留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

歧口凹陷滨海斜坡沙一中亚段烃源岩地球化学特征及沉积环境

朱华汇 陈家旭 张佼杨 张明振 石倩茹 董越崎 付东立 唐鹿鹿

朱华汇,陈家旭,张佼杨,等. 歧口凹陷滨海斜坡沙一中亚段烃源岩地球化学特征及沉积环境[J]. 地质科技通报,2025,44(3):1-14 doi: 10.19509/j.cnki.dzkq.tb20240651
引用本文: 朱华汇,陈家旭,张佼杨,等. 歧口凹陷滨海斜坡沙一中亚段烃源岩地球化学特征及沉积环境[J]. 地质科技通报,2025,44(3):1-14 doi: 10.19509/j.cnki.dzkq.tb20240651
ZHU Huahui,CHEN Jiaxu,ZHANG Jiaoyang,et al. Geochemical characteristics and sedimentary environment of the Middle Section of Es1 source rocks in the Binhai Slope, Qikou Sag[J]. Bulletin of Geological Science and Technology,2025,44(3):1-14 doi: 10.19509/j.cnki.dzkq.tb20240651
Citation: ZHU Huahui,CHEN Jiaxu,ZHANG Jiaoyang,et al. Geochemical characteristics and sedimentary environment of the Middle Section of Es1 source rocks in the Binhai Slope, Qikou Sag[J]. Bulletin of Geological Science and Technology,2025,44(3):1-14 doi: 10.19509/j.cnki.dzkq.tb20240651

歧口凹陷滨海斜坡沙一中亚段烃源岩地球化学特征及沉积环境

doi: 10.19509/j.cnki.dzkq.tb20240651
详细信息
    作者简介:

    朱华汇:E-mail:zhuhhui@petrochina.com.cn

    通讯作者:

    E-mail:chenjxu@petrochina.com.cn

Geochemical characteristics and sedimentary environment of the Middle Section of Es1 source rocks in the Binhai Slope, Qikou Sag

More Information
  • 摘要:

    歧口凹陷滨海斜坡沙一中亚段烃源岩评价和沉积环境研究薄弱,制约了油气勘探向海域拓展。基于滨海斜坡新钻揭的烃源岩样品,利用岩石热解、饱和烃色谱−质谱、元素录井技术等手段,对沙一中亚段烃源岩的地球化学特征、沉积环境和发育模式进行了系统研究。研究结果表明:滨海斜坡沙一中亚段烃源岩的总有机碳介于0.21%~8.61%,平均为2.41%,生烃潜量平均为9.73 mg/g,以好−优质烃源岩为主;有机质类型主要为Ⅱ1-Ⅱ2型干酪根;烃源岩镜质体反射率介于 0.58%~1.32%,整体处于低熟−成熟阶段。滨海斜坡沙一中亚段烃源岩的有机质来源于陆生高等植物和水生生物混源,发育于弱氧化−弱还原的淡水湖盆环境,沉积时期湖盆水体较深,气候温暖潮湿,湖盆古生产力处于较高水平。滨海斜坡沙一中亚段烃源岩有机质类型较好,有机质丰度高,成熟度适中,湖盆沉积环境利于有机质的富集和保存,烃源岩生烃能力较强,具备勘探潜力。

     

  • 图 1  歧口凹陷构造位置图(a),滨海斜坡沙一中亚段底界深度图(b)和测线AA'地震剖面图(c)

    Nm为明化镇组;Ng为馆陶组;Ed为东营组;Es1s为沙一上亚段;Es1z为沙一中亚段;Es1x为沙一下亚段;Es2为沙二段;下同

    Figure 1.  Location map of the Qikou Sag (a), depth contour map of the bottom of the middle section of Es1 source rocks in the Binhai Slope (b), and seismic profile of cross section AA' (c)

    图 2  滨海斜坡沙一中亚段细粒沉积岩岩性特征

    a. TD73X1,深度4450 m,灰质泥岩,泥质结构均匀,单偏光;b. TD73X1,深度4450 m,灰质泥岩,见泥晶碳酸盐分布,正交光;c. TD73X1,深度4692 m,砂质泥岩,见碎屑颗粒定向分布,单偏光;d. TD73X1,深度4692 m,砂质泥岩,见碎屑颗粒定向分布,正交光

    Figure 2.  Lithological characteristics of fine-grained sedimentary rocks in the middle section of Es1 source rocks in the Binhai Slope

    图 3  滨海斜坡沙一中亚段烃源岩S1+S2w(TOC)交汇图

    Figure 3.  Cross plot of S1+S2 versus w(TOC) of the middle section of Es1 source rocks in the Binhai Slope

    图 4  滨海斜坡沙一中亚段烃源岩HITmax交汇图(a)和DTmax交汇图(b)(Ⅰ,Ⅱ1,Ⅱ2和Ⅲ均为干酪根类型)

    Figure 4.  Cross plot of HI versus Tmax (a) and D versus Tmax (b) of the Middle Section of Es1 source rocks in the Binhai Slope

    图 5  滨海斜坡沙一中亚段烃源岩C29 ββ/(αα+ββ)与C29 ααα 20S/(20S+20R)交汇图(a)和CPIOEP交汇图(b)

    Figure 5.  Cross plot of C29 ββ/(αα+ββ) versus C29 ααα 20S/(20S+20R) steranes (a) and CPI versus OEP (b) of the middle section of Es1 source rocks in the Binhai Slope

    图 6  滨海斜坡沙一中亚段烃源岩PITmax交汇图

    Figure 6.  Cross plot of PI versus Tmax of the middle section of Es1 source rocks in the Binhai Slope

    图 7  滨海斜坡沙一中亚段烃源岩实测Ro随深度变化图(Ro为镜质体反射率)

    Figure 7.  Measured Ro versus depth for the middle section of Es1 source rocks in the Binhai Slope

    图 8  C27-C28-C29规则甾烷相对含量三角图

    Figure 8.  Ternary plot showing the relative abundance of C27-C28-C29 regular steranes

    图 9  滨海斜坡TD73X1井沙一中亚段烃源岩元素比值剖面图(C为古气候指数)

    Figure 9.  Elemental ratio profiles of the middle section of Es1 source rocks at Well TD73X1 in the Binhai Slope

    图 10  滨海斜坡沙一中亚段烃源岩Sr/Cu与古气候C值交汇图(a),Zr/Al与Fe/Mn交汇图(b),Sr含量和Sr/Ba交汇图(c)以及伽马蜡烷指数和Pr/Ph交汇图(d)

    Figure 10.  Cross plot of Sr/Cu versus C (a), Zr/Al versus Fe/Mn (b), Sr versus Sr/Ba (c), and Gammacerane index versus Pr/Ph (d) of the middle section of Es1 source rocks in the Binhai Slope

    图 11  滨海斜坡沙一中亚段烃源岩发育模式图

    Figure 11.  Development pattern of the middle section of Es1 source rocks in the Binhai Slope

    表  1  滨海斜坡沙一中亚段烃源岩热解参数

    Table  1.   Data table of pyrolysis parameters for the middle section of Es1 source rocks in the Binhai Slope

    井名 深度范围/m 样品个数 w(TOC)/(%) S1+S2/(mg·g) Tmax/(℃) HI/(mg·g−1) D/(%) PI OSI/(mg·g−1)
    GS783975397513.0113.71443388.3737.800.15100.66
    TD4X141484410
    34303692
    86$ \dfrac{0.64\sim3.44}{1.36} $$\dfrac{2.84\sim24.78}{7.85} $$\dfrac{433\sim445}{439} $$\dfrac{320.95\sim754.57}{494.14} $$\dfrac{28.83\sim69.46}{47.01} $$\dfrac{0.05\sim0.29}{0.13} $$\dfrac{54.60\sim360.61}{107.31} $
    TD6X339884134
    37123857
    15$\dfrac{0.57\sim1.45}{0.96} $$\dfrac{1.25\sim5.43}{2.92} $$\dfrac{432\sim443}{437} $$\dfrac{168.07\sim298.28}{224.01} $$\dfrac{17.74\sim39.46}{25.00} $$\dfrac{0.17\sim0.39}{0.25} $$\dfrac{55.4\sim264.55}{114.88} $
    TD9X138964212
    36833952
    148$ \dfrac{0.67\sim6.07}{2.95} $$\dfrac{1.39\sim28.24}{10.72} $$\dfrac{427\sim450}{440} $$\dfrac{127.91\sim409.78}{266.97} $$\dfrac{11.77\sim50.07}{27.98} $$\dfrac{0.09\sim0.68}{0.20} $$\dfrac{ 19.02\sim661.07}{151.57} $
    TD9X243904730
    38874186
    146$ \dfrac{0.21\sim8.61}{2.50} $$ \dfrac{1.43\sim79.14}{8.85} $$ \dfrac{413\sim450}{438} $$ \dfrac{68.43\sim841.2}{228.64} $$ \dfrac{7.58\sim99.47}{27.43} $$ \dfrac{0.13\sim0.59}{0.30} $$ \dfrac{34.31\sim763.68}{151.57} $
    TD12X139444208
    37263975
    122$ \dfrac{0.57\sim6.28}{2.14} $$ \dfrac{1.85\sim34.77}{11.14} $$ \dfrac{424\sim453}{442} $$ \dfrac{144.09\sim784.87}{397.95} $$ \dfrac{17.80\sim74.80}{42.58} $$ \dfrac{0.07\sim0.55}{0.22} $$ \dfrac{38.48\sim530.17}{172.46} $
    TD13X141984314
    38773986
    53$ \dfrac{0.61\sim2.25}{172.46} $$ \dfrac{1.62\sim26.66}{10.61} $$ \dfrac{435\sim457}{447} $$ \dfrac{128.29\sim685.47}{379.62} $$ \dfrac{11.29\sim60.72}{36.35} $$ \dfrac{0.04\sim0.37}{0.12} $$ \dfrac{11.54\sim321.04}{87.38} $
    TD20X144784656
    39454122
    80$ \dfrac{0.54\sim7.45}{87.38} $$ \dfrac{1.98\sim37.65}{16.24} $$ \dfrac{434\sim443}{439} $$ \dfrac{211.75\sim483.99}{354.30} $$ \dfrac{21.34\sim46.42}{35.67} $$ \dfrac{0.02\sim0.31}{0.16} $$ \dfrac{12.95\sim174.64}{101.99} $
    TD20X244384740
    39504252
    99$ \dfrac{0.45\sim4.64}{1.84} $$ \dfrac{1.24\sim19.53}{5.90} $$ \dfrac{429\sim445}{437} $$ \dfrac{129.17\sim980.3}{247.57} $$ \dfrac{13.4\sim98.76}{27.43} $$ \dfrac{0.1\sim0.44}{0.25} $$ \dfrac{34.36\sim478.57}{123.26} $
    TD73X144474774
    43504643
    67$ \dfrac{0.23\sim5.37}{2.61} $$\dfrac{1.32\sim16.48}{7.94} $$\dfrac{398\sim454}{431} $$\dfrac{69.83\sim798.94}{218.77} $$\dfrac{8.49\sim99.56}{26.18} $$\dfrac{0.15\sim0.49}{0.31} $$\dfrac{47.13\sim584.35}{142.95} $
    /817$\dfrac{0.21\sim8.61}{2.41} $$\dfrac{1.24\sim79.14}{9.73} $$\dfrac{398\sim457}{439} $$\dfrac{69.83\sim980.3}{312.50} $$\dfrac{7.58\sim99.56}{33.10} $$\dfrac{0.02\sim0.68}{0.22} $$\dfrac{11.54\sim763.68}{127.64} $
    注:w(TOC)为总有机碳含量;S1+S2为生烃潜量;S1为游离烃;S2为热解烃;Tmax为最大热解峰温;HI为氢指数,D为降解率;PI为产率指数;OSI为含油饱和度指数;$ \dfrac{0.64\sim3.44}{1.36} $为$ \dfrac{\mathrm{最}\mathrm{小}\mathrm{值}\sim\mathrm{最}\mathrm{大}\mathrm{值}}{\mathrm{平}\mathrm{均}\mathrm{值}} $;下同
    下载: 导出CSV

    表  2  滨海斜坡沙一中亚段烃源岩生标参数

    Table  2.   Table of biomarker parameters for the middle section of Es1 source rocks in the Binhai Slope

    井名 深度范围/m CPI OEP C29 ααα 20S/
    (20S+20R)
    C29 ββ/
    (ββ+αα)
    C27/
    (C27+C28+C29)
    C28/
    (C27+C28+C29)
    C29/
    (C27+C28+C29)
    Pr/Ph gammacerane/
    αβC30 hopane
    TD12X1 41053877 1.14 1.12 0.38 0.53 0.44 0.27 0.29 1.30 0.06
    TD13X1 43133955 1.09 1.02 0.38 0.52 0.46 0.19 0.35 1.48 0.12
    TD20X1 45574024 1.07 1.09 0.29 0.44 0.38 0.25 0.36 1.20 0.11
    TD20X1 45674034 1.12 1.10 0.38 0.54 0.41 0.27 0.32 1.31 0.09
    TD20X2 46234135 1.11 1.08 0.48 0.58 0.52 0.24 0.24 1.56 0.12
    TD20X2 46324144 1.10 1.02 0.49 0.39 0.28 0.32 0.40 1.29 0.14
    TD20X2 46374149 1.12 1.12 0.42 0.54 0.50 0.23 0.27 1.48 0.13
    TD20X2 46414153 1.10 1.11 0.54 0.58 0.53 0.23 0.24 1.41 0.12
    TD6X1 39313718 1.06 1.08 0.41 0.52 0.46 0.26 0.28 1.24 0.06
    TD6X1 39393726 1.06 1.05 0.47 0.53 0.48 0.27 0.25 1.27 0.07
    TD9X1 41323891 1.16 1.12 0.55 0.41 0.27 0.28 0.45 1.23 0.09
    TD9X2 45754049 1.14 1.03 0.35 0.41 0.43 0.30 0.27 1.26 0.21
    TD73X1 47504621 1.12 1.00 0.41 0.45 0.26 0.27 0.46 1.66 0.12
    注:CPI为碳优势指数;OEP为奇偶优势比;C29 ααα 20S/(20S+20R)为C29 ααα甾烷在20位碳原子上的2种立体异构体20S和20R的相对比值;S为甾烷;R为C31H的构型;C29 ββ/(ββ+αα)为C29甾烷中ββ构型占总异构体(ββ + αα)的相对比值;C27/(C27+C28+C29)、C28/(C27+C28+C29)和C29/(C27+C28+C29)分别为C27规则甾烷、C28规则甾烷、C29规则甾烷在C27规则甾烷、C28规则甾烷、C29规则甾烷之和的相对含量;Pr/Ph为姥鲛烷与植烷的比值;gammacerane/αβC30 hopane为伽马蜡烷与C30霍烷的比值;下同
    下载: 导出CSV

    表  3  滨海斜坡沙一中亚段烃源岩孢粉含量统计

    Table  3.   Statistical table of sporopollen content of the middle section of Es1 source rocks in the Binhai Slope

    化石 深度3720 m 深度3830 m
    数量 百分比/% 数量 百分比/%
    光面球藻属 Leiosphaeridia22.4
    粒面球藻属 Granodiscus22.944.8
    藻类合计22.967.1
    水龙骨单缝孢属 Polypodiaceaesporites22.944.8
    蕨类合计22.944.8
    单束松粉属 Abietineaepollenites45.844.8
    双束松粉属 Pinuspollenites811.656
    云杉粉属 Piceaepollenites11.444.8
    雪松粉属 Cetripites45.811.2
    麻黄粉属 Ephedripites11.4
    裸子类合计1826.11416.7
    胡桃粉属 Juglanspollenites811.367.1
    桦粉属 Betulaepollenites22.8
    拟榛粉属 Momipites11.2
    栎粉属 Quercoidites912.72327.4
    榆粉属 Ulmipollenites2839.42833.3
    芸香粉属 Rutagraveolens22.4
    被子类合计4766.16071.4
    总计6910084100
    下载: 导出CSV
  • [1] 周立宏,何海清,陈长伟,等. 歧口凹陷滨海斜坡深凹区海探1井东营组勘探突破与启示[J]. 中国石油勘探,2023,28(6):78-89. doi: 10.3969/j.issn.1672-7703.2023.06.010

    ZHOU L H,HE H Q,CHEN C W,et al. Exploration breakthrough and enlightenment of Dongying Formation in Well Haitan 1 in the deep subsag area in Binhai slope,Qikou Sag[J]. China Petroleum Exploration,2023,28(6):78-89. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2023.06.010
    [2] 周立宏,陈长伟,崔宇,等. 渤海湾盆地黄骅坳陷油气勘探新领域、新类型及资源潜力[J]. 石油学报,2023,44(12):2160-2178. doi: 10.7623/syxb202312010

    ZHOU L H,CHEN C W,CUI Y,et al. New fields,new types and resource potentials of oil-gas exploration in Huanghua Depression of Bohai Bay Basin[J]. Acta Petrolei Sinica,2023,44(12):2160-2178. (in Chinese with English abstract doi: 10.7623/syxb202312010
    [3] ZHU C Z,GANG W Z,ZHAO X Z,et al. Reconstruction of oil charging history in the multi-source petroleum system of the Beidagang buried-hill structural belt in the Qikou Sag,Bohai Bay Basin,China:Based on the integrated analysis of oil-source rock correlations,fluid inclusions and geologic data[J]. Journal of Petroleum Science and Engineering,2022,208:109197. doi: 10.1016/j.petrol.2021.109197
    [4] 董越崎,刘庆新,李洪香,等. 歧口凹陷沙一段低熟烃源岩评价[J]. 成都理工大学学报(自然科学版),2015,42(2):203-211. doi: 10.3969/j.issn.1671-9727.2015.02.08

    DONG Y Q,LIU Q X,LI H X,et al. Evaluation of immature hydrocarbon source rocks in Qikou Sag,Bohai Bay,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2015,42(2):203-211. (in Chinese with English abstract doi: 10.3969/j.issn.1671-9727.2015.02.08
    [5] 刘祥柏,柳广弟,宋泽章,等. 渤海湾盆地歧口凹陷沙河街组烃源岩沉积环境及形成机理[J]. 天然气地球科学,2022,33(12):2008-2031.

    LIU X B,LIU G D,SONG Z Z,et al. The paleo-sedimentary environment and formation mechanism of the source rocks in Shahejie Formation,Qikou Sag,Bohai Bay Basin[J]. Natural Gas Geoscience,2022,33(12):2008-2031. (in Chinese with English abstract
    [6] 周立宏,陈长伟,甘华军,等. 歧口凹陷沙一下亚段页岩形成环境及页岩油潜力综合评价[J]. 地质科技通报,2022,41(5):19-30.

    ZHOU L H,CHEN C W,GAN H J,et al. Shale formation environment and comprehensive evaluation of shale oil potential of the Lower First Member of Shahejie Formation in Qikou Sag[J]. Bulletin of Geological Science and Technology,2022,41(5):19-30. (in Chinese with English abstract
    [7] 陈世悦,王玲,李聪,等. 歧口凹陷古近系沙河街组一段下亚段湖盆咸化成因[J]. 石油学报,2012,33(1):40-47. doi: 10.7623/syxb201201005

    CHEN S Y,WANG L,LI C,et al. The saline genesis of lacustrine basin in the Lower Section of the First Member of Shahejie Formation in Qikou Sag[J]. Acta Petrolei Sinica,2012,33(1):40-47. (in Chinese with English abstract doi: 10.7623/syxb201201005
    [8] SONG Y,YE X,SHI Q R,et al. A comparative study of organic-rich shale from turbidite and lake facies in the Paleogene Qikou Sag (Bohai Bay Basin,East China):Organic matter accumulation,hydrocarbon potential and reservoir characterization[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2022,594:110939.
    [9] WU Z Y,ZHAO X Z,PU X G,et al. Petroleum resource potential evaluation using insights based on hydrocarbon generation,expulsion,and retention capabilities:A case study targeting the Paleogene Es1 Formation,Qikou Sag[J]. Journal of Petroleum Science and Engineering,2022,208:109667. doi: 10.1016/j.petrol.2021.109667
    [10] 张林晔. 湖相烃源岩研究进展[J]. 石油实验地质,2008,30(6):591-595. doi: 10.3969/j.issn.1001-6112.2008.06.011

    ZHANG L Y. The progress on the study of lacustrine source rocks[J]. Petroleum Geology & Experiment,2008,30(6):591-595. (in Chinese with English abstract doi: 10.3969/j.issn.1001-6112.2008.06.011
    [11] 丁修建,柳广弟,赵龙梅,等. 小型断陷湖盆有机质富集和烃源岩形成机制:以二连盆地下白垩统腾格尔组一段为例[J]. 新疆石油地质,2017,38(6):650-657.

    DING X J,LIU G D,ZHAO L M,et al. Organic matter enrichment and hydrocarbon source rock forming mechanism in small-scale faulted lacustrine basins:A case from the First Member of Lower Cretaceous Tenger Formation in Erlian Basin[J]. Xinjiang Petroleum Geology,2017,38(6):650-657. (in Chinese with English abstract
    [12] 段玮,曾翔,蔡进功,等. 渤海湾盆地东营凹陷沉积环境和古生产力对优质烃源岩形成的控制:以牛庄洼陷沙河街组为例[J]. 天然气地球科学,2022,33(11):1754-1767.

    DUAN W,ZENG X,CAI J G,et al. Control of sedimentary environment and paleoproductivity on the formation of high-quality hydrocarbon source rocks in Dongying Sag,Bohai Bay Basin:Case study of the Shahejie Formation in Niuzhuang sag[J]. Natural Gas Geoscience,2022,33(11):1754-1767. (in Chinese with English abstract
    [13] WU Z Y,ZHAO X Z,WANG E Z,et al. Sedimentary environment and organic enrichment mechanisms of lacustrine shale:A case study of the Paleogene Shahejie Formation,Qikou Sag,Bohai Bay Basin[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2021,573:110404.
    [14] 阳宏,刘成林,王飞龙,等. 渤中凹陷西南洼东营组烃源岩地球化学特征及环境指示意义[J]. 地质科技通报,2023,42(1):339-349.

    YANG H,LIU C L,WANG F L,et al. Geochemical characteristics and environmental implications of source rocks of the Dongying Formation in southwest subsag of Bozhong Sag[J]. Bulletin of Geological Science and Technology,2023,42(1):339-349. (in Chinese with English abstract
    [15] 王必金,包汉勇,刘皓天,等. 川东红星地区吴家坪组富有机质页岩特征与发育控制因素[J]. 地质科技通报,2023,42(5):70-81.

    WANG B J,BAO H Y,LIU H T,et al. Characteristics and controlling factors of the organic-rich shale in the Wujiaping Formation of the Hongxing area,eastern Sichuan Basin[J]. Bulletin of Geological Science and Technology,2023,42(5):70-81. (in Chinese with English abstract
    [16] 白洋,谢宏,王孟斋,等. 贵州铜仁坝黄牛蹄塘组黑色岩系有机质富集机理[J]. 地质科技通报,2023,42(5):115-127.

    BAI Y,XIE H,WANG M Z,et al. Enrichment mechanism of organic matter in black rock series of the Niutitang Formation in Bahuang,Tongren,Guizhou[J]. Bulletin of Geological Science and Technology,2023,42(5):115-127. (in Chinese with English abstract
    [17] DONG Y Y,ZENG J H,DONG X Y,et al. The control effect of normal faults and caprocks on hydrocarbon accumulation:A case study from the Binhai fault nose of the Huanghua Depression,Bohai Bay Basin,China[J]. Journal of Petroleum Science and Engineering,2022,218:110918. doi: 10.1016/j.petrol.2022.110918
    [18] ZHANG Y D,SUN Y G,CHEN J P. Geochemical evidence of lake environments favorable for the formation of excellent source rocks:A case study from the Third Member of the Eocene Shahejie Formation in the Qikou Sag,Bohai Bay Basin,Eastern China[J]. Marine and Petroleum Geology,2022,136:105435. doi: 10.1016/j.marpetgeo.2021.105435
    [19] 周立宏,韩国猛,马建英,等. 渤海湾盆地歧口凹陷歧北斜坡古近系沙二段滨浅湖滩坝沉积模式与勘探实践[J]. 中国石油勘探,2023,28(3):64-77. doi: 10.3969/j.issn.1672-7703.2023.03.006

    ZHOU L H,HAN G M,MA J Y,et al. Depositional pattern and exploration practice of shallow shore lake beach bar sand body in the Second Member of Shahejie Formation in Qibei slope in Qikou Sag,Bohai Bay Basin[J]. China Petroleum Exploration,2023,28(3):64-77. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2023.03.006
    [20] 赵贤正,蒲秀刚,王家豪,等. 断陷盆地缓坡区控砂控藏机制与勘探发现:以歧口凹陷歧北缓坡带为例[J]. 石油学报,2017,38(7):729-739. doi: 10.7623/syxb201707001

    ZHAO X Z,PU X G,WANG J H,et al. Sand and reservoir controlling mechanism and exploration discovery in the gentle slope of fault basin:A case study of Qibei slope in Qikou Sag[J]. Acta Petrolei Sinica,2017,38(7):729-739. (in Chinese with English abstract doi: 10.7623/syxb201707001
    [21] MA C,ZHAO X Z,YANG T,et al. Mineralogy,organic geochemistry,and microstructural characterization of lacustrine Shahejie Formation,Qikou Sag,Bohai Bay Basin:Contribution to understanding microcosmic storage mechanism of shale oil[J]. Journal of Petroleum Science and Engineering,2022,209:109843. doi: 10.1016/j.petrol.2021.109843
    [22] 张洪,赵贤正,王居峰,等. 歧口凹陷埕北断阶带油气输导体系及其控藏作用[J]. 地球科学,2023,48(8):3053-3067.

    ZHANG H,ZHAO X Z,WANG J F,et al. Hydrocarbon migration pathways and its control on accumulation in Chengbei fault zone of Qikou Sag,Bohai Bay basin,East China[J]. Earth Science,2023,48(8):3053-3067. (in Chinese with English abstract
    [23] 赵青芳,谢德智,陈建文,等. 下扬子区二叠系烃源岩评价与生源环境[J]. 地质通报,2023,42(7):1154-1165. doi: 10.12097/j.issn.1671-2552.2023.07.008

    ZHAO Q F,XIE D Z,CHEN J W,et al. Evaluation and biogenetic derivation and sedimentary environment of source rocks from Permian in the Lower Yangze region[J]. Geological Bulletin of China,2023,42(7):1154-1165. (in Chinese with English abstract doi: 10.12097/j.issn.1671-2552.2023.07.008
    [24] 中华人民共和国国家能源局. 烃源岩地球化学评价方法:SY/T5735-2019[S]. 北京:中国标准出版社,2019.

    National Energy Administration of the People's Republic of China. Method for Geochemical Evaluation of Source Rocks:SY/T5735-2019[S]. Beijing:China Standards Press,2019.
    [25] 刘超威,尤新才,李辉,等. 准噶尔盆地阜康凹陷芦草沟组烃源岩地球化学特征与生烃潜力研究[J]. 石油实验地质,2023,45(2):338-346. doi: 10.11781/sysydz202302338

    LIU C W,YOU X C,LI H,et al. Geochemical characteristics and hydrocarbon generation potential of Lucaogou Formation source rocks in Fukang Sag,Junggar Basin[J]. Petroleum Geology & Experiment,2023,45(2):338-346. (in Chinese with English abstract doi: 10.11781/sysydz202302338
    [26] 唐勇,王智强,庞燕青,等. 准噶尔盆地西部坳陷二叠系下乌尔禾组烃源岩生烃潜力评价[J]. 岩性油气藏,2023,35(4):16-28. doi: 10.12108/yxyqc.20230402

    TANG Y,WANG Z Q,PANG Y Q,et al. Hydrocarbon-generating potential of source rocks of Permian lower Urho Formation in western depression,Junggar Basin[J]. Lithologic Reservoirs,2023,35(4):16-28. (in Chinese with English abstract doi: 10.12108/yxyqc.20230402
    [27] 李艳红,金奎励. 烃源岩成熟度评价指标及选取[J]. 地质地球化学,2000,28(2):94-96.

    LI Y H,JIN K L. Evaluation indices for maturity of hydrocarbon-source rocks[J]. Geology-Geochemistry,2000,28(2):94-96. (in Chinese with English abstract
    [28] CHEN J X,GUO X W,HE Z L,et al. Maturity assessment of solid bitumen in the Sinian carbonate reservoirs of the eastern and central Sichuan Basin,China:Application for hydrocarbon generation modelling[J]. Geological Journal,2022,57(11):4662-4681. doi: 10.1002/gj.4564
    [29] 刘飞,朱钢添,何生,等. 渤海湾盆地惠民凹陷临南洼陷沙河街组原油地球化学特征及油源对比[J]. 石油实验地质,2019,41(6):855-864. doi: 10.11781/sysydz201906855

    LIU F,ZHU G T,HE S,et al. Geochemical characteristics of crude oil and oil-source correlation of Shahejie Formation in Linnan Sub-Sag,Huimin Sag,Bohai Bay Basin[J]. Petroleum Geology & Experiment,2019,41(6):855-864. (in Chinese with English abstract doi: 10.11781/sysydz201906855
    [30] 席胜利,刚文哲,杨清宇,等. 鄂尔多斯盆地盐池−定边地区长7烃源岩有机地球化学特征及沉积环境研究[J]. 现代地质,2019,33(4):890-901.

    XI S L,GANG W Z,YANG Q Y,et al. Organic geochemistry and sedimentary paleoenvironment of Chang 7 source rocks in Yanchi-Dingbian area,Ordos Basin[J]. Geoscience,2019,33(4):890-901. (in Chinese with English abstract
    [31] HAO F,ZHOU X H,ZHU Y M,et al. Mechanisms for oil depletion and enrichment on the Shijiutuo uplift,Bohai Bay Basin,China[J]. AAPG Bulletin,2009,93(8):1015-1037. doi: 10.1306/04140908156
    [32] 成海燕,李安龙,龚建明. 陆相烃源岩评价参数浅析[J]. 海洋地质动态,2008,24(2):6-10. doi: 10.3969/j.issn.1009-2722.2008.02.002

    CHENG H Y,LI A L,GONG J M. Analysis on evaluation parameters of continental source rocks[J]. Marine Geology Letters,2008,24(2):6-10. (in Chinese with English abstract doi: 10.3969/j.issn.1009-2722.2008.02.002
    [33] 侯读杰,冯子辉. 油气地球化学[M]. 北京:石油工业出版社,2011.

    HOU D J,FENG Z H. Oil and gas geochemistry[M]. Beijing:Petroleum Industry Press,2011. (in Chinese).
    [34] CHEN J X,GUO X W,HAN Y J,et al. Combination of basin modelling and carbazoles to investigate secondary oil migration pathways in the Dongying Depression of the Bohai Bay Basin,China[J]. Marine and Petroleum Geology,2021,131:105163. doi: 10.1016/j.marpetgeo.2021.105163
    [35] 蔡倩茹,王金铎,张关龙,等. 准噶尔盆地东北缘上石炭统巴山组烃源岩沉积环境分析及物源示踪:来自泥岩地球化学的证据[J]. 石油实验地质,2024,46(1):146-157. doi: 10.11781/sysydz202401146

    CAI Q R,WANG J D,ZHANG G L,et al. Research on sedimentary environment and provenance for hydrocarbon source rocks of Upper Carboniferous Batamayineishan Formation in northeastern Junggar Basin:Evidences from the geochemistry of mudstones[J]. Petroleum Geology & Experiment,2024,46(1):146-157. (in Chinese with English abstract doi: 10.11781/sysydz202401146
    [36] 阳宏,刘成林,王飞龙,等. 渤中凹陷东营组古沉积环境及烃源岩发育模式[J]. 岩性油气藏,2021,33(6):81-92. doi: 10.12108/yxyqc.20210609

    YANG H,LIU C L,WANG F L,et al. Paleoenvironment and development model of source rocks of Dongying Formation in Bozhong Sag[J]. Lithologic Reservoirs,2021,33(6):81-92. (in Chinese with English abstract doi: 10.12108/yxyqc.20210609
    [37] 胡奕明,杨海风,王飞龙,等. 渤海海域庙西地区烃源岩有机相特征及其对优质烃源岩的指示意义[J]. 天然气地球科学,2023,34(2):226-239.

    HU Y M,YANG H F,WANG F L,et al. Organic facies characteristics of source rocks and its indication for high quality source rocks of Miaoxi area,Bohai Sea[J]. Natural Gas Geoscience,2023,34(2):226-239. (in Chinese with English abstract
    [38] 熊小辉,肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境,2011,39(3):405-414.

    XIONG X H,XIAO J F. Geochemical indicators of sedimentary environments:A summary[J]. Earth and Environment,2011,39(3):405-414. (in Chinese with English abstract
    [39] 潘文静,刘士磊,田德瑞,等. 渤海海域新近纪湖盆萎缩期古水深恢复:以渤东低凸起南端为例[J]. 海洋地质前沿,2019,35(4):18-25.

    PAN W J,LIU S L,TIAN D R,et al. Reconstruction of paleo-water depth of Neocene shrinking lake:An example from the south of Bodong low uplift,Bohai Sea[J]. Marine Geology Frontiers,2019,35(4):18-25. (in Chinese with English abstract
    [40] 何雁兵,雷永昌,邱欣卫,等. 珠江口盆地陆丰南地区文昌组沉积古环境恢复及烃源岩有机质富集主控因素研究[J]. 地学前缘,2024,31(2):359-376.

    HE Y B,LEI Y C,QIU X W,et al. Sedimentary paleoenvironment and main controlling factors of organic enrichment in source rocks of Wenchang Formation in southern Lufeng,Pearl River Mouth Basin[J]. Earth Science Frontiers,2023,31(2):359-376. (in Chinese with English abstract
    [41] 游君君,柳波,胡德胜,等. 珠江口盆地文昌凹陷烃源岩发育时期湖盆古生产力构成及分布规律[J]. 地质论评,2024,70(2):624-642.

    YOU J J,LIU B,HU D S,et al. Composition and distribution of lacustrine paleoproductivity during the deposition of hydrocarbon source rocks in Wenchang Sag,Pearl River Mouth Basin[J]. Geological Review,2024,70(2):624-642. (in Chinese with English abstract
    [42] 赵汉杰. 日青威盆地灵山岛地区莱阳组烃源岩地球化学特征及有机质富集规律研究[D]. 山东青岛:中国石油大学(华东),2021.

    ZHAO H J. The geochemical characteristics and organic matter enrichment of the source rocks of Laiyang Formation in Lingshan Island,Riqingwei Basin[D]. Qingdao Shandong:China university of Petroleum (East China),2021. (in Chinese with English abstract
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-02
  • 录用日期:  2024-12-23
  • 修回日期:  2024-12-17
  • 网络出版日期:  2025-04-18

目录

    /

    返回文章
    返回