Engineers, 2015: 62-71.
    [46] FARUQUE ABESH B, LIU G M, LIU G, VÁZQUEZ-ORTEGA A, et al. Cyanotoxin transport from surface water to groundwater: Simulation scenarios for Lake Erie[J]. Journal of Great Lakes Research, 2022, 48(3): 695-706. doi: 10.1016/j.jglr.2022.02.009
    [47] KARAN S, KIDMOSE J, ENGESGAARD P, et al. Role of a groundwater-lake interface in controlling seepage of water and nitrate[J]. Journal of Hydrology, 2014, 517: 791-802. doi: 10.1016/j.jhydrol.2014.06.011
    [48] 王焰新, 杜尧, 邓娅敏, 等. 湖底地下水排泄与湖泊水质演化[J]. 地质科技通报, 2022, 41(1): 1-10. doi: 10.19509/j.cnki.dzkq.2022.0001

    WANG Y X, DU Y, DENG Y M, et al. Lacustrine groundwater discharge and lake water quality evolution[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 1-10. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0001
    [49] 武显仓. 东洞庭湖地下水-湖水交互带中铁-磷相互作用机制[D]. 武汉: 中国地质大学(武汉), 2022.

    WU X C. Iron-phosphorus interaction mechanisms in groundwater-lake water interaction zone of East Dongting Lake[D]. Wuhan: China university of geosciences(Wuhan), 2022. (in Chinese with English abstract)
    [50] STOLIKER D L, REPERT D A, SMITH R L, et al. Hydrologic controls on nitrogen cycling processes and functional gene abundance in sediments of a groundwater flow-through lake[J]. Environmental Science & Technology, 2016, 50(7): 3649-3657.
    [51] GÓMEZ-GENER L, SIEBERS A R, ARCE M I, et al. Towards an improved understanding of biogeochemical processes across surface-groundwater interactions in intermittent rivers and ephemeral streams[J]. Earth-Science Reviews, 2021, 220: 103724.
    [52] SAFAIE A, LITCHMAN E, PHANIKUMAR M S. Decreasing groundwater supply can exacerbate lake warming and trigger algal blooms[J]. Journal of Geophysical Research Biogeosciences, 2021, 126(9): e2021JG006455.
    [53] UMAÑA G. Ten years of limnological monitoring of a modified natural lake in the tropics: Cote Lake, Costa Rica[J]. Revista De Biologia Tropical, 2014, 62(2): 567-578.
    [54] ZHANG Y L, WU Z X, LIU M L, et al. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China)[J]. Water Research, 2015, 75: 249-258.
    [55] WEILHARTNER A, MUELLEGGER C, KAINZ M, et al. Gravel pit lake ecosystems reduce nitrate and phosphate concentrations in the outflowing groundwater[J]. Science of the Total Environment, 2012, 420: 222-228.
    [56] KIDMOSE J, NILSSON B, ENGESGAARD P, et al. Focused groundwater discharge of phosphorus to a eutrophic seepage lake (Lake Væng, Denmark): Implications for lake ecological state and restoration[J]. Hydrogeology Journal, 2013, 21(8): 1787-1802.
    [57] 王国祥, 濮培民. 若干人工调控措施对富营养化湖泊藻类种群的影响[J]. 环境科学, 1999, 20(2): 71-74.

    WANG G X, PU P M. Influence of some artificial controls on eutrophic algal population dynamics[J]. Environmental Science, 1999, 20(2): 71-74. (in Chinese with English abstract)
    [58] KALBUS E, REINSTORF F, SCHIRMER M. Measuring methods for groundwater-surface water interactions: A review[J]. Hydrology and Earth System Sciences, 2006, 10(6): 873-887.
    [59] SALEEM M, JEELANI G. Geochemical, isotopic and hydrological mass balance approaches to constrain the lake water-groundwater interaction in Dal Lake, Kashmir Valley[J]. Environmental Earth Sciences, 2017, 76(15): 533.
    [60] SHAW G D, MITCHELL K L, GAMMONS C H. Estimating groundwater inflow and leakage outflow for an intermontane lake with a structurally complex geology: Georgetown Lake in Montana, USA[J]. Hydrogeology Journal, 2017, 25(1): 135-149.
    [61] YAPIYEV V, ROSSI P M, ALA-AHO P, et al. Stable water isotopes as an indicator of surface water intrusion in shallow aquifer wells: A cold climate perspective[J]. Water Resources Research, 2023, 59(2): e2022WR033056.
    [62] ADYASARI D, DIMOVA N T, DULAI H, et al. Radon-222 as a groundwater discharge tracer to surface waters[J]. Earth-Science Reviews, 2023, 238: 104321.
    [63] LIAO F, WANG G C, YI L X, et al. Applying radium isotopes to estimate groundwater discharge into Poyang Lake, the largest freshwater lake in China[J]. Journal of Hydrology, 2020, 585: 124782.
    [64] 常启昕. 高寒山区河道径流水分来源及其季节变化规律: 以黑河上游葫芦沟流域为例[D]. 武汉: 中国地质大学(武汉), 2019.

    CHANG Q X. Water sources of stream runoff in alpine region and their seasonal variations: A case study of Hulugou catchment in the headwaters of the Heihe River[D]. Wuhan: China University of Geosciences(Wuhan), 2019. (in Chinese with English abstract)
    [65] 范红晨, 孙晓梁, 杜尧, 等. 不同地下水端元选取对222Rn质量平衡模型量化湖底地下水排泄的影响[J]. 安全与环境工程, 2021, 28(3): 71-77.

    FAN H C, SUN X L, DU Y, et al. Influence of different groundwater end-members on 222Rn mass balance model used to quantify the lacustrine groundwater discharge[J]. Safety and Environmental Engineering, 2021, 28(3): 71-77. (in Chinese with English abstract)
    [66] GENEREUX D P, HOOPER R P. Chapter 10: Oxygen and hydrogen isotopes in rainfall-runoff studies[M]. Amsterdam: Elsevier, 1998: 319-346.
    [67] SEBOK E, DUQUE C, KAZMIERCZAK J, et al. High-resolution distributed temperature sensing to detect seasonal groundwater discharge into Lake Væng, Denmark[J]. Water Resources Research, 2013, 49(9): 5355-5368.
    [68] 张淑勋, 孙自永, 潘艳喜, 等. 基于温度示踪的高寒地区河水与地下水相互作用: 以黑河上游流域为例[J]. 地质科技通报, 2023, 42(4): 95-106. doi: 10.19509/j.cnki.dzkq.tb20220054

    ZHANG S X, SUN Z Y, PAN Y X, et al. Using temperature to trace river-groundwater interactions in alpine regions: A case study in the upper reaches of the Heihe River[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 95-106. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220054
    [69] MCLACHLAN P J, CHAMBERS J E, UHLEMANN S S, et al. Geophysical characterisation of the groundwater-surface water interface[J]. Advances in Water Resources, 2017, 109: 302-319.
    [70] BANERJEE D, GANGULY S. A review on the research advances in groundwater-surface water interaction with an overview of the phenomenon[J]. Water, 2023, 15(8): 1552.
    [71] VASILEVSKIY P, WANG P, POZDNIAKOV S, et al. Simulating river/lake-groundwater exchanges in arid river basins: An improvement constrained by lake surface area dynamics and evapotranspiration[J]. Remote Sensing, 2022, 14(7): 1657.
    [72] AMANI M, SALEHI B, MAHDAVI S, et al. Wetland classification using multi-source and multi-temporal optical remote sensing data in Newfoundland and Labrador, Canada[J]. Canadian Journal of Remote Sensing, 2017, 43(4): 360-373.
    [73] ALA-AHO P, ROSSI P M, ISOKANGAS E, et al. Fully integrated surface-subsurface flow modelling of groundwater-lake interaction in an esker aquifer: Model verification with stable isotopes and airborne thermal imaging[J]. Journal of Hydrology, 2015, 522: 391-406.
    [74] TWEED S, LEBLANC M, CARTWRIGHT I. Groundwater-surface water interaction and the impact of a multi-year drought on lakes conditions in South-East Australia[J]. Journal of Hydrology, 2009, 379(1/2): 41-53.
    [75] SOLANA M X, QUIROZ LONDOÑO O M, ROMANELLI A, et al. Connectivity of temperate shallow lakes to groundwater in the Pampean Plain, Argentina: A remote sensing and multi-tracer approach[J]. Groundwater for Sustainable Development, 2021, 13: 100556.
    [76] LIAO F, WANG G C, YANG N, et al. Groundwater discharge tracing for a large Ice-Covered Lake in the Tibetan Plateau: Integrated satellite remote sensing data, chemical components and isotopes (D, 18O, and 222Rn)[J]. Journal of Hydrology, 2022, 609: 127741.
    [77] WILSON J, ROCHA C. A combined remote sensing and multi-tracer approach for localising and assessing groundwater-lake interactions[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 44: 195-204.
    [78] WILSON J, COXON C, ROCHA C. A GIS and remote sensing based screening tool for assessing the potential for groundwater discharge to lakes in Ireland[J]. Biology and Environment: Proceedings of the Royal Irish Academy, 2016, 116B(3): 265-277.
    [79] ABDELMOHSEN K, SULTAN M, SAVE H, et al. What can the GRACE seasonal cycle tell us about lake-aquifer interactions?[J]. Earth-Science Reviews, 2020, 211: 103392.
    [80] MERRITT M L, KONIKOW L F. Documentation of a computer program to simulate lake-aquifer interaction using the MODFLOW ground water flow model and the MOC3D solute-transport model[R]. Reston: US Geological Survey, 2000.
    [81] LU C Y, ZHANG B, HE X, et al. Simulation of lake-groundwater interaction under steady-state flow[J]. Groundwater, 2021, 59(1): 90-99.
    [82] BAILEY R, RATHJENS H, BIEGER K, et al. SWATMOD-prep: Graphical user interface for preparing coupled SWAT-MODFLOW simulations[J]. Journal of the American Water Resources Association, 2017, 53(2): 400-410.
    [83] RAFIEI V, NEJADHASHEMI A P, MUSHTAQ S, et al. Groundwater-surface water interactions at wetland interface: Advancement in catchment system modeling[J]. Environmental Modelling & Software, 2022, 152: 105407.
    [84] TRAN Q D, NI C F, LEE I H, et al. Numerical modeling of surface water and groundwater interactions induced by complex fluvial landforms and human activities in the Pingtung Plain groundwater basin, Taiwan[J]. Applied Sciences, 2020, 10(20): 7152.
    [85] SMERDON B D, MENDOZA C A, DEVITO K J. Simulations of fully coupled lake-groundwater exchange in a subhumid climate with an integrated hydrologic model[J]. Water Resources Research, 2007, 43(1): 72.
  • 加载中
图(2)
计量
  • 文章访问数:  201
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-18
  • 录用日期:  2024-10-24
  • 修回日期:  2024-10-24

目录

    /

    返回文章
    返回