留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钻井液用高分子聚合物高温流变特性影响因素探究

朱旭明 乌效鸣 郑文龙 迪娜·木拉提 蒋子为

朱旭明, 乌效鸣, 郑文龙, 迪娜·木拉提, 蒋子为. 钻井液用高分子聚合物高温流变特性影响因素探究[J]. 地质科技通报, 2021, 40(1): 200-208. doi: 10.19509/j.cnki.dzkq.2021.0115
引用本文: 朱旭明, 乌效鸣, 郑文龙, 迪娜·木拉提, 蒋子为. 钻井液用高分子聚合物高温流变特性影响因素探究[J]. 地质科技通报, 2021, 40(1): 200-208. doi: 10.19509/j.cnki.dzkq.2021.0115
Zhu Xuming, Wu Xiaoming, Zheng Wenlong, Mulati Dina, Jiang Ziwei. Factors affecting high temperature rheological properties of polymers used in drilling fluid[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 200-208. doi: 10.19509/j.cnki.dzkq.2021.0115
Citation: Zhu Xuming, Wu Xiaoming, Zheng Wenlong, Mulati Dina, Jiang Ziwei. Factors affecting high temperature rheological properties of polymers used in drilling fluid[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 200-208. doi: 10.19509/j.cnki.dzkq.2021.0115

钻井液用高分子聚合物高温流变特性影响因素探究

doi: 10.19509/j.cnki.dzkq.2021.0115
基金项目: 

中国地质调查局地质调查项目 12120113017600

中国地质调查局地质调查项目 DD20160209

详细信息
    作者简介:

    朱旭明(1990- ), 男, 现正攻读地质工程专业博士学位, 主要从事钻探工程研究工作。E-mail:zxm@cug.edu.cn

    通讯作者:

    乌效鸣(1956- ), 男, 教授, 主要从事钻探工程与钻井液技术的教学与科研工作。E-mail:xmwu0718@163.com

  • 中图分类号: P634.5

Factors affecting high temperature rheological properties of polymers used in drilling fluid

  • 摘要: 聚合物对钻井液的高温流变特性具有重要影响。对比了聚合物种类、加量、剪切时间、盐、造浆黏土等对聚合物溶液高温流变性的影响,并对不同温度下的剪切速率-剪切应力关系进行了流变模型拟合。结果表明,温度升高、剪切时间及盐量增加均导致黏度降低,超过190℃后黏度下降速率加剧;含5%甲酸盐与5%卤盐的样品黏度在降温阶段的黏度恢复率分别为86.8%和2.7%;以宾汉模式对造浆黏土与聚合物混合液进行拟合,220℃时的动切力最高达到5.47 Pa。温度升高使得聚合物溶液由假塑性向牛顿性演变的趋势增强。高于130℃时,长时间剪切导致黏度下降的趋势明显,此时含甲酸盐的聚合物溶液黏度较含卤盐的高,且降温阶段的黏度恢复率也较高。黏土的存在增强了混合液的网间结构,有利于高温下携带岩屑。

     

  • 图 1  典型的浆液高温流变测试图

    Figure 1.  Typical picture of high temperature rheology test

    图 2  总体试验设计流程图

    Figure 2.  Flow chart of overall test design

    图 3  不同聚合物溶液的黏度随温度变化曲线

    Figure 3.  Viscosity-temperature curves of various polymer solutions

    图 4  聚合物溶液不同温度下的黏度降低率

    Figure 4.  Viscosity reduction rate of polymer solutions at different temperatures

    图 5  聚合物加量对黏度的影响(40℃)

    Figure 5.  Influence of polymer additions on viscosity

    图 6  温度对聚合物溶液黏度的影响(511 s-1剪切速率)

    Figure 6.  Influence of temperature on viscosity of polymer solutions

    图 7  聚合物F溶液流变数据拟合(40℃)

    Figure 7.  Rheology model fitting of polymer F solutions(40℃)

    图 8  聚合物F溶液流变数据拟合(160℃)

    Figure 8.  Rheology model fitting of polymer F solutions(160℃)

    图 9  盐对聚合物溶液黏度的影响(511 s-1剪切速率)

    Figure 9.  Influence of salt on polymer viscosity (511 s-1)

    图 10  聚合物盐溶液的升、降温阶段黏度变化(85.16 s-1剪切速率)

    Figure 10.  Viscosity variation of polymer salt solutions during heating-cooling process(85.16 s-1)

    图 11  不同温度下剪切时间对黏度的影响

    Figure 11.  Influence of shear time on polymer viscosity at different temperature

    图 12  造浆黏土对聚合物流变性的影响

    a.聚合物F溶液的流变曲线;b.NV-1+聚合物F的流变曲线;c.SEP+聚合物F的流变曲线;d.ATTP+聚合物F的流变曲线

    Figure 12.  Influence of clay type on rheological properties of polymer solutions

    表  1  造浆黏土+聚合物F的流变参数拟合

    Table  1.   Rheological parameters fitting of different clay suspensions

    温度/℃ PV/(mPa·s) YP/Pa
    NV-1+聚合物 40 67.01 11.69
    100 58.90 10.93
    160 49.05 8.41
    220 25.06 5.47
    SEP+聚合物 40 62.96 11.11
    100 51.76 10.12
    160 44.60 9.24
    220 21.72 4.18
    ATTP+聚合物 40 58.95 8.86
    100 46.09 6.76
    160 28.13 3.24
    220 16.24 2.35
    下载: 导出CSV
  • [1] Caenn R, Darley H C H, Gray G R.Compositions and properties of drilling and completion fluids[M].Sixth edition.USA:Gulf Professional Publishing, 2011.
    [2] Kelessidis V C, Maglione R, Tsamantaki C, et al.Optimal determination of rheological parameters for Herschel-Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling[J].Journal of Petroleum Science & Engineering, 2006, 53(3/4):203-224.
    [3] Nasiri M, Ashrafizadeh S N.Novel equation for the prediction of rheological parameters of drilling fluids in an annulus[J].Industrial & Engineering Chemistry Research, 2010, 49(7):3374-3385.
    [4] 易灿, 闫振来, 赵怀珍.超深井水基钻井液高温高压流变性试验研究[J].石油钻探技术, 2009, 37(1):10-13. doi: 10.3969/j.issn.1001-0890.2009.01.003
    [5] 方俊伟, 苏晓明, 熊汉桥, 等.塔中区块成膜封缝堵气钻井液体系[J].地质科技情报, 2019, 38(2):297-302. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902036.htm
    [6] 董文辉, 鄢捷年, 朱墨.两性离子聚合物泥浆高温流变性能的实验研究[J].石油大学学报:自然科学版, 1995, 19(1):39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX501.006.htm
    [7] 张翼, 方俊伟, 于培志, 等.塔里木盆地顺北一区柯吐尔组失稳特征及钻井液技术研究[J].地质科技情报, 2019, 38(4):281-286. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904030.htm
    [8] 吕开河, 高锦屏, 孙明波.多元醇钻井液高温流变性研究[J].石油钻探技术, 2000, 28(6):23-25. doi: 10.3969/j.issn.1001-0890.2000.06.009
    [9] Wang Fuhua, Tan Xuechao, Wang Ruihe.High temperature and high pressure rheological properties of high-density water-based drilling fluids for deep wells[J].Petroleum Science, 2012, 9(3):354-362. doi: 10.1007/s12182-012-0219-4
    [10] 齐佳佳.大庆油田有机硅钻井液高温流变性研究[D].大庆: 大庆石油学院, 2010.
    [11] Fisk J V, Jamison D E.Physical properties of drilling fluids at high temperature and pressures[J].Spe Drilling Engineering, 1989, 4(4):341-346. doi: 10.2118/17200-PA
    [12] Arabi A S, Dewu B B M, Funtua I I, et al.Morphology, rheology and thermal stability of drilling fluid formulated from locally beneficiated clays of Pindiga Formation, Northeastern Nigeria[J].Applied Clay Science, 2018, 161:90-102. doi: 10.1016/j.clay.2018.03.034
    [13] Sinha B K.A new technique to determine the equivalent viscosity of drilling fluids under high temperature and high pressures[J].Society of Petroleum Engineers Journal, 1970, 10(1):33-40. doi: 10.2118/2384-PA
    [14] 韩博, 鲁光银, 曹涵, 等.基于图像处理技术的聚合物水基钻井液微观结构分形研究[J].地质科技情报, 2018, 37(2):221-228. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802030.htm
    [15] 周欣, 宁伏龙, 孙嘉鑫, 等.实验尺度下钻井液在含水合物地层流动数值模拟[J].地质科技情报, 2015, 34(5):190-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505030.htm
    [16] 施里宇, 李天太, 张喜凤, 等.温度和膨润土含量对水基钻井液流变性的影响[J].石油钻探技术, 2008, 36(1):20-22. doi: 10.3969/j.issn.1001-0890.2008.01.006
    [17] Benna M, Kbir-Ariguib N, Magnin A et al.Effect of pH on rheological properties of purified sodium bentonite suspensions[J].Journal of Colloid & Interface Science, 1999, 218(2):442-455.
    [18] Vryzas Z, Kelessidis V C, Nalbantian L, et al.Effect of temperature on the rheological properties of neat aqueous Wyoming sodium bentonite dispersions[J].Applied Clay Science, 2016, 136:26-36.
    [19] Hiller K H.Rheological measurements on clay suspensions and drilling fluids at high temperatures and pressures[J].Journal of Petroleum Technology, 1963, 15(7):779-789. doi: 10.2118/489-PA
    [20] Alderman N J, Gavignet A, Guillot D, et al.High-temperature, high-pressure rheology of water-based muds[C]//Paper 18035-MS presented at the SPE annual technical conference and exhibition, 2-5 October 1988, Houston, Texas, USA.
    [21] Choo K Y, Bai K.Effects of bentonite concentration and solution pH on the rheological properties and long-term stabilities of bentonite suspensions[J].Applied Clay Science, 2015, 108:182-190. doi: 10.1016/j.clay.2015.02.023
    [22] Magzoub M I, Nasser M S, Hussein I A, et al.Effects of sodium carbonate addition, heat and agitation on swelling and rheological behavior of Ca-bentonite[J].Applied Clay Science, 2017, 147:176-183. doi: 10.1016/j.clay.2017.07.032
    [23] Lin Yuan, Cheah L K J, Phan T N, et al.Effect of temperature on rheological behavior of kaolinite and bentonite suspensions[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 506:1-5.
    [24] 王中华.国内钻井液及处理剂发展评述[J].中外能源, 2013, 18(10):34-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201310010.htm
    [25] 张磊.驱油聚合物的降解与稳定性研究[D].济南: 山东大学, 2011.
    [26] 史雪冬.耐高温聚合物粘弹特性及稳定性研究[D].大庆: 东北石油大学, 2015.
    [27] 陈跃章, 张柱, 陈明华, 等.聚合物溶液黏度的主要影响因素分析[J].辽宁化工, 2004, 33(5):258-260. doi: 10.3969/j.issn.1004-0935.2004.05.004
    [28] 方道斌, 郭睿威, 哈润华.丙烯酰胺聚合物[M].北京:化学工业出版社, 2006
    [29] 吴其晔, 巫静安.高分子材料流变学[M].北京:高等教育出版社, 2002
    [30] 陈乐亮, 汪桂娟.甲酸盐基钻井液完井液体系综述[J].钻井液与完井液, 2003, 20(1):34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW200301011.htm
    [31] 赵春花.低分子量水溶性聚合物与蒙脱土的相互作用及其环境响应行为[D].济南: 山东大学, 2014.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  983
  • PDF下载量:  5029
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-16

目录

    /

    返回文章
    返回