Research status and perspective on wellbore sand production from hydrate reservoirs
-
摘要: 天然气水合物开采井眼出砂问题是当前水合物产业化急需突破的瓶颈之一,解决水合物开采时防砂与产能平衡问题是实现水合物安全高效、长期可控开采的关键。我国海域典型水合物储层属于弱固结的低渗泥质粉砂储层,其面临的防砂控泥与增产矛盾较为突出。厘清不同水合物储层和开采条件下的井眼出砂规律并揭示其机理,进而制定科学合理的防砂控泥措施以实现产能最大化是解决上述矛盾的途径所在。从理论分析、数值模拟、室内实验和现场试采4个角度介绍了世界范围内已开展的水合物出砂防砂情况,分析总结了水合物储层出砂影响因素及出砂机理,最后探讨了目前出砂研究存在的问题和挑战,并给出了相应的建议,旨在为后续水合物开采井眼出砂预测和防控研究提供思路和参考。Abstract: Sand production problem during gas hydrate exploitation seriously restricts its safe, efficient and controllable exploitation and industrialization process.It becomes one of the bottlenecks which should be solved urgently.The typical hydrate reservoirs in the South China Sea are clay-rich silt formation which cause more prominent contradiction between sand/clay production control and gas recovery enhancement.To resolve this conflict, we should firstly clarify the sand production behaviors and reveal their mechanism under the conditions of different reservoir types and production rules, and then formulate scientific and reasonable sand/clay control methods to maximize the gas recovery rate.This paper reviews the research status of wellbore sand production during gas production from hydrate reservoirs.Theoretical analysis, numerical simulations, laboratory experiments and field trials for sand production prediction and control are summarized respectively.Then the influencing factors of sand production in hydrate reservoirs, the mechanism of sand production, and the difficulties and challenges of sand production research are analyzed.The aim of this review is to provide some suggestions and ideas for sand production prediction and scientific sand control technology in the following hydrate exploitation process.
-
Key words:
- natural gas hydrate /
- gas production /
- sand production
-
图 7 贝克休斯公司开发的GeoFORM防砂系统布设示意图[66]
Figure 7. Schematic diagram of GeoFORM sand control system developed by Baker Hughes
-
[1] Sloan E D,Koh C.Clathrate hydrates of natural gases[M].[S.l.]:CRC Press,2007. [2] Tohidi B, Anderson R, Chapoy A, et al.Do we have new solutions to the old problem of gas hydrates?[J].Energy & Fuels, 2012, 26(7):4053-4058. https://www.researchgate.net/publication/263940460_Do_We_Have_New_Solutions_to_the_Old_Problem_of_Gas_Hydrates [3] 邹才能, 杨智, 何东博, 等.常规-非常规天然气理论、技术及前景[J].石油勘探与开发, 2018, 45(4):575-587. http://d.old.wanfangdata.com.cn/Periodical/syktykf201804004 [4] Liu Y, Gamwo I K.Comparison between equilibrium and kinetic models for methane hydrate dissociation[J].Chemical Engineering Science, 2012, 69(1):193-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cc53e08fb7e052516824d50ad33733f8 [5] Sum A K, Koh C A, Sloan E D.Clathrate hydrates:From laboratory science to engineering practice[J].Industrial & Engineering Chemistry Research, 2009, 48(16):7457-7465. doi: 10.1021/ie900679m [6] 《中国能源》编辑部.可燃冰成新矿种将加快推进产业化[J].中国能源, 2017, 39(11):1. http://d.old.wanfangdata.com.cn/Periodical/zgny201711001 [7] 魏伟, 张金华, 于荣泽, 等.2017年天然气水合物研发热点回眸[J].科技导报, 2018, 36(1):83-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjdb201801010 [8] 宁伏龙, 蒋国盛, 张凌, 等.影响含天然气水合物地层井壁稳定的关键因素分析[J].石油钻探技术, 2008, 36(3):59-61. http://d.old.wanfangdata.com.cn/Periodical/syztjs200803014 [9] 程聪, 姜涛, 匡增桂, 等.天然气水合物系统特征及其对我国水合物勘查的启示[J].地质科技情报, 2019, 38(4):30-40. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb201904005 [10] 张辉, 卢海龙, 梁金强, 等.南海北部神狐海域沉积物颗粒对天然气水合物聚集的主要影响[J].科学通报, 2016, 61(3):388-397. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201603014 [11] 乔少华, 苏明, 杨睿, 等.海域天然气水合物钻探研究进展及启示:储集层特征[J].新能源进展, 2015, 3(5):357-366. http://d.old.wanfangdata.com.cn/Periodical/xnyjz201502007 [12] 孙宝江, 张振楠.南海深水钻井完井主要挑战与对策[J].石油钻探技术, 2015, 43(4):1-7. http://d.old.wanfangdata.com.cn/Periodical/syztjs201504001 [13] 邓帅, 胡高伟, 卜庆涛.粒径及孔径分布对天然气水合物形成影响的研究进展[J].地质科技情报, 2019, 38(4):41-52. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb201904006 [14] Collett T, Bahk J J, Baker R, et al.Methane hydrates in nature:Current knowledge and challenges[J].Journal of Chemical & Engineering Data, 2015, 60(2):319-329. http://d.old.wanfangdata.com.cn/Periodical/cjce201909004 [15] 刘昌岭, 李彦龙, 孙建业, 等.天然气水合物试采:从实验模拟到场地实施[J].海洋地质与第四纪地质, 2017, 37(5):12-26. http://d.old.wanfangdata.com.cn/Periodical/syztjs201605008 [16] Rahmati H, Jafarpour M, Azadbakht S, et al.Review of sand production prediction models[J].Journal of Petroleum Engineering, 2013, 2013:864981. https://www.hindawi.com/journals/jpe/2013/864981/ [17] Rutqvist J, Moridis G J, Grover T, et al.Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production[J].Journal of Petroleum Science & Engineering, 2009, 67(1/2):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f1721b264be2fbb85d7a611388b3ea3 [18] 吴时国, 陈珊珊, 王志君, 等.大陆边缘深水区海底滑坡及其不稳定性风险评估[J].现代地质, 2008, 22(3):430-437. http://d.old.wanfangdata.com.cn/Periodical/xddz200803013 [19] Sultan N, Cochonat P, Foucher J P, et al.Effect of gas hydrates melting on seafloor slope instability[J].Marine Geology, 2004, 213(1):379-401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=95178084483c365060cb5925a823a9c3 [20] 刘昌岭, 业渝光, 孟庆国, 等.南海神狐海域及祁连山冻土区天然气水合物的拉曼光谱特征[J].化学学报, 2010, 68(18):1881-1886. http://d.old.wanfangdata.com.cn/Periodical/hxxb201018016 [21] 卢静生, 李栋梁, 何勇, 等.天然气水合物开采过程中出砂研究现状[J].新能源进展, 2017, 5(5):394-402. http://d.old.wanfangdata.com.cn/Periodical/xnyjz201705011 [22] 李彦龙, 刘乐乐, 刘昌岭, 等.天然气水合物开采过程中的出砂与防砂问题[J].海洋地质前沿, 2016, 32(7):36-43. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201607005 [23] Li Yanlong, Wu Nengyou, Ning Fulong, et al.A sand-production control system for gas production from clayey silt hydrate reservoirs[J].China Geology, 2019, 2:1-13. https://www.sciencedirect.com/science/article/pii/S2096519219301260 [24] 黄国恒, 苏正, 夏枚生, 等.天然气水合物开采井孔出砂问题研究[J].海洋地质与第四纪地质, 2017, 37(5):178-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201705019 [25] 何湘清.弱胶结砂岩油藏出砂机理研究[D].成都: 西南石油学院, 2002. [26] Coates G R, Denoo S.Mechanical properties program using borehole analysis and Mohr's circle[C]//SPWLA 22nd Annual Logging Symposium.Mexico: Society of Pstrophysicists and Well-Log Analysts, 1981. [27] Morita N, Whitfill D L, Massie I, et al.Realistic sand-production prediction:Numerical approach[J].SPE Production Engineering, 1989, 4(1):15-24. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC025654707/ [28] Rahmati H, Nouri A, Vaziri H, et al.Validation of predicted cumulative sand and sand rate against physical-model test[J].Journal of Canadian Petroleum Technology, 2012, 51(5):403-410. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa27500ed5864a7f701cf275c3a7f0c3 [29] Morita N, Whitfill D L, Fedde O P, et al.Parametric study of sand-production prediction:Analytical approach[J].SPE Production Engineering, 1989, 4(1):25-33. https://www.onepetro.org/journal-paper/SPE-16990-PA [30] Nouri A, Kuru E, Vaziri H.Elastoplastic modelling of sand production using fracture energy regularization method[J].Journal of Canadian Petroleum Technology, 2009, 48(4):64-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54eb57e1134a61e7a66728681972fdff [31] Jafarpour M, Rahmati H, Azadbakht S, et al.Determination of mobilized strength properties of degrading sandstone[J].Soils and Foundations, 2012, 52(4):658-667. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2e2c5e90ac0e8637c6371421dbd4374c [32] 李彦龙, 刘昌岭, 刘乐乐.含水合物沉积物损伤统计本构模型及其参数确定方法[J].石油学报, 2016, 37(10):1273-1279. http://d.old.wanfangdata.com.cn/Periodical/syxb201610007 [33] Yan C L, Li Y, Cheng Y F, et al.Sand production evaluation during gas production from natural gas hydrates[C].Journal of Natural Gas Science and Engineering.2018, 57: 77-88. [34] Moridis G, Collett T S, Pooladi-Darvish M, et al.Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits[J].SPE Reservoir Evaluation & Engineering, 2011, 14(1):76-112. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223144391/ [35] 张怀文, 冯宇思, 刘斌辉, 等.天然气水合物地层降压开采出砂数值模拟[J].科学技术与工程, 2019, 19(26):151-155. http://d.old.wanfangdata.com.cn/Periodical/kxjsygc201926022 [36] 赵景芳, 宋林松, 吉飞, 等.天然气水合物降压开采储层出砂数值模拟[J].中国海上油气, 2019, 31(2):120-128. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201902014 [37] 黄国恒.海洋天然气水合物开采井孔出砂问题数值分析研究[D].杭州: 浙江大学, 2018. [38] Uchida S, Klar A, Yamamoto K.Sand production model in gas hydrate-bearing sediments[J].International Journal of Rock Mechanics & Mining Sciences, 2016, 86:303-316. https://www.sciencedirect.com/science/article/pii/S1365160916300600 [39] Yu Lu, Zhang Liang, Zhang Rui, et al.Assessment of natural gas production from hydrate-bearing sediments with unconsolidated argillaceous siltstones via a controlled sandout method[J].Energy, 2018, 160:654-667. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=516d16bd3ad67ed58e6e899819e942ed [40] Akaki T, Kimoto S.Numerical modelling of internal erosion during hydrate dissociation based on multiphase mixture theory[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 44(2):327-350. doi: 10.1002/nag.3023 [41] 张建国, 程远方.砂拱及其稳定模型的推导及验证[J].石油钻探技术, 1999, 27(1):40-42. http://d.old.wanfangdata.com.cn/Periodical/syztjs199901017 [42] Li X R, Feng Y C, Gray K E.A hydro-mechanical sand erosion model for sand production simulation[J].Journal of Petroleum Science and Engineering, 2018, 166:208-224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8ae5268c8fc2735ec68c674644e48676 [43] 刘浩伽, 李彦龙, 刘昌岭, 等.水合物分解区地层砂粒启动运移临界流速计算模型[J].海洋地质与第四纪地质, 2017, 37(5):170-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201705018 [44] Ning F, Sun J, Liu Z, et al.Prediction of sand production in gas recovery by depressurization[C]//Proceedings of the 9th International Conference on Gas Hydrate.Denver, Colorado, USA: ICGH9, 2017. [45] Oyama H, Nagao J, Suzuki K, et al.Experimental analysis of sand production from methane hydrate bearing sediments applying depressurization method[J].Journal of MMIJ, 2010, 126(8/9):497-502. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_3992966 [46] Jung J W, Jang J, Santamarina J C, et al.Gas production from hydrate-bearing sediments:The role of fine particles[J].Energy & Fuels, 2012, 26(1):480-487. doi: 10.1021/ef101651b [47] Murphy A, Soga K, Yamamoto K.A laboratory investigation of sand production simulating the 2013 Daini-Atsumi Knoll gas hydrate production trial using a high pressure plane strain testing apparatus[C]//Proceedings of the 9th International Conferences on Gas Hydrate.Denver, Colorado, USA: IGGH9, 2017. [48] Lee J, Ahn T, Lee J Y, et al.Laboratory test to evaluate the performance of sand control screens during hydrate dissociation process by depressurization[R].ISOPE-M-13-035.Szczecin, Poland: International Society of Offshore and Polar Engineers, 2013. [49] Lu J, Xiong Y, Li D, et al.Experimental investigation of characteristics of sand production in wellbore during hydrate exploitation by the depressurization method[J].Energies, 2018, 11(7):1673. https://ideas.repec.org/a/gam/jeners/v11y2018i7p1673-d154744.html [50] 董长银, 钟奕昕, 武延鑫, 等.水合物储层高泥质细粉砂筛管挡砂机制及控砂可行性评价试验[J].中国石油大学学报:自然科学版, 2018, 42(6):84-92. http://d.old.wanfangdata.com.cn/Periodical/sydxxb201806009 [51] Ding J P, Cheng Y F, Yan C L, er al.Experimental study of sand control in a natural gas hydrate reservoir in the South China Sea[J].International Journal of Hydrogen Energy, 2019, 44(42):23639-23648. https://www.sciencedirect.com/science/article/pii/S0360319919326655 [52] 宁伏龙, 刘志超, 张准, 等.水合物开采储层响应与出砂综合模拟实验系统及其方法: 中国, 201910081514.7[P].2019-05-03. [53] 宁伏龙, 方翔宇, 王林杰, 等.评价水合物开采过程中水平井的出砂与防砂的装置及方法: 中国, 201910703877.X[P].2019-11-15. [54] Graver T, Moridis G, Holditch S A.Analysis of reservoir performance of messoyakha gas hydrate field[C].Proceedings of the International Offshore and Polar Engineering Conference, 2008. [55] 张卫东, 王瑞和, 任韶然, 等.由麦索雅哈水合物气田的开发谈水合物的开采[J].石油钻探技术, 2007, 35(4):94-96. http://d.old.wanfangdata.com.cn/Periodical/syztjs200704029 [56] Haberer R M, Kai M, Wilkes H, et al.Occurrence and palaeoenvironmental significance of aromatic hydrocarbon biomarkers in Oligocene sediments from the Mallik 5L-38 Gas Hydrate Production Research Well (Canada)[J].Organic Geochemistry, 2006, 37(5):519-538. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1498d5963815a3a969cfb935a0b02c5a [57] Dallimore S R, Collett T S, Uchida T, et al.Overview of the science activities for the 2002 Mallik gas hydrate production research well program, Mackenzie Delta, N.W.T.Canada[C]//Egs-agu-eug Joint Assembly, 2003. [58] Abendroth S, Thaler J, Klump J, et al.Numerical modeling of the simulated gas hydrate production test at Mallik 2L-38 in the pilot scale pressure reservoir LARS-Applying the[J].Egu General Assembly, 2014, 16:38-43. [59] Yamamoto K, Dallimore S R.Overview of the 2006-2008 JOGMEC/NRCan/Aurora Mallik Gas Hydrate Production Test Program[C].2008. [60] Schoderbek D, Farrell H, Hester K, et al.Conoco phillips gas hydrate production test final technical report[R].Houston, USA: Conocophillips, 2013. [61] 長野·山本·伊藤.「第2回海洋産出試験」未固結地層破壊挙動の解明、平成25年度TRC年報[R].2014. [62] Chee S, Leokprasirtkul T, Kanno T, et al.A deepwatersandface monitoring system for offshore gas hydrate[C].OTC-25328-MS.Houston, Texas: Offshore Technology Conference, 2014. [63] Yamamoto K, Terao Y, Fujii T, et al.Operational overview of the first offshore production test of methane hydrates in the eastern Nankai Trough[C].OTC-25243-MS.Houston, Texas: Offshore Technology Conference, 2014. [64] Konno Y, Yoneda J, Egawa K, et al.Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough[J].Marine and Petroleum Geology, 2015, 66:487-495. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=beb216519d31ec712868c6071f2092bd [65] Hughes B, 李世毅, 唐山.形状记忆材料成就贝克休斯防砂系统[J].石油知识, 2016, 177(2):45. http://d.old.wanfangdata.com.cn/Periodical/syzs201602016 [66] Yamamoto K, Wang X-X, Tamaki M, et al.RSC Adv., 2019, 9, 25987. [67] 于德福, 陈惠玲, 朱夏.我国海域天然气水合物试采成功[J].国土资源通讯, 2017, 24(10):4. http://d.old.wanfangdata.com.cn/Periodical/gtzytx201710003 [68] Li J, Ye J, Qin X, et al.The first offshore natural gas hydrate production test in South China Sea[J].China Geology, 2018, 2096-5192(1):5-16. https://www.sciencedirect.com/science/article/pii/S209651921930014X [69] 吴能友, 黄丽, 胡高伟, 等.海域天然气水合物开采的地质控制因素和科学挑战[J].海洋地质与第四纪地质, 2017, 37(5):5-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201705001 [70] 李彦龙, 胡高伟, 刘昌岭, 等.天然气水合物开采井防砂充填层砾石尺寸设计方法[J].石油勘探与开发, 2017, 44(6):961-966. http://d.old.wanfangdata.com.cn/Periodical/syktykf201706014 [71] 李彦龙, 胡高伟, 吴能友, 等.海洋粉砂质储层天然气水合物多分支孔有限防砂开采方法: 中国, CN201611024784.7[P].2016-11-18. [72] 叶建良, 秦绪文, 宁伏龙, 等.一种天然气水合物地层颗粒间微力测试装置: 中国, P201821406058.6[P].2019-04-30.