留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超低界面张力体系对低渗岩心非线性渗流规律的影响

曾羽佳 欧阳传湘 曾庆伟 李鑫羽 赵鸿楠

曾羽佳, 欧阳传湘, 曾庆伟, 李鑫羽, 赵鸿楠. 超低界面张力体系对低渗岩心非线性渗流规律的影响[J]. 地质科技通报, 2021, 40(5): 307-315. doi: 10.19509/j.cnki.dzkq.2021.0027
引用本文: 曾羽佳, 欧阳传湘, 曾庆伟, 李鑫羽, 赵鸿楠. 超低界面张力体系对低渗岩心非线性渗流规律的影响[J]. 地质科技通报, 2021, 40(5): 307-315. doi: 10.19509/j.cnki.dzkq.2021.0027
Zeng Yujia, Ouyang Chuanxiang, Zeng Qingwei, Li Xinyu, Zhao Hongnan. Influence of ultra-low interfacial tension system on nonlinear seepage law of low permeability core[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 307-315. doi: 10.19509/j.cnki.dzkq.2021.0027
Citation: Zeng Yujia, Ouyang Chuanxiang, Zeng Qingwei, Li Xinyu, Zhao Hongnan. Influence of ultra-low interfacial tension system on nonlinear seepage law of low permeability core[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 307-315. doi: 10.19509/j.cnki.dzkq.2021.0027

超低界面张力体系对低渗岩心非线性渗流规律的影响

doi: 10.19509/j.cnki.dzkq.2021.0027
基金项目: 

国家青年科学基金项目 51804039

中国石油科技创新基金研究项目 2017D-5007-0311

详细信息
    作者简介:

    曾羽佳(1996-), 女, 现正攻读油气田开发专业硕士学位, 主要从事致密气藏开发研究。E-mail: 877293218@qq.com

    通讯作者:

    欧阳传湘(1964-), 男, 教授, 主要从事致密气藏开发、油藏工程与储层敏感性研究。E-mail: 185867671@qq.com

  • 中图分类号: P618.13

Influence of ultra-low interfacial tension system on nonlinear seepage law of low permeability core

  • 摘要: 低渗储层中启动压力梯度导致流体渗流规律呈现非线性特征,使得低渗储层的开发方式与中高渗储层不同。为了研究新立油田低渗储层中的非线性渗流现象,以新立油田天然低渗岩心为研究对象,通过精密压力测试多孔介质渗流实验分析超低界面张力体系对新立油田低渗岩心中单相及两相流体启动压力梯度的影响。研究结果表明:对于任何流体,新立油田低渗岩心均表现出非线性渗流特征,存在着一定启动压力梯度;低渗岩心拟启动压力梯度的值高于启动压力梯度,且两者均随着渗透率的提高而降低且与渗透率之间均为幂关系;超低界面张力体系可以明显地降低低渗岩心最小启动压力梯度与拟启动压力梯度;对于不同渗透率的岩心,两相临界启动压力梯度与含水饱和度的关系均表现出相似的变化规律,即两相临界启动压力梯度随着平均含水饱和度的上升先上升后降低;在不同渗透率下,对比水驱和超低界面张力体系驱的临界压力梯度最高点,超低界面张力体系下的临界压力梯度最高点明显小于水驱,这表明界面张力的减小可以明显地降低驱油时产生的两相临界压力梯度,超低界面张力体系改善了油藏的注入性。本研究对新立低渗储层水驱后开发方式的选择提供了参考。

     

  • 图 1  界面张力测试图

    Figure 1.  Chart of interface tension test

    图 2  接触角测试图

    Figure 2.  Chart of contact angle test

    图 3  启动压力测量装置示意图

    Figure 3.  Schematic diagram of starting pressure measuring device

    图 4  复配体系界面张力

    Figure 4.  Interfacial tension of composite system

    图 5  复配体系接触角

    Figure 5.  Chart of contact angle of mixed system

    图 6  渗流速度与拟启动压力梯度关系图

    Figure 6.  Relationship between flow velocity and pseudo starting pressure gradient

    图 7  不同渗透率岩心原油单相渗流时压力梯度与流速关系

    Figure 7.  Relationship between pressure gradient and flow velocity of oil percolation with different permeability

    图 8  启动压力梯度与渗透率的关系拟合曲线图

    Figure 8.  Fitting curve of relationship between starting pressure gradient and permeability

    图 9  拟启动压力梯度与渗透率关系拟合曲线图

    Figure 9.  Fitting curve of relationship between pseudo starting pressure gradient and permeability

    图 10  不同单相流体的流速启动压力梯度关系

    Figure 10.  Relationship between velocity and starting pressure gradient of different single phase fluids

    图 11  不同渗透率岩心水驱和超低界面张力体系驱临界启动压力梯度随含水饱和度变化曲线

    Figure 11.  Curve of critical driving condition and water content of produced fluid changing with water saturation with different permeability

    图 12  不同渗透率岩心超低界面张力体系临界启动压力梯度变化率

    Figure 12.  Variation rate of surfactant WL critical driving pressure gradient in cores with different permeability

    表  1  岩心参数

    Table  1.   Basic parameters of experimental cores

    井号 岩样编号 岩样长度/cm 岩样直径/cm 孔隙度/% 气测渗透率/10-3 μm2
    吉检1 S1-2 6.552 2.500 14.91 1.974
    吉14-8 S1 5.864 2.460 16.95 3.340
    吉检1 S6-2 7.060 2.472 14.50 5.990
    吉10-18 S4-2 6.794 2.472 15.76 8.170
    吉+2-014 S103 4.520 2.510 15.30 13.865
    吉1-12.1 S43 3.746 2.492 13.46 14.222
    吉+2-014 15-2 7.240 2.510 17.56 24.010
    吉1-12.1 S51 3.766 2.490 15.74 36.759
    吉检3 S2-1 6.000 2.470 15.61 40.794
    吉+28-015.1 2-1 6.650 2.480 15.42 46.200
    下载: 导出CSV

    表  2  表面活性剂复配体系

    Table  2.   Properties of the surfactant formulas

    复配类型 比例 溶液总体积分数/%
    AEO/SDS 3∶1 0.25
    HSB-16/SDS 7∶3 0.25
    下载: 导出CSV

    表  3  实验方案

    Table  3.   Experimental scheme

    驱替剂 渗透率/10-3 μm2
    模拟地层注入水 1.974, 3.340, 5.990, 8.170
    AEO/SDS 1.974, 3.340, 5.990, 8.170
    下载: 导出CSV
  • [1] 贾玉琴, 杨海恩, 陈威武. 五里湾一区长A油藏表面活性剂增油效果[J]. 大庆石油地质与开发, 2014, 33(2): 127-130. doi: 10.3969/J.ISSN.1000-3754.2014.02.026

    Jia Y Q, Yang H W, Chen W W. Oil increasing effect of surfactant in Chang A reservoir of Wuliwan area 1[J]. Petroleum Geology and Development in Daqing, 2014, 33(2): 127-130(in Chinese with English abstract). doi: 10.3969/J.ISSN.1000-3754.2014.02.026
    [2] 李爱芬, 刘敏. 低渗透油藏油水两相启动压力梯度变化规律研究[J]. 西安石油大学学报: 自然科学版, 2010, 25(6): 47-53. doi: 10.3969/j.issn.1673-064X.2010.06.011

    Li A F, Liu M. Study on the variation law of oil-water two-phase start-up pressure gradient in low permeability reservoir[J]. Journal of Xi'an Petroleum University: Natural Science Edition, 2010, 25(6): 47-53(in Chinese with English abstract). doi: 10.3969/j.issn.1673-064X.2010.06.011
    [3] 陈强, 孙雷, 潘毅. 页岩纳米孔内超临界CO2、CH4传输行为实验研究[J]. 西南石油大学学报: 自然科学版, 2018, 40(5): 154-162. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201805016.htm

    Chen Q, Sun L, Pan Y. Experimental study on the transmission behaviors of supercritical CO2 and CH4 in shale nanopores[J]. Journal of Southwest Petroleum University: Natural Science Edition, 2018, 40(5): 154-162. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201805016.htm
    [4] Wojnarowski P, Czarnota R. Novel liquid-gas corrected permeability correlation for dolomite formation[J]. Int. J. Rock. Mech. Min., 2018, 112: 11-15. doi: 10.1016/j.ijrmms.2018.10.004
    [5] Tanikawa W, Shimamoto T. Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks[J]. Int. J. Rock. Mech. Min., 2009, 46: 229-238. doi: 10.1016/j.ijrmms.2008.03.004
    [6] Song H Q, Cao Y, Yu M X, et al. Impact of permeability heterogeneity on production characteristics in water-bearing tight gas reservoirs with threshold pressure gradient[J]. J. Nat. Gas Sci. Eng., 2015, 22: 172-181 doi: 10.1016/j.jngse.2014.11.028
    [7] Zeng J, Wang X Z, Guo J C, et al. Composite linear flow model for multi-fractured horizontal wells in tight sand reservoirs with the threshold pressure gradient[J]. J. Petrol. Sci. Eng., 2018, 165: 890-912. doi: 10.1016/j.petrol.2017.12.095
    [8] Tian W B, Li A F, Ren X X, et al. The threshold pressure gradient effect in the tight sandstone gas reservoirs with high water saturation[J]. Fuel, 2018, 226: 221-229. doi: 10.1016/j.fuel.2018.03.192
    [9] Ding J C, Yang S L, Nie X R, et al. Dynamic threshold pressure gradient in tight gas reservoir[J]. J. Nat. Gas Sci. Eng., 2014, 20: 155-160. doi: 10.1016/j.jngse.2014.06.019
    [10] Bahrami P, Kazemi P, Mahdavi S. A novel approach for modeling and optimization of surfactant/polymer flooding based on genetic programming evolutionary algorithm[J]. Fuel, 2016, 179: 289-298. doi: 10.1016/j.fuel.2016.03.095
    [11] Bhasin S, Kamalapurkar R, Johnson J, et al. A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems[J]. Automatica, 2013, 49(1): 82-92. doi: 10.1016/j.automatica.2012.09.019
    [12] Ge Y L, Li S R, Chang P. An approximate dynamic programming method for the optimal control of alkali-surfactant-polymer flooding[J]. Journal of Process Control, 2018, 64: 15-26. doi: 10.1016/j.jprocont.2018.01.010
    [13] 张铜耀, 郝鹏. 渤中凹陷深层特低孔特低渗砂砾岩储层储集空间精细表征[J]. 地质科技通报, 2020, 39(4): 117-124. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10007.shtml

    Zhang T Y, Hao P. Fine characterization of the reservoir space in deep ultra-low porosity and ultra-low permeability glutenite in Bozhong Sag[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 117-124(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10007.shtml
    [14] 赵春鹏, 岳湘安. 特低渗透油藏超前注水长岩心实验研究[J]. 西南石油大学学报: 自然科学版, 2011, 33(3): 105-108. doi: 10.3863/j.issn.1674-5086.2011.03.017

    Zhao C P, Yue X A. Experimental study on long core of advanced water injection in ultra low permeability reservoir[J]. Journal of Southwest Petroleum University: Natural Science Edition, 2011, 33(3): 105-108(in Chinese with English abstract). doi: 10.3863/j.issn.1674-5086.2011.03.017
    [15] 周林, 刘皓天, 周坤, 等. 致密砂岩储层"甜点"识别及评价方法[J]. 地质科技通报, 2020, 39(4): 165-173. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10012.shtml

    Zhou L, Liu H T, Zhou K, et al. "Sweet spot" identification and evaluation of tight sandstone reservoir[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 165-173(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10012.shtml
    [16] 赵方剑. 特高温低渗透油藏乳液表面活性剂驱现场试验[J]. 特种油气藏, 2017, 24(6): 125-130. doi: 10.3969/j.issn.1006-6535.2017.06.024

    Zhao F J. Field test of emulsion surfactant flooding in ultra-high temperature and low permeability reservoirs[J]. Special Oil and Gas Reservoir, 2017, 24(6): 125-130(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2017.06.024
    [17] 熊健, 郭平, 汪周华. 超低渗油藏注气可行性实验研究[J]. 石油化工应用, 2011, 15(1): 20-21, 24. doi: 10.3969/j.issn.1673-5285.2011.01.007

    Xiong J, Guo P, Wang Z H. Experimental study on feasibility of gas injection in ultra low permeability reservoir[J]. Petrochemical Application, 2011, 15(1): 20-21, 24(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5285.2011.01.007
    [18] 史雪冬, 岳湘安, 张俊斌, 等. 聚驱后油藏井网调整与深部调剖三维物理模拟实验[J]. 断块油田, 2017, 24(3): 401-404. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201703025.htm

    Shi X D, Yue X A, Zhang J B, et al. 3-D physical simulation experiment of well pattern adjustment and deep profile control after polymer flooding[J]. Fault Block Oil and Gas Field, 2017, 24(3): 401-404(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201703025.htm
    [19] 安维青, 岳湘安, 李丹, 等. 致密储层超前注气压力传导与开采特征研究[J]. 特种油气藏, 2015, 22(6): 122-125. doi: 10.3969/j.issn.1006-6535.2015.06.028

    An W Q, Yue X A, Li D. Study on pressure conduction and production characteristics of advanced gas injection in tight reservoir[J]. Special Reservoirs, 2015, 22(6): 122-125(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2015.06.028
    [20] 邱祥亮, 陈小东, 丁黎, 等. 姬塬地区长8_1油层组砂体结构特征及对油藏的控制作用[J]. 地质科技通报, 2020, 39(5): 87-96. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10054.shtml

    Qiu X L, Chen X D, Ding L, et al. Controlling effects of sand body structural characteristics on oil reservoirs of Chang 81 oil layer in Jiyuan area[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 87-96(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10054.shtml
    [21] Shchipanov A A, Surguchev L M, Jakobsen S R. Improved oil recovery by cyclic injection and production[J]. SPE, 2008, 116873: 1-11.
    [22] Shi X D, Yue X A. Migration and plugging mechanisms of self-aggregated microspheres as a novel profile control[J]. Journal of Petroleum Science and Engineering, 2020, 184: 1062-1075. http://www.sciencedirect.com/science/article/pii/S0920410519308794
    [23] Li S R, Ge Y L, Zang R L. A novel interacting multiple-model method and its application to moisture content prediction of ASP flooding[J]. CMES: Computer Modeling in Engineering & Sciences, 2018, 114(1): 95-116. http://www.ingentaconnect.com/content/tsp/cmes/2018/00000114/00000001/art00006
    [24] Liu Q, Zhang P, Zhong S, et al. An improved actor-critic algorithm in continuous spaces with action weighting[J]. Chinese Journal of Computers, 2017, 40(6): 1252-1264. http://en.cnki.com.cn/Article_en/CJFDTotal-JSJX201706002.htm
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  562
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-29

目录

    /

    返回文章
    返回