留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含油气盆地微观裂缝脉体期次、成因与流体演化研究进展及展望

陈少伟 刘建章

陈少伟, 刘建章. 含油气盆地微观裂缝脉体期次、成因与流体演化研究进展及展望[J]. 地质科技通报, 2021, 40(4): 81-92. doi: 10.19509/j.cnki.dzkq.2021.0426
引用本文: 陈少伟, 刘建章. 含油气盆地微观裂缝脉体期次、成因与流体演化研究进展及展望[J]. 地质科技通报, 2021, 40(4): 81-92. doi: 10.19509/j.cnki.dzkq.2021.0426
Chen Shaowei, Liu Jianzhang. Research progress and prospects of the stages, genesis and fluid evolution of micro-fracture veins in petroliferous basins[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 81-92. doi: 10.19509/j.cnki.dzkq.2021.0426
Citation: Chen Shaowei, Liu Jianzhang. Research progress and prospects of the stages, genesis and fluid evolution of micro-fracture veins in petroliferous basins[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 81-92. doi: 10.19509/j.cnki.dzkq.2021.0426

含油气盆地微观裂缝脉体期次、成因与流体演化研究进展及展望

doi: 10.19509/j.cnki.dzkq.2021.0426
基金项目: 

中科院战略性先导科技专项A类 XDA14010302

国家自然科学基金项目 42072179

国家自然科学基金项目 41690134

国家自然科学基金项目 41672141

详细信息
    作者简介:

    陈少伟(1996-), 男, 现正攻读矿产普查与勘探专业硕士学位, 主要从事非常规油气方面研究工作。E-mail: 1609062748@qq.com

    通讯作者:

    刘建章(1976-), 男, 副教授, 主要从事油气地质方面的教学与科研工作。E-mail: liujzh@126.com

  • 中图分类号: P618.13

Research progress and prospects of the stages, genesis and fluid evolution of micro-fracture veins in petroliferous basins

  • 摘要: 沉积岩石中断裂与裂缝是含油气盆地流体活动的重要通道,断裂与裂缝中充填的不同期次、不同类型的矿物脉体是烃-水-岩相互作用的产物,记录了断裂、裂缝形成过程中不同期次流体性质、组分、来源以及温压场、氧化还原环境等信息,为研究沉积盆地断裂发育、流体动力场特征、物理化学环境及封闭与保存条件等地层古流体活动、动态演化过程提供了重要线索。系统总结了含油气盆地微观裂缝脉体流体活动示踪、演化的基本方法及其地质应用现状,认为目前主要集中在三个方面:①通过对裂缝脉体充填的成岩矿物岩石学观察,分析成岩矿物类型、结构及形成的相对次序;②通过对脉体成岩矿物的同位素、微量-稀土元素、流体包裹体等地球化学测试,示踪成脉古流体性质、来源、温压-氧化还原环境等;③通过对脉体成岩矿物放射性同位素(如U-Pb、Re-Os等)的测试,精确确定脉体形成时间,结合区域构造演化探讨脉体形成过程、流体动力场环境及其动态演化过程。最后分析了现有研究方法存在的问题,探讨今后的发展趋势及地质应用前景,以期为含油气盆地古流体演化及其与油气运移、聚集与保存等油气成藏机理的研究提供参考。

     

  • 图 1  四川盆地涪陵地区梓里场区块五峰组-龙马溪组页岩裂缝脉体微观发育特征

    图a, c, e为透射光; 图b, d, f为对应的阴极光;图c,e分别对应图a中A、B区域;Q为石英,Cal为方解石;图b见方解石呈橙红色或橘黄色阴极光,石英不发光。Ⅰ.早期低角度方解石脉;Ⅱ.石英与方解石共生脉;Ⅲ.晚期高角度方解石脉

    Figure 1.  Microscopic development characteristics of shale fracture veins in Wufeng Formation-Longmaxi Formation of Zilichang block in Fuling area, Sichuan Basin

    图 2  四川盆地涪陵地区梓里场区块五峰组-龙马溪组页岩裂缝石英脉中流体包裹体激光拉曼光谱图

    a.含CO2甲烷包裹体;b.含CH4气-液两相盐水包裹体

    Figure 2.  Laser Raman spectra of fluid inclusions in quartz veins in shale fractures of Wufeng Formation-Longmaxi Formation in Zilichang block, Fuling area, Sichuan Basin

    图 3  涪陵页岩气田五峰组-龙马溪组裂缝方解石脉与页岩围岩碳氧同位素关系

    Figure 3.  Carbon and oxygen isotopic relationships between fractured calcite veins and shale surrounding rocks in Wufeng Formation-Longmaxi Formation in Fuling Shale Gas Field

    图 4  典型自然环境和矿物中稀土元素的PAAS标准化配分模式[45]

    Figure 4.  PAAS standardized distribution model of REE in typical natural environments and minerals

    表  1  流体包裹体成分分析方法、特点、影响因素及其局限性

    Table  1.   Analysis methods, characteristics, influencing factors and limitations of fluid inclusion composition

    分析类别 测试方法 方法特点 影响因素及局限性 资料来源
    单个包裹体成分分析 非破坏性分析 激光拉曼光谱分析(LRM) 用途:气烃包裹体、CO2包裹体成分确定
    特点:定性-半定量,微区微量,高分辨率
    影响因素:荧光干扰
    局限性:测定成分有限,未能实现C6+液态烃的分析
    文献[18]
    傅里叶变换红外光谱分析(FTIR) 用途:含油气包裹体中的有机成分确定
    特点:定性,测试结果具有很好的重复性,可以消除一些矿物和有机荧光的影响
    影响因素:流体包裹体大小、形状
    局限性:流体包裹体中离子态元素无法定量
    文献[31]
    同步辐射X射线荧光(SXRF) 用途:流体包裹体中微量元素成分确定
    特点:定量,较高的空间分辨率,能谱连续,多元素同时检出
    影响因素:主矿物对入射荧光束的X射线吸收
    局限性:价格昂贵,检测限较高,仅适用于原子序数大于13的元素
    文献[32]
    核微探针分析(PIXE和PIGE) 用途:流体包裹体中的微量元素成分确定
    特点:定量,高灵敏度,多元素同时检出
    影响因素:流体包裹体形状、内部结构
    局限性:PIXE适用于重元素分析,PIGE适用于轻元素分析
    文献[33]
    破坏性分析 激光剥蚀电感耦合等离子质谱(LA-ICP-MS) 用途:流体包裹体中的常、微量元素,Sr和Pb同位素确定
    特点:定量,高灵敏度、低检出限、多元素同时检出
    影响因素:剥蚀热量、流体包裹体大小
    局限性:定量校正技术的适用性不足
    文献[17, 21]
    群体包裹体成分分析 色谱-质谱分析:压碎法、爆裂-萃取法 用途:流体包裹体中气相成分、阴阳离子数确定
    特点:定量,速度快,准确度高
    影响因素:样品处理要求高
    局限性:数据代表性差,仅适用于同世代且具有良好代表性的流体包裹体
    文献[34]
    下载: 导出CSV

    表  2  古流体活动时间确定方法、特点、影响因素及其局限性

    Table  2.   Methods, characteristics, influencing factors and limitations of determining the time of paleofluid activity

    研究方法 方法特点 影响因素及局限性 资料来源
    流体包裹体分析法 均一温度法 用途:叠合盆地多源、多期流体活动时间
    特点:间接定年
    影响因素:埋藏史-热史、成岩环境
    局限性:测试结果具有多解性、人为性强
    文献[70]
    40Ar-39Ar法 用途:伴生矿物形成时间
    特点:直接定年
    影响因素:流体包裹体丰度及其K含量
    局限性:测定流体包裹体K含量难度大
    文献[53]
    原油或沥青U-Pb、Rb-Sr、Sm-Nd同位素测年 用途:油气生成、运移的年龄
    特点:直接确定原油或沥青的年龄
    影响因素:样品中放射性同位素的富集和分离
    局限性:目前只做到了沥青和干酪根中放射性同位素的分离
    文献[56, 71]
    原油或沥青Re-Os同位素定年 用途:油气生成、运移的年龄
    特点:精确厘定油气运移和充注的时限,有效示踪烃源岩
    影响因素:在自然界丰度低,分离和提纯困难
    局限性:仅适用于晚期成藏、单期改造的油气藏
    文献[58, 72]
    方解石LA-MC-ICP-MS微区原位U-Pb放射性同位素定年 用途:不同期次方解石形成年龄
    特点:准确率高,避免了不同期次、成岩矿物混合的影响
    影响因素:矿物中U/Pb含量
    局限性:缺乏广泛认可的标准样品用于数据校正
    文献[66-67]
    自生矿物热释光、ESR定年 用途:晚期成藏的年龄
    特点:间接定年,准确度高
    影响因素:自生矿物分离提纯难
    局限性:仅适用于与油气藏伴生的石英脉、方解石脉,年龄范围较年轻
    文献[68-69]
    下载: 导出CSV
  • [1] Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg13/ref13&dbid=16&doi=10.1139%2Fcjes-2014-0188&key=10.1306%2F61EEDDBE-173E-11D7-8645000102C1865D
    [2] Rossi C, Marfil R, Ramseyer K, et al. Facies-related diagenesis and multiphase siderite cementation and dissolution in the reservoir sandstones of the Khatatba Formation, Egypt's western desert[J]. Journal of Sedimentary Research, 2001, 71(3): 459-472. doi: 10.1306/2DC40955-0E47-11D7-8643000102C1865D
    [3] 赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报, 2017, 38(9): 973-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709001.htm

    Zhao J Z, Li J, Xu Z Y. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9): 973-998(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709001.htm
    [4] 苗凤彬, 彭中勤, 汪宗欣, 等. 雪峰隆起西缘下寒武统牛蹄塘组页岩裂缝发育特征及主控因素[J]. 地质科技通报, 2020, 39(2): 31-42. https://dzkjqb.cug.edu.cn/CN/abstract/abstract9972.shtml

    Miao F B, Peng Z Q, Wang Z X, et al. Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation, western margin of Xuefeng Uplift[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 31-42(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract9972.shtml
    [5] 苟启洋, 徐尚, 郝芳, 等. 基于成像测井的泥页岩裂缝研究: 以焦石坝区块为例[J]. 地质科技通报, 2020, 39(6): 193-200. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10085.shtml

    Gou Q Y, Xu S, Hao F, et al. Research on mud shale fractures based on image logging: A case study of Jiaoshiba area[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 193-200(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10085.shtml
    [6] 苟启洋, 徐尚, 郝芳, 等. 纳米CT页岩孔隙结构表征方法: 以JY-1井为例[J]. 石油学报, 2018, 39(11): 1253-1261. doi: 10.7623/syxb201811005

    Gou Q Y, Xu S, Hao F, et al. Characterization method of shale pore structure based on nano CT: A case study of Well JY-1[J]. Acta Petrolei Sinica, 2018, 39(11): 1253-1261(in Chinese with English abstract). doi: 10.7623/syxb201811005
    [7] Pierson B J. The control of cathodoluminescence in dolomite by iron and manganese[J]. Sedimentology, 2006, 28(5): 601-610. doi: 10.1111/j.1365-3091.1981.tb01924.x
    [8] 陈红汉, 吴悠, 朱红涛, 等. 塔中地区北坡中-下奥陶统早成岩岩溶作用及储层形成模式[J]. 石油学报, 2016, 37(10): 1231-1246. doi: 10.7623/syxb201610003

    Chen H H, Wu Y, Zhu H T, et al. Eogenetic karstification and reservoir formation model of the Middle-Lower Ordovician in the northeast slope of Tazhong uplift, Tarim Basin[J]. Acta Petrolei Sinica, 2016, 37(10): 1231-1246(in Chinese with English abstract). doi: 10.7623/syxb201610003
    [9] Becker S P, Eichhubl P, Laubach S E, et al. A 48 my history of fracture opening, temperature, and fluid pressure: Cretaceous Travis Peak Formation, East Texas Basin[J]. Geological Society of America Bulletin, 2010, 122(7/8): 1081-1093. http://adsabs.harvard.edu/abs/2010GSAB..122.1081B
    [10] 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004.

    Lu H Z, Fan H R, Ni P, et al. Fluid inclusions[M]. Beijing: Science Press, 2004(in Chinese with English abstract).
    [11] Bakker R J. Raman spectra of fluid and crystal mixtures in the systems H2O, H2O-NaCl and H2O-MgCl2 at low temperatures: Applications to fluid-inclusion research[J]. The Canadian Mineralogist, 2004, 42(5): 1283-1314. doi: 10.2113/gscanmin.42.5.1283
    [12] Mernagh T P, Wilde A R. The use of the laser Raman microprobe for the determination of salinity in fluid inclusions[J]. Geochimica et Cosmochimica Acta, 1989, 53(4): 765-771. doi: 10.1016/0016-7037(89)90022-7
    [13] 倪培, 丁俊英, 饶冰. 人工合成H2O及NaCl-H2O体系流体包裹体低温原位拉曼光谱研究[J]. 科学通报, 2006(9): 1073-1078. doi: 10.3321/j.issn:0023-074X.2006.09.012

    Ni P, Ding J Y, Rao B. In-situ cryogenic Raman spectroscopic studies on the synthetic fluid inclusions in the systems H2O and NaCl-H2O[J]. Chinese Science Bulletin, 2006(9): 1073-1078(in Chinese with English abstract). doi: 10.3321/j.issn:0023-074X.2006.09.012
    [14] 陈小兰, 周振柱, 韩作振, 等. 低温拉曼光谱分析流体包裹体盐度的条件约束[J]. 光谱学与光谱分析, 2017, 37(8): 2446-2451. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201708026.htm

    Chen X L, Zhou Z Z, Han Z Z, et al. The constraints on the method of using cryogenic Raman spectroscopy to determine the salinities of fluid inclusions[J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2446-2451(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201708026.htm
    [15] Jones D M, Macleod G. Molecular analysis of petroleum in fluid inclusions: A practical methodology[J]. Organic Geochemistry, 2000, 31(11): 1163-1173. doi: 10.1016/S0146-6380(00)00115-7
    [16] Ping H W, Li C Q, Chen H H, et al. Overpressure release: Fluid inclusion evidence for a new mechanism for the formation of heavy oil[J]. Geology, 2020, 48(8): 803-807. doi: 10.1130/G47227.1
    [17] Pettke T, Oberli F, Audétat A, et al. Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS[J]. Ore Geology Reviews, 2011, 44: 10-38. http://www.sciencedirect.com/science/article/pii/S016913681100134X
    [18] Frezzotti M L, Tecce F, Casagli A. Raman spectroscopy for fluid inclusion analysis[J]. Journal of Geochemical Exploration, 2012, 112: 1-20. doi: 10.1016/j.gexplo.2011.09.009
    [19] Tsui T F, Holland H D. The analysis of fluid inclusions by laser microprobe[J]. Economic Geology, 1979, 74(7): 1647-1653. doi: 10.2113/gsecongeo.74.7.1647
    [20] 施伟军, 席斌斌, 秦建中, 等. 单体油气包裹体激光剥蚀在线成分分析技术: 以塔河油田奥陶系储层为例[J]. 石油学报, 2016, 37(2): 196-206. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602005.htm

    Shi W J, Xi B B, Qin J Z, et al. Online laser ablation compositional analysis technique for single hydrocarbon inclusion: A case study of the Ordovician reservoirs in Tahe Oilfield, Tarim Basin, NW China[J]. Acta Petrolei Sinica, 2016, 37(2): 196-206(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602005.htm
    [21] Volk H, Fuentes D, Fuerbach A, et al. First on-line analysis of petroleum from single inclusion using ultrafast laser ablation[J]. Organic Geochemistry, 2010, 41(2): 74-77. doi: 10.1016/j.orggeochem.2009.05.006
    [22] Liu D H, Xiao X M, Mi J K, et al. Determination of trapping pressure and temperature of petroleum inclusions using PVT simulation software: A case study of Lower Ordovician carbonates from the Lunnan Low Uplift, Tarim Basin[J]. Marine and Petroleum Geology, 2003, 20(1): 29-43. doi: 10.1016/S0264-8172(03)00047-3
    [23] Aplin A C, Macleod G, Larter S R, et al. Combined use of Confocal Laser Scanning Microscopy and PVT simulation for estimating the composition andphysical properties of petroleum in fluid inclusions[J]. Marine and Petroleum Geology, 1999, 16(2): 97-110. doi: 10.1016/S0264-8172(98)00079-8
    [24] 王瑀辉. 渝东南彭水地区龙马溪组地层压力演化[D]. 北京: 中国石油大学(北京), 2018.

    Wang Y H. Evolution of formation fluid pressure in Longmaxi Formation, Pengshui area, Southeast Chongqing[D]. Beijing: China University of Petroleum(Beijing), 2018(in Chinese with English abstract).
    [25] Lin F, Bodnar R, Becker S. Experimental determination of the Raman CH4 symmetric stretching(ν1) band position from 1650 bar and 0.3-22℃: Application to fluid inclusion studies[J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3746-3756. doi: 10.1016/j.gca.2007.05.016
    [26] Lu W, Chou I, Burruss R, et al. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts[J]. Geochimica et Cosmochimica Acta, 2007, 71(16): 3969-3978. doi: 10.1016/j.gca.2007.06.004
    [27] Duan Z H, Møller N, Weare J H. An equation of state for the CH4-CO2-H2O system: Ⅰ. Pure systems from 0 to 1000℃ and 0 to 8000 bar[J]. Pergamon, 1992, 56(7): 2605-2617. http://www.sciencedirect.com/science/article/pii/001670379290347L
    [28] Duan Z H, Møller N, Weare J H. An equation of state for the CH4-CO2-H2O system: Ⅱ. Mixtures from 50 to 1000℃ and 0 to 1000 bar[J]. Pergamon, 1992, 56(7): 2619-2631. http://www.sciencedirect.com/science/article/pii/001670379290348M
    [29] 高键, 何生, 易积正. 焦石坝页岩气田中高密度甲烷包裹体的发现及其意义[J]. 石油与天然气地质, 2015, 36(3): 472-480. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503018.htm

    Gao J, He S, Yi J Z. Discovery of high density methane inclusions in Jiaoshiba shale gas field and its significance[J]. Oil & Gas Geology, 2015, 36(3): 472-480(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503018.htm
    [30] 施伟军, 席斌斌. 应用包裹体技术恢复气藏古压力[J]. 石油实验地质, 2016, 38(1): 128-134. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201601019.htm

    Shi W J, Xi B B. Calculation of paleo-pressure in gas reservoirs using fluid inclusions[J]. Petroleum Geology & Experiment, 2016, 38(1): 128-134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201601019.htm
    [31] Pironon J, Thiery R, Ougougdal M A, et al. FT-IR measurements of petroleum fluid inclusions: Methane, n-alkanes and carbon dioxide quantitative analysis[J]. Geofluids, 2001, 1(1): 2-10. doi: 10.1046/j.1468-8123.2001.11002.x
    [32] Rankin A H, Ramsey M H, Coles B, et al. The composition of hypersaline, iron-rich granitic fluids based on laser-ICP and synchrotron-XRF microprobe analysis of individual fluid inclusions in topaz, Mole granite, eastern Australia[J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 67-79. doi: 10.1016/0016-7037(92)90117-2
    [33] Anderson A J, Ckark A H, Ma X P, et al. Proton-induced X-ray and gamma-ray emission analysis of unopened fluid inclusions[J]. Economic Geology, 1989, 84(4): 924-939. doi: 10.2113/gsecongeo.84.4.924
    [34] Hall P A, Watson A F R, Garner G V, et al. An investigation of micro-scale sealed vessel thermal extraction-gas chromatography-mass spectrometry(MSSV-GC-MS) and micro-scale sealed vessel pyrolysis-gas chromatography-mass spectrometry applied to a standard reference material of an urban dust/organics[J]. Science of the Total Environment, 1999, 235(1): 269-276. http://www.sciencedirect.com/science/article/pii/S0048969799002041
    [35] Eichhubl P, Boles J R. Focused fluid flow along faults in the Monterey Formation, coastal California[J]. Geological Society of America Bulletin, 2000, 112(11): 1667-1679. doi: 10.1130/0016-7606(2000)112<1667:FFFAFI>2.0.CO;2
    [36] Worden R H, Benshatwan M S, Potts G J, et al. Basin-scale fluid movement patterns revealed by veins: Wessex Basin, UK[J]. Geofluids, 2016, 16(1): 149-174. doi: 10.1111/gfl.12141
    [37] Azmy K, Veizer J, Wenzel B, et al. Silurian strontium isotope stratigraphy[J]. GSA Bulletin, 1999, 111(4): 475-483. doi: 10.1130/0016-7606(1999)111<0475:SSIS>2.3.CO;2
    [38] Dogramaci S S, Herczeg A L. Strontium and carbon isotope constraints on carbonate-solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin, Australia[J]. Journal of Hydrology, 2002, 262(1/4): 50-67. http://www.sciencedirect.com/science/article/pii/S0022169402000215
    [39] Fietzke J, Eisenhauer A. Determination of temperature-dependent stable strontium isotope(88Sr/86Sr) fractionation via bracketing standard MC-ICP-MS[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8), DOI: 10.1029/2006-GC001243.
    [40] Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1991, 161: 59-88.
    [41] 郑永飞. 稳定同位素体系理论模式及其矿床地球化学应用[J]. 矿床地质, 2001, 20(1): 57-70, 85. doi: 10.3969/j.issn.0258-7106.2001.01.007

    Zheng Y F. Theoretical modeling of stable isotope systems and its applications to geochemistry of hydrothermal ore deposits[J]. Mineral Deposits, 2001, 20(1): 57-70, 85(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2001.01.007
    [42] 钱一雄, 沙旭光, 李慧莉, 等. 塔里木盆地塔中西部加里东中、晚期构造-层序结构与奥陶系碳酸盐岩储集体分布[J]. 地学前缘, 2013, 20(1): 260-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201301023.htm

    Qian Y X, Sha X G, Li H L, et al. An approach to Caledonian unconformities and sequence stratigraphic patterns and distribution of reservoirs of Ordovician carbonate in the western Tazhong area, Tarim Basin[J]. Earth Science Frontiers, 2013, 20(1): 260-274(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201301023.htm
    [43] Caja M A, Permanyer A, Marfil R, et al. Fluid flow record from fracture-fill calcite in the Eocene limestones from the South-Pyrenean Basin(NE Spain) and its relationship to oil shows[J]. Journal of Geochemical Exploration, 2006, 89(1/3): 27-32.
    [44] Lottermoser B G. Rare earth elements and hydrothermal ore formation processes[J]. Ore Geology Reviews, 1992, 7(1): 25-41. doi: 10.1016/0169-1368(92)90017-F
    [45] Tostevin R, Shields G A, Tarbuck G, et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings[J]. Chemical Geology, 2016, 438: 146-162. doi: 10.1016/j.chemgeo.2016.06.027
    [46] Bau M, M ller P. Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite[J]. Mineralogy & Petrology, 1992, 45(45): 231-246. doi: 10.1007%2FBF01163114
    [47] 杨建, 王国芝, 李娜, 等. 川东南二叠系区域盖层沥青来源稀土元素示踪[J]. 云南地质, 2011, 30(2): 226-228. doi: 10.3969/j.issn.1004-1885.2011.02.029

    Yang J, Wang G Z, Li Na, et al. The REE tracer of pitch origin Permian regional super imposition bed in SE Sichuan[J]. Yunnan Geology, 2011, 30(2): 226-228(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1885.2011.02.029
    [48] 金之钧, 朱东亚, 孟庆强, 等. 塔里木盆地热液流体活动及其对油气运移的影响[J]. 岩石学报, 2013, 29(3): 1048-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303026.htm

    Jin Z J, Zhu D Y, Meng Q Q, et al. Hydrothermal activites and influences on migration of oil and gas in Tarim Basin[J]. Acta Petrologica Sinica, 29(3): 1048-1058(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303026.htm
    [49] 何顺, 秦启荣, 周吉羚, 等. 川东南DS地区龙马溪组页岩裂缝发育特征及期次解析[J]. 地质科技情报, 2019, 38(2): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902012.htm

    He S, Qin Q R, Zhou J L, et al. Shale fracture characteristics and its application of the Longmaxi Formation in DS area, Southeast Sichuan[J]. Geological Science and Technology Information, 2019, 38(2): 101-109(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902012.htm
    [50] Parnell J, Carey P, Duncan W. History of hydrocarbon charge on the Atlantic margin: Evidence from fluid-inclusion studies, West of Shetland[J]. Geology, 1998, 26(9): 807-810. doi: 10.1130/0091-7613(1998)026<0807:HOHCOT>2.3.CO;2
    [51] Bourdet J, Burruss R C, Chou I M, et al. Evidence for a palaeo-oil column and alteration of residual oil in a gas-condensate field: Integrated oil inclusion and experimental results[J]. Geochimica et Cosmochimica Acta, 2014, 142: 362-385. doi: 10.1016/j.gca.2014.07.022
    [52] 吴河勇, 云建兵, 冯子辉, 等. 松辽盆地深层CO2气藏40Ar/39Ar成藏年龄探讨[J]. 科学通报, 2010, 55(8): 693-697. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201008007.htm

    Wu H Y, Yun J B, Feng Z H, et al. CO2 gas emplacement age in the Songliao Basin: Insight from volcanic quartz 40Ar-39Ar stepwise crushing[J]. Chinese Science Bulletin, 2010, 55(8): 693-697(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201008007.htm
    [53] Qiu H N, Wu H Y, Yun J B, et al. High-precision40Ar/39Ar age of the gas emplacement into the Songliao Basin[J]. Geology, 2011, 39(5): 451-454. doi: 10.1130/G31885.1
    [54] 刘昭茜, 梅廉夫, 邱华宁, 等. 中扬子地块南缘半坑古油藏成藏期及破坏期的40Ar/39Ar年代学约束[J]. 科学通报, 2011, 56(33): 2782-2790. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201133008.htm

    Liu Z Q, Mei L F, Qiu H N, et al. 40Ar/39Ar geochronology constraints on hydrocarbon accumulation and destruction periods in the Bankeng paleo-reservoir in the southern margin of the middle Yangtze block[J]. Chinese Science Bulletin, 2011, 56(33): 2782-2790(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201133008.htm
    [55] Nguyen T H, Nevolko P A, Pham T D, et al. Age and genesis of the W-Bi-Cu-F(Au) Nui Phao deposit, Northeast Vietnam: Constrains from U-Pb and Ar-Ar geochronology, fluid inclusions study, S-O isotope systematic and scheelite geochemistry[J]. Ore Geology Reviews, 2020, 123: 103578. doi: 10.1016/j.oregeorev.2020.103578
    [56] Zhu B Q, Zhang J L, Tu X L, et al. Pb, Sr and Nd isotopic features in organic matter from China and their implications for petroleum generation and migration[J]. Geotectonica et Cosmochimica Acta, 2001, 65(15): 2555-2570. doi: 10.1016/S0016-7037(01)00608-1
    [57] 沈传波, Selby D, 梅廉夫, 等. 油气成藏定年的Re-Os同位素方法应用研究[J]. 矿物岩石, 2011, 31(4): 87-93. doi: 10.3969/j.issn.1001-6872.2011.04.014

    Shen C B, Selby D, Mei L F, et al. Advances in the study of Re-Os geochronology and tracing of hydrocarbon generation and accumulation[J]. Journal of Mineralogy and Petrology, 2011, 31(4): 87-93(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6872.2011.04.014
    [58] Selby D, Creaser R A, Dewing K, et al. Evaluation of bitumen as a187Re-187Os geochronometer for hydrocarbon maturation and migration: A test case from the Polaris MVT deposit, Canada[J]. Earth and Planetary Science Letters, 2005, 235(1): 1-15. http://www.sciencedirect.com/science/article/pii/S0012821X05001202
    [59] Lillis P G, Selby D. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA[J]. Geochimica et Cosmochimica Acta, 2013, 118: 312-330. doi: 10.1016/j.gca.2013.04.021
    [60] Corrick A J, Selby D, Mckirdy D M, et al. Remotely constraining the temporal evolution of offshore oil systems[J]. Scientific Reports, 2019, 9(1): 1327. doi: 10.1038/s41598-018-37884-x
    [61] 李欣尉, 李超, 周利敏, 等. 贵州正安县奥陶系-志留系界线碳质泥岩Re-Os同位素精确厘定及其古环境反演[J]. 岩矿测试, 2020, 39(2): 251-261. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202002012.htm

    Li X W, Li C, Zhou L M, et al. Accurate determination of the age of the carbonaceous mudstone of the Ordovician-Silurian boundary in Zheng'an County, Guizhou Province by Re-Os isotope dating method and its application in paleoenvironmental inversion[J]. Rock and Mineral Analysis, 2020, 39(2): 251-261(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202002012.htm
    [62] Chen X C, Hu R Z, Bi X W, et al. Cassiterite LA-MC-ICP-MS U/Pb and muscovite40Ar/39Ar dating of tin deposits in the Tengchong-Lianghe tin district, NW Yunnan, China[J]. Mineralium Deposita, 2014, 49(7): 843-860. doi: 10.1007/s00126-014-0513-8
    [63] 梁文博, 郭瑞清, 刘桂萍, 等. 新疆库鲁克塔格西段橄榄辉长岩脉LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地质科技情报, 2019, 38(1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901007.htm

    Liang W B, Guo R Q, Liu G P, et al. LA-ICP MS zircon U-Pb age and geochemistry of the olivine gabbro dike in the western segment of Kuruktag, Xinjiang and its tectonic significance[J]. Geological Science and Technology Information, 2019, 38(1): 58-67(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901007.htm
    [64] Li Q, Parrish R R, Horstwood M S A, et al. U-Pb dating of cements in Mesozoic ammonites[J]. Chemical Geology, 2014, 376: 76-83. doi: 10.1016/j.chemgeo.2014.03.020
    [65] 郭小文, 陈家旭, 袁圣强, 等. 含油气盆地激光原位方解石U-Pb年龄对油气成藏年代的约束: 以渤海湾盆地东营凹陷为例[J]. 石油学报, 2020, 41(3): 284-291. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202003005.htm

    Guo X W, Chen J X, Yuan S Q, et al. Constraint of in-situ calcite U-Pb dating by laser ablation on geochronology of hydrocarbon accumulation in petroliferous basins: A case study of Dongying Sag in the Bohai Bay Basin[J]. Acta Petrolei Sinica, 2020, 41(3): 284-291(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202003005.htm
    [66] Mangenot X, Gasparrini M, Gerdes A, et al. An emerging thermochronometer for carbonate-bearing rocks: Δ47/(U-Pb)[J]. Geology, 2018, 46(12): 1067-1070. doi: 10.1130/G45196.1
    [67] Roberts N M, Walker R J. U-Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin[J]. Geology, 2016, 44(7): 531-534. doi: 10.1130/G37868.1
    [68] Beerten K, Stesmans A. ESR dating of sedimentary quartz: Possibilities and limitations of the single-grain approach[J]. Quaternary Geochronology, 2007, 2(1): 373-380. http://www.sciencedirect.com/science/article/pii/S1871101406000045
    [69] Aydas C, Engin B, Aydin T. Radiation-induced signals of gypsum crystals analysed by ESR and TL techniques applied to dating[J]. Nuclear Inst. and Methods in Physics Research, 2011, 269(4): 417-424. doi: 10.1016/j.nimb.2010.12.074
    [70] Bourdet J, Pironon J. Strain response and re-equilibration of CH4-rich synthetic aqueous fluid inclusions in calcite during pressure drops[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2946-2959. doi: 10.1016/j.gca.2008.04.012
    [71] Parnell J, Swainbank I. Pb-Pb dating of hydrocarbon migration into a bitumen-bearing ore deposit, North Wales[J]. Geology, 1990, 18(10): 1028-1030. doi: 10.1130/0091-7613(1990)018<1028:PPDOHM>2.3.CO;2
    [72] Creaser R A, Sannigrahi P, Chacko T, et al. Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks: A test of hydrocarbon maturation effects in the Exshaw Formation, Western Canada Sedimentary Basin[J]. Geochimica et Cosmochimica Acta, 2002, 66(19): 3441-3452. doi: 10.1016/S0016-7037(02)00939-0
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  1506
  • PDF下载量:  559
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-18

目录

    /

    返回文章
    返回