Significance of inclusions and fluid evolution of the porphyry-skarn copper-molybdenum deposit in Tongshankou, Daye, Hubei
-
摘要: 为了提供矽卡岩岩浆成因证据,丰富多成因矽卡岩理论,并研究湖北大冶铜山口铜钼矿床成矿流体性质,以包裹体的岩相学观察为基础,结合高温流体包裹体显微测温和激光拉曼光谱分析,对铜山口矿床矽卡岩矿化进行了研究。结果表明:在早期矽卡岩矿物石榴石中发现了丰富的晶质和非晶质熔融包裹体、熔体-流体包裹体,表明天然岩浆珠滴被矽卡岩矿物晶格缺陷捕获,其中含有石榴石、黄铜矿等子矿物,且早期流体包裹体均一温度超过500℃,为早期矽卡岩岩浆熔体成因提供了重要证据。矽卡岩成矿早期以岩浆作用为主,晚期以热液作用为主,且熔-流转换的过程主要发生在干矽卡岩阶段,早期岩浆熔体中富含成矿物质,为矿区深部成矿提供了物质基础。
-
关键词:
- 铜山口铜钼矿床 /
- 岩浆成因矽卡岩 /
- 熔融包裹体和熔体-流体包裹体 /
- 高温流体包裹体测温 /
- 激光拉曼分析
Abstract: Magma-skarn is an important genetic type among the multi-genesis of skarns. Based on petrographic observation and thermal microscopy temperature measurement of inclusions, combined with laser Raman spectroscopy, characteristics of ore-forming fluids at the Tongshankou porphyry-skarn copper-molybdenum deposit has been studied. This study aims to provide evidence for the formation of the magma-genetic skarn and further to unveil the melt-flow conversion processes and metal enrichment mechanism of ore-forming fluids. A vast amount of crystalline and amorphous melt inclusions and melt-fluid inclusions the melt inclusions have been found in the skarn minerals, e.g. garnet in the early stage, indicating that the magma droplets could have been trapped by the early skarn minerals. These inclusions could provide essential evidence for the magmatic genesis of the early skarns. With the comparison of different types of inclusions in the skarn minerals at each stage, it is believed that the skarn is dominated by magmatic genesis in the early stage, and the hydrothermal genesis in the late stage. Moreover, the processes of melt-flow conversion mainly occur in the prograde skarn stage. Ore minerals, e.g. chalcopyrite, found in the melt inclusions through the laser Raman analysis indicate that the skarn magma is rich in ore-forming materials at the Tongshankou deposit, which could aid in the deep prospecting and exploration in this area. -
图 1 鄂东南地区地质及矿产分布简图
(底图据文献[14]修改)
Figure 1. The diagram of geological and mineral distribution in southeastern Hubei
图 4 铜山口矿床部分矿石组构及围岩蚀变照片
a.块状黄铜矿矿石,局部可见少量白钨矿;b.块状黄铜矿黄铁矿矿石,斑铜矿呈浸染状产出;c.浸染状辉钼矿矿石;d.块状磁铁矿矿石,黄铁矿呈浸染状产出;e.镜铁矿和辉钼矿交代自形粒状黄铜矿,黄铜矿呈骸晶结构;f.自形黄铁矿受外力压碎,被后期黄铜矿石英等交代形成交代残余结构;g.蓝辉铜矿交代黄铜矿形成格状结构;h.黄铜矿边部出溶斑铜矿;i.黄铜矿呈乳滴状产于黄铁矿中形成乳浊状结构,黄铁矿交代早期磁铁矿;j.黄铁矿黄铜矿形成共结边结构;k.沿着石榴石边界发育硅化脉,石榴石被后期绿帘石交代;l.呈放射状的透闪石与绿帘石;m.石榴石呈脉状产于大理岩中;n.绢云母化、钾化、硅化共生;o.发育于大理岩中呈网脉状的绿泥石化;p.蛇纹石化矽卡岩。Ccp.黄铜矿;Py.黄铁矿;Sch.白钨矿;Bn.斑铜矿;Mt.磁铁矿;Mol.辉钼矿;Spe.镜铁矿;Dg.蓝辉铜矿;Grt.石榴石;Q.石英;Kfs.钾长石;Se.绢云母;Cal.方解石;Srp.蛇纹石;Chl.绿泥石;Tr.透闪石;Ep.绿帘石
Figure 4. Partial ore structure and rock alteration photo of Tongshankou deposit
图 9 流体包裹体均一温度与盐度散点图(据文献[29]修改)
Figure 9. Homogeneous temperature and salinity scatter plot of fluid inclusions
表 1 蚀变分带与矿化特征
Table 1. The characteristics of alteration zone and mineralization
蚀变带 钾化带 钾化硅化带 绢英岩化带 矽卡岩带 矽卡岩化带 蛇纹石化带 绿泥石化带 大理岩带 矿化类型 浸染状钼(铜)矿化 浸染、细脉状钼(铜)矿化 细脉(网脉)、浸染状钼(铜)矿化 块状、粗脉及稠密网脉状铜(钼)矿化 粗脉、稀疏网脉状铜矿化 细脉(网脉)状铜矿化 细脉状铜矿化 星点状铜矿化 表 2 包裹体激光拉曼测试数据
Table 2. Statistics of laser Raman analytical results for melt inclusions and fluid-melt inclusions
标本编号 主矿物 包裹体编号 测试结果 拉曼特征分峰波数/cm-1 2306-2-b-J 石榴石 2306-2-1 Cal+Px+H2O Cal:1 087
Px:1 011、663
H2O:3 430~3 4582306-2-2 Hem Hem:1 320 2306-2-3 Cal Cal:1 085 2306-2-4 Ccp Ccp:291、321 2306-2-b-B 石榴石 2306-2-5 Px Px:1 014、667 2306-2-6 NaCl+Hem Hem:1 313
NaCl:无特征波峰,根据晶形判断2306-2-e-B 石榴石 2306-2-7 Cal+Hem Cal:1 087
Hem:1 3172306-2-e-J 石榴石 2306-2-8
2306-2-9Grt
CalGrt:873、815、515、369
Cal:1085注:Hem.赤铁矿,其余矿物代号同图 4 -
[1] 赵一鸣, 林文蔚, 毕承思, 等.中国矽卡岩矿床基本地质特征[J].地球学报, 1986, 8(3):59-87. http://www.cnki.com.cn/Article/CJFDTotal-DQXB198603004.htm [2] 林新多.矽卡岩的一种成因:岩浆成因[J].地质科技情报, 1987, 6(2):94-96. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ198702021.htm [3] 欧阳永棚, 饶建锋, 尧在雨, 等.朱溪式矽卡岩型矿床成矿作用及找矿方向[J].地质科技情报, 2018, 37(3):154-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201803020 [4] von Cotta B.Erzlagerstätten im Banat und in Serbien[M].Vienna:Braunmuller W, 1864. [5] 林新多, 许国建.岩浆成因矽卡岩的某些特征及形成机制初探[J].现代地质, 1989, 3(3):351-358. http://www.cqvip.com/QK/96868X/19893/3001453847.html [6] 赵劲松, 李兆麟.大冶铁矿床夕卡岩矿物中熔融包裹体的发现及基地质地球化学意义[J].地球化学, 2000, 29(5):500-503. http://www.cqvip.com/Main/Detail.aspx?id=4673717 [7] 赵斌, 李院生, 赵劲松.岩浆成因夕卡岩的包裹体证据[J].地球化学, 1995, 24(2):198-200. http://www.cqvip.com/Main/Detail.aspx?id=1710626 [8] 赵劲松, 赵斌, 李建威, 等.矽卡岩岩浆对中国北方某些矽卡岩型矿床形成的制约来自包裹体激光拉曼分析证据[J].岩石学报, 2015, 31(4):1079-1088. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201504015 [9] 赵斌, 赵劲松, 许德如.长江中下游成矿带矽卡岩型矿床矿物包裹体激光拉曼分析结果及其地质-地球化学意义[J].岩石学报, 2017, 33(6):1841-1858. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201706014 [10] 赵斌, 李兆麟.大冶-九江地区Fe, Cu(Au)和Au(Cu)矿床夕卡岩矿物里的熔融包裹体特征[J].中国科学:地球科学, 2002, 32(7):550-561. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200207003 [11] Xia Jinlong, Huang Guicheng, Ding Lixue, et al.In situ analyses of trace elements, U-Pb and Lu-Hf isotopes in zircons from the Tongshankou granodiorite porphyry in southeast Hubei Province, Middle-Lower Yangtze River Metallogenic Belt, China[J].Acta Geologica Sinica, 2015, 89(5):1588-1600. doi: 10.1111/1755-6724.12566 [12] 刘坤, 王敏芳, 张旭波, 等.鄂东南矿集区铜山口斑岩矿床成矿流体特征研究[C]//2015中国地球科学联合学术年会论文集(六).北京: 中国地球物理学会, 2015: 238-239. [13] 王晓蕊.铜山口斑岩-矽卡岩型铜钼矿床流体包裹体特征研究[J].矿物学报, 2013, 33(增刊2):502. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8300895 [14] Ji Min, Zhao Xinfu, Zeng Liping, et al.Microtexture and geochemistry of garnets from Tonglushan skarn Cu-Fe deposit in the southeastern Hubei metallogenic province:Implications for ore-forming process[J].Acta Petrologica Sinica, 2018, 34(9):2716-2732. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201809014.htm [15] Han Jinsheng, Chu Gaobin, Chen Huayong, et al.Hydrothermal alteration and short wavelength infrared (SWIR) characteristics of the Tongshankou porphyry-skarn Cu-Mo deposit, Yangtze craton, Eastern China[J].Ore Geology Reviews, 2018, 101:143-164. doi: 10.1016/j.oregeorev.2018.07.018 [16] Li Wei, Xie Guiqing, Zhu Qiaoqiao, et al.Oxygen isotope study of magnetite from Chengchao iron deposit, southeastern Hubei Province[J].Acta Geologica Sinica, 2014, 88(S2):95-96. doi: 10.1111/1755-6724.12368_13 [17] Xie Guiqing, Mao Jingwen, Zhao Haijie.Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of Late Mesozoic intrusions in the southeast Hubei Province, Middle-Lower Yangtze River Belt (MLYRB), East China[J].Lithos, 2011, 125(1/2):693-710. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5ab1415ed675eef43e110b627c965639 [18] Liu Kun, Wang Minfang, Li Zheming, et al.Study on geochemical characteristics and genesis of Tongshankou intrusion, southeastern Hubei Province[J].Resources Environment & Engineering, 2016, 30(1):25-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdk201601005 [19] Xie Guiqing, Mao Jingwen, Li Xiongwei, et al.Late Mesozoic bimodal volcanic rocks in the Jinniu Basin, Middle-Lower Yangtze River Belt (YRB), East China:Age, petrogenesis and tectonic implications[J].Lithos, 2011, 127(1/2):144-164. http://www.sciencedirect.com/science/article/pii/S0024493711002477 [20] 谢桂青, 朱乔乔, 李瑞玲, 等.鄂东南地区斑岩-矽卡岩型铜铁多金属矿的矿化类型、分布规律及找矿方向[J].资源环境与工程, 2013, 27(增刊1):36-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdk2013z1011 [21] Li Jianwei, Zhao Xinfu, Zhou Meifu, et al.Origin of the Tongshankou porphyry-skarn Cu-Mo deposit, eastern Yangtze craton, Eastern China:Geochronological, geochemical, and Sr-Nd-Hf isotopic constraints[J].Mineralium Deposita, 2008, 43(3):315-336. doi: 10.1007/s00126-007-0161-3 [22] 王强, 赵振华, 许继峰, 等.鄂东南铜山口、殷祖埃达克质(adakitic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因[J].岩石学报, 2004, 20(2):351-360. http://www.cqvip.com/Main/Detail.aspx?id=9484637 [23] Chu Gaobin, Chen Huayong, Falloon T J, et al.Early Cretaceous mantle upwelling and melting of Juvenile lower crust in the Middle-Lower Yangtze River Metallogenic Belt:Example from Tongshankou Cu-(MoW) ore deposit[J].Gondwana Research, 2020, 83:183-200. doi: 10.1016/j.gr.2020.02.004 [24] 赵新福, 李建威, 马昌前.鄂东南铁铜矿集区铜山口铜(钼)矿床40Ar/39Ar年代学及对区域成矿作用的指示[J].地质学报, 2006, 80(6):849-862. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200606007 [25] 吕新彪, 姚书振.大冶铜山口铜钼矿床蚀变-矿化分带找矿意义[J].矿山地质, 1993, 14(2):99-106. http://www.cqvip.com/Main/Detail.aspx?id=1110806 [26] 郭欣然, 高顺宝, 郑有业, 等.西藏龙根铅锌矿床矽卡岩矿物学特征及其地质意义[J].地质科技情报, 2019, 38(5):31-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201905003 [27] 李葆华, 顾雪祥, 彭义伟, 等.论包裹体成分-相态分类[J].物探化探计算技术, 2018, 40(6):806-811. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wthtjsjs201806016 [28] 李兆麟.岩浆岩副矿物中包裹体成岩温度测定新方法及其应用[J].中国科学:化学生物学农学医学地学, 1986, 16(12):95-104. http://www.cnki.com.cn/Article/CJFDTotal-JBXK198612012.htm [29] 卢焕章, 范宏瑞, 倪培, 等.流体包裹体[M].北京:科学出版社, 2004:1-487. [30] 谭秋明.鄂东南地区岩浆岩中的矿物包裹体特征及其地质意义[J].资源环境与工程, 1991, 5(1):36-47. http://qikan.cqvip.com/Qikan/Article/Detail?id=1005273792 [31] Bodnar R J.Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J].Geochimica et Cosmochimica Acta, 1993, 57(3):683-684. doi: 10.1016/0016-7037(93)90378-A [32] Di H, Sm S, Rj B.Freezing point depression of NaCl-KCl-H2O solutions[J].Economic Geology, 1988, 83:197-202. doi: 10.2113/gsecongeo.83.1.197 [33] 吕新彪, 姚书振, 林新多.湖北大冶铜山口矽卡岩-斑岩复合型铜(钼)矿床地质特征和成矿机制[J].地球科学:中国地质大学学报, 1992, 17(2):171-180. http://www.cnki.com.cn/Article/CJFDTotal-DQKX199202008.htm [34] 郭新强.福建香厝坑铁多金属矿床地质特征及成矿模式[J].地质科技情报, 2018, 37(5):174-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201805023 [35] 范宏瑞, 谢奕汉, 郑学正, 等.河南祁雨沟热液角砾岩体型金矿床成矿流体研究[J].岩石学报, 2000, 16(4):559-563. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200004015 [36] Zhang Lu, Jiang Shaoyong, Xiong Suofei, et al.Fluid evolution of Fuzishan skarn Cu-Mo deposit from the Edong district in the Middle-Lower Yangtze River metallogenic belt of China:Evidence from petrography, mineral assemblages, and fluid inclusions[J].Geofluids, 2018, 2018:1-25. http://www.onacademic.com/detail/journal_1000041641736099_c83b.html [37] 陈静, 陈衍景, 钟军, 等.福建省紫金山矿田五子骑龙铜矿床流体包裹体研究[J].岩石学报, 2011, 27(5):1425-1438. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201105016 [38] 李光明, 李金祥, 秦克章, 等.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据[J].岩石学报, 2007, 23(5):935-952. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200801003043.htm [39] Xia Lin, Shu Bin, Guo Tao, et al.Numerical modeling on waer-rock interaction of ore fluid of Tongshankiou Cu(Mo) deposit[J].Geology Geochemistry, 2003, 31(3):6-12. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200303002.htm [40] 沈军, 何谋惷, 胡新露, 等.黑龙江省大兴安岭地区大黑山钼矿床流体包裹体特征及成矿机制探讨[J].地质科技情报, 2015, 34(3):150-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201503021 [41] 林新多.岩浆-热液过渡型矿床的若干特征[J].现代地质, 1998, 12(4):485-492. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ804.004.htm [42] 魏世昆, 胡清乐, 金尚刚, 等.鄂东南地区广义矽卡岩矿床的成因与深部找矿[J].资源环境与工程, 2013, 27(增刊1):86-91. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdk2013z1021 [43] 梁学堂, 全浩理, 马玄龙, 等.湖北大冶铜山口地区地球物理深部找矿模式[J].物探与化探, 2012, 36(4):697-704. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201204038