Compressional salt structures of salt-bearing sedimentary basins and its significance to hydrocarbon accumulation
-
摘要: 挤压盐构造是在区域挤压应力场作用下形成的一种重要的盐构造类型,对沉积盆地内油气的生成、运移和圈闭成藏等具有重要的影响。在过去几十年内,挤压盐构造研究取得了重要进展,有效指导了挤压型含盐沉积盆地油气藏勘探。在综合分析盐岩物理特性、挤压盐构造变形演化,以及盐构造形成对油气成藏分布影响的基础上,探讨了挤压盐构造变形演化特征,分析了国内外典型含盐褶皱冲断带及其油气成藏特征;通过对比国内外含盐褶皱冲断带盐构造及典型油气藏,总结出国内外典型的含盐褶皱冲断带盐岩层均参与了构造变形,使得由造山带向盆地腹地,构造变形由强烈基底卷入逆冲推覆变形逐步过渡到薄皮滑脱褶皱变形,并影响褶皱冲断带内油气成藏的分布。最后,分析了目前我国含盐褶皱冲断带盐构造研究存在的问题以及未来盐构造研究方向。Abstract: The compressional salt structure is an important type of salt structure formed under the action of regional compressional stress field, which plays an important role in the generation, migration and trap accumulation of oil and gas in sedimentary basins.In the past few decades, important progress has been made in the study of compressional salt structures, which effectively guides the exploration of oil and gas reservoirs in compressional salt sedimentary basins.Based on the physical characteristics of salt rocks, deformation evolution of compressional salt structure and its influence on hydrocarbon accumulation distribution, this paper discusses the deformation evolution characteristics of compressional salt structure, and analyzes the typical salt-bearing fold-and-thrust belt at home and abroad and their hydrocarbon accumulation characteristics.And by comparing the domestic and foreign salt-bearing fold-and-thrust belt and typical oil and gas reservoirs, it summarizes that the domestic and foreign typical salt gypsum layers salt-bearing fold-and-thrust belt are involved in the tectonic deformation, made from the orogenic belt to the basin in the hinterland, tectonic deformation by the strong basement involved in thrust nappe deformation gradually transition to the thin skin decollement fold deformation, and affect the distribution of hydrocarbon accumulation in the fold thrust belts.Finally, the existing problems and future research directions of salt structure in the salt-bearing fold-and-thrust belt in China are analyzed.
-
图 2 盐构造沉积记录[47]
Figure 2. Sedimentary records of salt structure
图 3 挤压作用发生的几种不同构造背景[20]
Figure 3. Several different tectonic backgrounds of extrusion
图 5 先存构造对挤压盐构造演化的影响[59]
a.先存盐背斜构造被挤压改造,形成盐推覆背斜构造;b.先存盐底辟构造被挤压改造,形成盐焊接构造;c.先存盐底辟构造被挤压改造,形成盐推覆构造
Figure 5. Influence of pre-existing structures on the tectonic evolution of compressional salt
a.与盐上褶皱有关的圈闭类型:①穹隆或背斜圈闭;②地层尖灭型圈闭;③断层阻挡型圈闭;④地层不整合型圈闭;⑤岩性孔隙圈闭。b.与盐上刺穿型盐构造有关的圈闭类型:①龟背构造型圈闭;②原始盐构造顶部或翼部地层不整合型圈闭;③龟背构造顶部断层阻挡型圈闭;④盐构造侧向遮挡型圈闭;⑤盐刺穿侧向断层阻挡型圈闭;⑥盐刺穿侧向地层尖灭型圈闭;⑦盐刺穿脊部地堑型圈闭;⑧盐刺穿顶部背斜型圈闭。c, d.与盐下叠瓦状冲断构造有关的圈闭类型:①断层相关背斜型圈闭;②砂岩透镜体型圈闭;③断层遮挡型圈闭;④岩性-断层型圈闭
Figure 6. Types of oil and gas traps related to salt structure
图 7 波斯湾前陆盆地构造区划及油气田分布图[32]
Figure 7. Tectonic division and oil and gas field distribution map of Persian Gulf Foreland Basin
图 8 四川盆地构造区划图[82]
Z.震旦系;∈.寒武系;O-S.奥陶系-志留系;P-T1f.二叠系-下三叠统飞仙关组;T3-J1.上三叠统-下侏罗统;J2-K.中侏罗统-白垩系
Figure 8. Tectonic zoning map of Sichuan Basin
图 10 塔西南坳陷构造区划分带图[103]
Q-N2.第四系-上新统;N1.中新统;Pz2.上古生界;Pz1.下古生界;Pt.元古宇
Figure 10. Tectonic zone division map of the Southwest Depression of Tarim Basin
图 11 柴达木盆地构造区划分带图[107]
Q.第四系;N23.上新统狮子沟组;N22.上新统上油砂山组;N21.上新统下油砂山组;N1.中新统上干柴沟组;E32.渐新统下干柴沟组上段;E31.渐新统下干柴沟组下段;E1+2.古始新统路乐河组
Figure 11. Tectonic zone division map of Qaidam Basin
Table 1. Typical structural styles of squeezed salt and oil gas reservoir abroad
地区 安第斯山前陆盆地 扎格罗斯前陆造山带 墨西哥湾盆地 盐(构造)作用 形成滑脱逆冲褶皱、断背斜 ①形成叠瓦状冲断褶皱、双重构造;②良好盖层 形成推覆断背斜 代表性油气藏 Bermejo油田、Ramos气田、Sierra De Aguarague气田 Marun油气田、Parsi油气田、Kirkuk油气田、Ahwaz油气田 Cantarell气田 典型油气藏构造类型 注:E-N.古近系-新近系;M2-P3.中生界-上二叠统;P1-C.下二叠统-石炭系;D3.上泥盆统;D1-2.中-下泥盆统;Q-N2.第四系-上新统;N1.中新统;E3.渐新统;E2.始新统;E1.古新统;K.白垩系;J2-K1.中侏罗统-下白垩统;T-J1.三叠系-下侏罗统;Ng.Gachsaran组蒸发岩;Pg.Asmari组碳酸盐岩 表 2 我国典型挤压盐构造及油气藏[30, 35, 74-75]
Table 2. Comparison of structural characteristics of extruded salt in China
盆地 膏岩层主要沉积地层 典型盐构造特征 典型盐构造与油气藏 四川盆地 中下寒武统和中下三叠统 多层滑脱构造、褶皱构造、三角带构造 库车坳陷 新近系、古近系、侏罗系、白垩系 盐上:盐推覆、向斜、盐核背斜、逆冲断层、断层传播褶皱盐岩:盐枕、盐焊接、断层焊接盐下:断层转折褶皱、背冲断块、逆冲断层 塔西南坳陷 寒武系、古近系 褶皱、断裂、逆冲推覆、断裂转折褶皱、叠瓦状构造、双重构造、三角带构造 柴达木盆地 始新统 逆冲叠瓦状构造、滑脱构造、褶皱构造 注:J.侏罗系;T.三叠系;K-Q.白垩系-第四系;E1-2km.古近系库姆格列木组;N1j.新近系吉迪克组;N1k.新近系康村组;N2k.新近系库车组;E2-3s.始新统-渐新统苏维依组;K.白垩系;N21.上新统高庄阶;N1.中新统;N2.上新统;E32.渐新统塔木布鲁克阶;N22-Q.上新统麻则沟阶-第四系;Z.震旦系; C.石炭系;D.泥盆系;P.二叠系;E.古近系;K-J.白垩系-侏罗系 -
[1] Jackson M P A. Retrospective salt tectonics[J]. AAPG Memoir, 1995, 65: 1-28. [2] Hudec M R, Jackson M P A. Terra infirma: Understanding salt tectonics[J]. Earth-Science Reviews, 2007, 82(1/2): 1-28. http://www.onacademic.com/detail/journal_1000035040120810_2e59.html [3] 戈红星. 盐构造与油气圈闭及其综合利用[J]. 南京大学学报: 自然科学版, 1996, 32(4): 640-649. doi: 10.3321/j.issn:0469-5097.1996.04.001Ge H X. Salt structures, hydrocarbon traps and mineral deposits[J]. Journal of Nanjing University: Natural Sciences, 1996, 32(4): 640-649(in Chinese with English abstract). doi: 10.3321/j.issn:0469-5097.1996.04.001 [4] Pilcher R S, Kilsdonk B, Trude J. Primary basins and their boundaries in the deep-water northern Gulf of Mexico: Origin, trap types, and petroleum system implications[J]. AAPG Bulletin, 2011, 95(2): 219-240. doi: 10.1306/06301010004 [5] 汤良杰, 余一欣, 陈书平, 等. 含油气盆地盐构造研究进展[J]. 地学前缘, 2005, 12(4): 375-383. doi: 10.3321/j.issn:1005-2321.2005.04.006Tang L J, Yu Y X, Chen S P, et al. Major developments of research on salt tectonics in oil-gas-bearing basins[J]. Earth Science Frontiers, 2005, 12(4): 375-383(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2005.04.006 [6] 余一欣, 周心怀, 彭文绪, 等. 盐构造研究进展述评[J]. 大地构造与成矿学, 2011, 35(2): 169-182. doi: 10.3969/j.issn.1001-1552.2011.02.001Yu Y X, Zhou X H, Peng W X, et al. An overview on salt structures[J]. Geotectonica et Metallogenia, 2011, 35(2): 169-182(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2011.02.001 [7] Talbot C J. Spreading of salt structures in the Gulf of Mexico[J]. Tectonophysics, 1993, 228(3/4): 151-166. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-004019519390338K&originContentFamily=serial&_origin=article&_ts=1481815644&md5=d5a90fccb92fa496f7f87c3ea6511378 [8] Warren J K. Evaporites: Sediments, resources and hydrocarbons[M]. [S.l.]: Springer Science & Business Media, 2006. [9] Davison I. Faulting and fluid flow through salt[J]. Journal of the Geological Society, 2009, 166(2): 205-216. doi: 10.1144/0016-76492008-064 [10] 尹宏伟, 王哲, 汪新, 等. 库车前陆盆地新生代盐构造特征及形成机制: 物理模拟和讨论[J]. 高校地质学报, 2011, 17(2): 308-317. doi: 10.3969/j.issn.1006-7493.2011.02.016Yin H W, Wang Z, Wang X, et al. Characteristics and mechanics of Cenozoic salt-related structures in Kuqa Foreland Basins: Insights from physical modeling and discussion[J]. Geological Journal of China Universities, 2011, 17(2): 308-317(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2011.02.016 [11] Li S, Wang X, Suppe J. Compressional salt tectonics and synkinematic strata of the western Kuqa Foreland Basin, southern Tianshan, China[J]. Basin Research, 2012, 24(4): 475-497. doi: 10.1111/j.1365-2117.2011.00531.x [12] Wu S, Bally A W, Cramez C. Allochthonous salt, structure and stratigraphy of the northeastern Gulf of Mexico. Part II: Structure[J]. Marine and Petroleum Geology, 1990, 7(4): 334-370. doi: 10.1016/0264-8172(90)90014-8 [13] Peel F J, Travis C J, Hossack J R. Genetic structural provinces and salt tectonics of the Cenozoic offshore US Gulf of Mexico: A preliminary analysis[J]. AAPG Memoir, 1995, 65: 153-175. http://www.researchgate.net/publication/241975997_Genetic_structural_provinces_and_salt_tectonics_of_the_Cenozoic_offshore_US_Gulf_of_Mexico_A_preliminary_analysis [14] Rowan M G, Trudgill B D, Fiduk J C. Deep-water, salt-cored foldbelts: Lessons from the Mississippi Fan and Perdido foldbelts, northern Gulf of Mexico[J]. Geophysical Monograph-American Geophysical Union, 2000, 115: 173-192. http://agu.org/books/gm/v115/GM115p0173/GM115p0173.pdf [15] Rowan M G, Peel F J, Vendeville B C. Gravity-driven foldbelts on passive margins[C]//McClay K R. Thrust tectonics and hydrocarbon systems. [S.l.]: AAPG Memoir, 2004, 82: 157-182. [16] Rowan M G, Vendeville B C. Foldbelts with early salt withdrawal and diapirism: Physical model and examples from the northern Gulf of Mexico and the Flinders Ranges, Australia[J]. Marine and Petroleum Geology, 2006, 23(9/10): 871-891. http://www.onacademic.com/detail/journal_1000035416268910_abe8.html [17] Dooley T P, Jackson M P A, Hudec M R. Initiation and growth of salt-based thrust belts on passive margins: Results from physical models[J]. Basin Research, 2007, 19(1): 165-177. doi: 10.1111/j.1365-2117.2007.00317.x [18] Jackson M P, Hudec M R, Jennette D C, et al. Evolution of the Cretaceous Astrid thrust belt in the ultradeep-water Lower Congo Basin, Gabon[J]. AAPG Bulletin, 2008, 92(4): 487-511. doi: 10.1306/12030707074 [19] Fiduk J C, Rowan M G. Analysis of folding and deformation within layered evaporites in Blocks BM-S-8&-9, Santos Basin, Brazil[J]. Geological Society, London, Special Publications, 2012, 363(1): 471-487. doi: 10.1144/SP363.22 [20] Letouzey J, Colletta B, Vially R, et al. Evolution of salt-related structures in compressional settings[J]. AAPG Memoir, 1995, 65: 41-60. [21] Cotton J T, Koyi H A. Modeling of thrust fronts above ductile and frictional detachments: Application to structures in the Salt Range and Potwar Plateau, Pakistan[J]. Geological Society of America Bulletin, 2000, 112(3): 351-363. doi: 10.1130/0016-7606(2000)112<351:MOTFAD>2.0.CO;2 [22] Bahroudi A, Koyi H A. Effect of spatial distribution of Hormuz salt on deformation style in the Zagros fold and thrust belt: An analogue modelling approach[J]. Journal of the Geological Society, 2003, 160(5): 719-733. doi: 10.1144/0016-764902-135 [23] Sans M. From thrust tectonics to diapirism: The role of evaporates in the kinematic evolution of the eastern South Pyrenean front[J]. Geologica Acta, 2003, 1(3): 239-259. http://ddd.uab.cat/pub/geoact/geoact_a2003v1n3/geoact_a2003v1n3p239.pdf [24] Chen S, Tang L, Jin Z, et al. Thrust and fold tectonics and the role of evaporites in deformation in the western Kuqa Foreland of Tarim Basin, Northwest China[J]. Marine and Petroleum Geology, 2004, 21(8): 1027-1042. doi: 10.1016/j.marpetgeo.2004.01.008 [25] 汤良杰, 金之钧, 贾承造, 等. 库车前陆褶皱-冲断带前缘大型盐推覆构造[J]. 地质学报, 2004, 78(1): 17-25. doi: 10.3321/j.issn:0001-5717.2004.01.003Tang L J, Jin Z J, Jia C Z, et al. A large-scale salt nappe complex in the leading edge of the Kupa foreland fold-thrust belt, Tarim Basin, Northwest China[J]. Acta Geologica Sinica, 2004, 78(1): 17-25(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2004.01.003 [26] 漆家福, 雷刚林, 李明刚, 等. 库车坳陷克拉苏构造带的结构模型及其形成机制[J]. 大地构造与成矿学, 2009, 33(1): 49-56. doi: 10.3969/j.issn.1001-1552.2009.01.007Qi J F, Lei G L, Li M G, et al. Analysis of structure model and formation mechanism of Kelasu structure zone, Kuqa Depression[J]. Geotectonica et Metallogenia, 2009, 33(1): 49-56(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2009.01.007 [27] 汪新, 唐鹏程, 谢会文, 等. 库车坳陷西段新生代盐构造特征及演化[J]. 大地构造与成矿学, 2009, 33(1): 57-65. doi: 10.3969/j.issn.1001-1552.2009.01.008Wang X, Tang P C, Xie H W, et al. Cenozoic salt structures and evolution in the western Kuqa Depression, Tarim Basin, China[J]. Geotectonica et Metallogenia, 2009, 33(1): 57-65(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2009.01.008 [28] Wang X, Suppe J, Guan S W, et al. Cenozoic structure and tectonic evolution of the Kuqa Foldbelt, southern Tianshan, China[C]//McClay K R, Shaw J, Suppe J. Thrust fault related folding. [S.l.]: AAPG Memoir, 2011, 94: 215-243. [29] 王东旭, 曾溅辉, 宫秀梅. 膏盐岩层对油气成藏的影响[J]. 天然气地球科学, 2005, 16(3): 329-333. doi: 10.3969/j.issn.1672-1926.2005.03.015Wang D X, Zeng J H, Gong X M. Impact of gypsolith on the formation of oil & gas reservoir[J]. Natural Gas Geoscience, 2005, 16(3): 329-333(in Chinese with English abstract). doi: 10.3969/j.issn.1672-1926.2005.03.015 [30] 余一欣, 汤良杰, 王清华, 等. 库车坳陷盐构造与相关成藏模式[J]. 煤田地质与勘探, 2005, 33(6): 5-9. doi: 10.3969/j.issn.1001-1986.2005.06.002Yu Y X, Tang L J, Wang Q H, et al. Salt structure sand forming models of hydrocarbon pools in the Kuqa Depression[J]. Coal Geology & Exploration, 2005, 33(6): 5-9(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1986.2005.06.002 [31] 康南昌. 塔里木盆地库车坳陷第三系盐岩相关构造及油气成藏特征[D]. 北京: 中国地质大学(北京), 2006.Kang N C. Character of Tertiary salt-related structure and reservior forming in Kuche Depression, Tarim Basin[D]. Beijing: China University of Geosciences(Beijing), 2006(in Chinese with English abstract). [32] 王剑, 赵汝敏, 谢楠, 等. 扎格罗斯前陆盆地构造样式与油气成藏规律[J]. 海洋地质与第四纪地质, 2016, 36(2): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201602022.htmWang J, Zhao R M, Xie N, et al. Structural style of Zagros Foreland Basin and its bearing on oil and gas accumulation[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 143-151(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201602022.htm [33] Rowan M G, Peel F J, Vendeville B C. Gravity-driven fold belts on passive margins[C]//McClay K R. Thrust tectonics and hydrocarbon systems. [S.l.]: AAPG Memoir, 2004, 82: 157-182. [34] 贾承造, 赵文智, 魏国齐, 等. 盐构造与油气勘探[J]. 石油勘探与开发, 2003, 30(2): 17-19. doi: 10.3321/j.issn:1000-0747.2003.02.003Jia C Z, Zhao W Z, Wei G Q, et al. Salt structures and exploration of oil and gas[J]. Petroleum Exploration and Development, 2003, 30(2): 17-19(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2003.02.003 [35] 李世臻, 康志宏, 邱海峻, 等. 塔里木盆地西南坳陷油气成藏模式[J]. 中国地质, 2014, 41(2): 387-398. doi: 10.3969/j.issn.1000-3657.2014.02.007Li S Z, Kang Z H, Qiu H J, et al. Hydrocarbon accumulation modes of the Southwest Depression in Tarim Basin[J]. Geology in China, 2014, 41(2): 387-398(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2014.02.007 [36] 杨海军, 李勇, 唐雁刚, 等. 塔里木盆地克拉苏盐下深层大气田的发现[J]. 新疆石油地质, 2019, 40(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901003.htmYang H J, Li Y, Tang Y G, et al. Discovery of Kelasu subsalt deep large gas field, Tarim Basin[J]. Xinjiang Petroleum Geology, 2019, 40(1): 12-20(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901003.htm [37] 马学立, 刘深艳, 盖海洋, 等. 玻利维亚Chaco盆地油气地质特征及勘探方向[J]. 海洋地质前沿, 2019, 35(10): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201910004.htmMa X L, Liu S Y, Gai H Y, et al. Petroleum geological characteristics and exploration potentials of the Chaco Basin, Bolivia[J]. Marine Geology Frontiers, 2019, 35(10): 36-42(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201910004.htm [38] 田琨, 殷进垠, 王大鹏, 等. 黎凡特盆地油气地质特征与勘探方向[J]. 石油实验地质, 2020, 42(1): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202001014.htmTian K, Yin J Y, Wang D P, et al. Petroleum geology and exploration in Levant Basin, Eastern Mediterranean[J]. Petroleum Geology & Experiment, 2020, 42(1): 95-102(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202001014.htm [39] Weijermars R, Jackson M P A, Vendeville B. Rheological and tectonic modeling of salt provinces[J]. Tectonophysics, 1993, 217(1/2): 143-174. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-0040195193902082&originContentFamily=serial&_origin=article&_ts=1434035560&md5=1bef65aca554535e0dd9b0047679faf5 [40] Vendeville B C, Ge H, Jackson M P A. Scale models of salt tectonics during basement-involved extension[J]. Petroleum Geoscience, 1995, 1(2): 179-183. doi: 10.1144/petgeo.1.2.179 [41] 汪新, 王招明, 谢会文, 等. 塔里木库车坳陷新生代盐构造解析及其变形模拟[J]. 中国科学: 地球科学, 2010, 40(12): 1655-1668. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012004.htmWang X, Wang Z M, Xie H W, et al. Analysis and deformation simulation of Cenozoic salt structure in Kuqa Depression of Tarim Basin[J]. Scientia Sinica: Terrae, 2010, 40(12): 1655-1668(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012004.htm [42] Wu Z, Yin H, Wang X, et al. Characteristics and deformation mechanism of salt-related structures in the western Kuqa Depression, Tarim Basin: Insights from scaled sandbox modeling[J]. Tectonophysics, 2014, 612/613: 81-96. doi: 10.1016/j.tecto.2013.11.040 [43] 戈红星. 前陆褶皱冲断带厚皮缩短盐构造运动的物理模拟[J]. 高校地质学报, 2004, 10(1): 39-49. doi: 10.3969/j.issn.1006-7493.2004.01.003Ge H X. Physical models of thick-skinned contractional salt tectonics in a foreland fold-and-thrust belt[J]. Geological Journal of China Universities, 2004, 10(1): 39-49(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2004.01.003 [44] Yu Y X, Tang L J, Yang W J, et al. Thick-skinned contractional salt structures in the Kuqa Depression, the northern Tarim Basin: Constraints from physical experiments[J]. Acta Geologica Sinica: English Edition, 2008, 82(2): 327-333. http://www.cnki.com.cn/Article/CJFDTotal-DZXW200802012.htm [45] 漆家福, 雷刚林, 李明刚, 等. 库车坳陷-南天山盆山过渡带的收缩构造变形模式[J]. 地学前缘, 2009, 16(3): 120-128. doi: 10.3321/j.issn:1005-2321.2009.03.008Qi J F, Lei G L, Li M G, et al. A model of contractional structure for transition belt between Kuche Depression and Southern Tianshan Uplift[J]. Earth Science Frontiers, 2009, 16(3): 120-128(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2009.03.008 [46] McQuarrie N. Crustal scale geometry of the Zagros fold-thrust belt, Iran[J]. Journal of Structural Geology, 2004, 26(3): 519-535. doi: 10.1016/j.jsg.2003.08.009 [47] Ventisette C D, Montanari D, Bonini M, et al. Positive fault inversion triggering 'intrusive diapirism': An analogue modelling perspective[J]. Terra Nova, 2005, 17(5): 478-485. doi: 10.1111/j.1365-3121.2005.00637.x [48] Roca E, Sans M, Koyi H A. Polyphase deformation of diapiric areas in models and in the eastern Prebetics (Spain)[J]. AAPG Bulletin, 2006, 90(1): 115-136. doi: 10.1306/07260504096 [49] Burliga S, Koyi H, Krzywiec P. Modeling cover deformation and decoupling during inversion, using the Mid-Polish trough as a case study[J]. Journal of Structural Geology, 2012, 42(SEP): 62-73. http://www.soran.edu.iq/images/fos/staff/Hemn-Koyi/Koyi29.pdf [50] Ferrer O, Jackson M P A, Roca E, et al. Evolution of salt structures during extension and inversion of the Offshore Parentis Basin (Eastern Bay of Biscay)[J]. Geological Society, London, Special Publications, 2012, 363(1): 361-380. doi: 10.1144/SP363.16 [51] Jackson M P A, Talbot C J. A glossary of salt tectonics[J]. Geological Circular, 1991, 91(4): 44-47. [52] Canérot J, Hudec M R, Rockenbauch K. Mesozoic diapirism in the Pyrenean orogen: Salttectonics on a transform plate boundary[J]. AAPG Bulletin, 2005, 89(2): 211-229. doi: 10.1306/09170404007 [53] Pichot T, Nalpas T. Influence of synkinematic sedimentation in a thrust system with two decollement levels: Analogue modelling[J]. Tectonophysics, 2009, 473(3/4): 466-475. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S004019510900208X&originContentFamily=serial&_origin=article&_ts=1471547457&md5=88c2b7d812704b3a79fde15bb8614087 [54] Duerto L, McClay K. The role of syntectonic sedimentation in the evolution of doubly vergent thrust wedges and foreland folds[J]. Marine and Petroleum Geology, 2009, 26(7): 1051-1069. doi: 10.1016/j.marpetgeo.2008.07.004 [55] Vendeville B C. Salt tectonics 101[R]. [S.l.]: A lecture for Tarim Oilfield, 2007. [56] Costa E, Vendeville B C. Experimental insights on the geometry and kinematics of fold-and-thrust belts above weak, viscous evaporitic decollement[J]. Journal of Structural Geology, 2002, 24(11): 1729-1739. doi: 10.1016/S0191-8141(01)00169-9 [57] Couzens-Schultz B, Vendeville B, Wiltschko D. Duplex style and triangle zone formation: Insights from physical modelling[J]. Journal of Structural Geology, 2003, 25(10): 1623-1644. doi: 10.1016/S0191-8141(03)00004-X [58] 唐鹏程, 饶刚, 李世琴, 等. 库车褶皱-冲断带前缘盐层厚度对滑脱褶皱构造特征及演化的影响[J]. 地学前缘, 2015, 22(1): 312-327. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501030.htmTang P C, Rao G, Li S Q, et al. The impact of salt layer thickness on the structural characteristics and evolution of detachment folds in the leading edge of Kuqa fold and thrust belt[J]. Earth Science Frontiers, 2015, 22(1): 312-327(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501030.htm [59] Callot J, Jahani S, Letouzey J. The role of pre-existing diapirs in fold and thrust belt development, thrust belts and foreland basins[M]. [S.l.]: Springer, 2007: 309-325. [60] Warsitzk M, Kley J, Jahne F, et al. Salt diapirism driven by differential loading: Some insights from analogue modeling[J]. Tectonophysics, 2013, 591: 83-97. doi: 10.1016/j.tecto.2011.11.018 [61] Callot J P, Trocme V, Letouzey J, et al. Pre-existing salt structures and the folding of the Zagros Mountains[J]. Geological Society, London, Special Publications, 2012, 363(1): 545-561. doi: 10.1144/SP363.27 [62] Jackson M P, Hudec M R, Jennette D C, et al. Evolution of the Cretaceous Astrid thrust belt in the ultradeep-water Lower Congo Basin, Gabon[J]. AAPG Bulletin, 2008, 92(4): 487-511. doi: 10.1306/12030707074 [63] Dooley T P, Jackson M P A, Hudec M R. Inflation and deflation of deeply buried salt stocks during lateral shortening[J]. Journal of Structural Geology, 2009, 31(6): 582-600. doi: 10.1016/j.jsg.2009.03.013 [64] Zhao B, Wang X. Evidence of early passive diapirism and tectonic evolution of salt structures in the western Kuqa Depression (Quele area), southern Tianshan (NW China)[J]. Journal of Asian Earth Sciences, 2016, 125: 138-151. doi: 10.1016/j.jseaes.2016.05.021 [65] Jenyon M K. Salt tectonics[M]. London: Elsevier, 1986: 191. [66] 刘晓峰, 解习农. 与盐构造相关的流体流动和油气运聚[J]. 地学前缘, 2001, 8(4): 343-349. doi: 10.3321/j.issn:1005-2321.2001.04.014Liu X F, Xie X N. Fluid flow, hydrocarbon migration and accumulation associated with salt tectonics[J]. Earth Science Frontiers, 2001, 8(4): 343-349(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2001.04.014 [67] Richardson N J, Underhill J R, Lewis G. The role of evaporate mobility in modifying subsidence patterns during normal fault growth and linkage, Halten Terrace, Mid-Norway[J]. Basin Research, 2005, 17(2): 203-223. doi: 10.1111/j.1365-2117.2005.00250.x [68] 金文正, 汤良杰, 万桂梅, 等. 库车前陆盆地东秋里塔格区带盐相关构造特征[J]. 石油学报, 2007, 28(3): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200703001.htmJin W Z, Tang L J, Wan G M. Characteristics of salt-related tectonics in the eastern Qiulitage tectonic belt of Kuche Foreland Basin[J]. Acta Petrolei Sinica, 2007, 28(3): 8-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200703001.htm [69] 马奎, 胡素云, 王铜山, 等. 膏盐岩对碳酸盐层系油气成藏的影响及勘探领域分析[J]. 地质科技情报, 2016, 35(2): 169-176. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602034.htmMa K, Hu S Y, Wang T S, et al. Effect of gypsum rock on the hydrocarbon accumulation in carbonate layers and analysis of exploration field[J]. Geological Science and Technology Information, 2016, 35(2): 169-176(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602034.htm [70] 吴海, 赵孟军, 鲁雪松, 等. 膏盐岩层控藏机制研究进展[J]. 地质科技情报, 2016, 35(3): 77-86. doi: 10.3969/j.issn.1009-6248.2016.03.008Wu H, Zhao M J, Lu X S, et al. Research progress of hydrocarbon accumulation mechanism controlled by salt[J]. Geological Science and Technology Information, 2016, 35(3): 77-86(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2016.03.008 [71] Koyi H A, Ghasemi A, Hessami K, et al. The mechanical relationship between strike-slip faults and salt diapirs in the Zagros fold-thrust belt[J]. Journal of the Geological Society, 2008, 165(6): 1031-1044. doi: 10.1144/0016-76492007-142 [72] Jackson M P A, Vendeville B C, Schultz-Ela D D. Salt-related structures in the Gulf of Mexico: A field guide for geophysicists[J]. The Leading Edge, 1994, 13(8): 837-842. doi: 10.1190/1.1437040 [73] Jackson M P A, Harrison J C. An allochthonous salt canopy on Axel Heiberg Island, Sverdrup Basin, Arctic Canada[J]. Geology, 2006, 34(12): 1045-1048. doi: 10.1130/G22798A.1 [74] 李艳明. 柴达木盆地英雄岭地区盐构造演化及其对油气控制作用研究[D]. 成都: 西南石油大学, 2016.Li Y M. Study on the evolution of salt structure and its effect on oil and gas control in Heolling area of Qaidam Basin[D]. Chendu: Southwest Petroleum University, 2016(in Chinese with English abstract). [75] 金文正, 万桂梅, 崔泽宏, 等. 四川盆地陆相碎屑岩层系油气成藏模式[J]. 西南石油大学学报: 自然科学版, 2012, 34(5): 49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201205006.htmJin W Z, Wan G M, Cui Z H, et al. Hydrocarbon accumulation pattern in continental clastic reservoir of Sichuan Basin[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2012, 34(5): 49-58(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201205006.htm [76] 吴珍云. 含盐沉积盆地盐构造分析和物理模拟: 以库车坳陷、滨里海盆地和苏丹红海盆地为例[D]. 南京: 南京大学, 2014.Wu Z Y. Structural analysis and analogue modeling of salt structures in the salt-bearing sedimentary basin: Cases study of Kuqa Depresion, PreCaspian Basin and Sudancese Red Sea Basin[D]. Nanjing: Nanjing University, 2014(in Chinese with English abstract). [77] 朱臻. 膏盐岩层对四川盆地页岩气保存及勘探的影响分析[D]. 南京: 南京大学, 2016.Zhu Z. Impact of gypsolith on the preservation and exploration prospect of shale gas in Sichuan Basin[D]. Nanjing: Nanjing University, 2016(in Chinese with English abstract). [78] 胡德高, 杨峰, 舒志国, 等. 川南地区龙马溪页岩气体滑脱效应实验研究[J]. 地质科技通报, 2021, 40(2): 36-41. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10113.shtmlHu D G, Yang F, Shu Z G, et al. Experimental study about the gas slip flow in Longmaxi shales from the southern Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 36-41(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10113.shtml [79] 周铂文, 陈红汉, 云露, 等. 塔里木盆地顺北地区一间房组台地碳酸盐岩异常泥质含量与断裂带距离及裂缝发育关系[J]. 地质科技通报, 2020, 39(6): 93-102. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10075.shtmlZhou B W, Chen H H, Yun L, et al. Relationship between argillaceous content and distance to main faulted zone and fracyures development in the platform carbonate rocks of Yijiafang Formation in Shunbei area, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 93-102(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10075.shtml [80] 张福, 黄艺, 蓝宝锋, 等. 正安地区五峰组-龙马溪组页岩储层特征及控制因素[J]. 地质科技通报, 2021, 40(1): 49-56. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10091.shtmlZhang F, Huang Y, Lan B F, et al. Characteristics and controlling factors of shale reservoir in Wufeng Formation-Longmaxi Formation of the Zheng'an area[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 49-56(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10091.shtml [81] 冯伟明, 谢渊, 刘建清, 等. 上扬子下寒武统龙王庙组沉积模式与油气勘探方向[J]. 地质科技情报, 2014, 33(3): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403015.htmFeng W M, Xie Y, Liu J Q, et al. Sedimentary model and hydrocarbon exploration targets of the Lower Cambrian Longwangmiao Formation in the Upper Yangtze area[J]. Geological Science and Technology Information, 2014, 33(3): 106-111(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403015.htm [82] 张晓峰. 四川盆地寒武系膏盐岩特征与成藏条件研究[D]. 成都: 成都理工大学, 2011.Zhang X F. Research of characteristics and accumulation condition on the Cambrian gypsum-salt rocks in Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2011(in Chinese with English abstract). [83] 汤良杰, 郭彤楼, 余一欣, 等. 四川盆地东北部前陆褶皱-冲断带盐相关构造[J]. 地质学报, 2007, 81(8): 1048-1056. doi: 10.3321/j.issn:0001-5717.2007.08.004Tang L J, Guo T L, Yu Y X, et al. Salt-related structures in the foreland fold-thrust belt of the northeastern Sichuan Basin, Southwest China[J]. Acta Geologica Sinica, 2007, 81(8): 1048-1056(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2007.08.004 [84] 谷志东, 殷积峰, 袁苗, 等. 四川盆地东部深层盐下震旦系-寒武系天然气成藏条件与勘探方向[J]. 石油勘探与开发, 2015, 42(2): 137-149. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201502003.htmGu Z D, Yin J F, Yuan M, et al. Accumulation conditions and exploration directions of natural gas in deep subsalt Sinian-Cambrian System in the eastern Sichuan[J]. Petroleum Exploration and Development, 2015, 42(2): 137-149(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201502003.htm [85] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htmZhou C N, Du J H, Xu C C, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm [86] 汤良杰, 贾承造, 金之钧, 等. 塔里木盆地库车前陆褶皱带中段盐相关构造特征与油气聚集[J]. 地质论评, 2003, 49(5): 501-506. doi: 10.3321/j.issn:0371-5736.2003.05.007Tang L J, Jia C Z, Jin Z J, et al. The salt-related tectonic characteristics and oil and gas accumulation in the middle section of the front land fold belt of the Tarim Basin reservoir vehicle[J]. Geological Review, 2003, 49(5): 501-506(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2003.05.007 [87] 张斌. 塔里木盆地库车坳陷典型油气藏成因机制与分布规律[D]. 北京: 中国地质大学(北京), 2012.Zhang B. Petroleum accumulation system formation and occurance in the Kuqa Depression, Tarim Basin[D]. Beijing: China University of Geosciences(Beijing), 2012(in Chinese with English abstract). [88] 李江海, 章雨, 王洪浩, 等. 库车前陆冲断带西部古近系盐构造三维离散元数值模拟[J]. 石油勘探与开发, 2020, 47(1): 65-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001007.htmLi J H, Zhang Y, Wang H H, et al. Three-dimensional discrete element numerical simulation of Paleogene salt structures in the western Kuqa foreland thrust belt[J]. Petroleum Exploration and Development, 2020, 47(1): 65-76(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001007.htm [89] 能源, 孙洪亮, 徐丽丽, 等. 基于三维地震资料的构造转换研究: 以库车坳陷前陆冲断带KL1号、KL2号构造为例[J]. 中国石油勘探, 2013, 18(3): 12-17. doi: 10.3969/j.issn.1672-7703.2013.03.002Neng Y, Sun H L, Xu L L, et al. Research on structural transfer based on 3D seismic data: A case study from KL1 and KL2 structures of foreland thrust belt, Kuqa Depression[J]. China Petroleum Exploration, 2013, 18(3): 12-17(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2013.03.002 [90] 何登发, 李德生, 何金有, 等. 塔里木盆地库车坳陷和西南坳陷油气地质特征类比及勘探启示[J]. 石油学报, 2013, 34(2): 201-218. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201302002.htmHe D F, Li D S, He J Y, et al. Comparison in petroleum geology between Kuqa Depression and Southwest Depression in Tarim Basin and its exploration significance[J]. Acta Petrolei Sinica, 2013, 34(2): 201-218(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201302002.htm [91] 易士威, 杨海军, 李君, 等. 塔里木盆地前陆冲断带含油气构造样式及成藏主控因素[J]. 新疆石油地质, 2012, 33(3): 272-276. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201203002.htmYi S W, Yang H J, Li J, et al. Petroliferous structural styles and oil-accumulation control factors in foreland thrust belt in Tarim Basin[J]. Xinjiang Petroleum Geology, 2012, 33(3): 272-276(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201203002.htm [92] 段云江, 黄少英, 李维波, 等. 用离散元数值模拟法研究克拉苏构造带盐构造变形机理[J]. 新疆石油地质, 2017, 38(4): 414-419. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201704007.htmDuan Y J, Huang S Y, Li W B, et al. Using discrete element numerical simulation method to study salt tectonic deformation mechanismof Kelasu structural belt[J]. Xinjiang Petroleum Geology, 2017, 38(4): 414-419(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201704007.htm [93] 孙家振, 李兰斌, 周新源, 等. 塔里木盆地库车凹陷克拉苏构造带典型构造样式与变形机理分析[J]. 石油实验地质, 2003, 25(3): 247-251. doi: 10.3969/j.issn.1001-6112.2003.03.005Sun J Z, Li L B, Zhou X Y, et al. Analysis on the typical structural styles and deformation mechanism of the Kelasu tectonic zone in the Kuqa Depression of the Tarim Basin[J]. Petroleum Geology & Experiment, 2003, 25(3): 247-251(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2003.03.005 [94] 能源, 谢会文, 李勇, 等. 塔里木盆地库车坳陷中部构造变形样式及储层分布特征[J]. 地质科学, 2012, 47(3): 629-639. doi: 10.3969/j.issn.0563-5020.2012.03.005Neng Y, Xie H W, Li Y, et al. The tectonic deformation style and distribution characteristics of the reservoir, Kuqa Depression in the Tarim Basin[J]. Chinese Journal of Geology: Scientia Geologica Sinica, 2012, 47(3): 629-639(in Chinese with English abstract). doi: 10.3969/j.issn.0563-5020.2012.03.005 [95] 余海波, 漆家福, 师骏, 等. 库车坳陷盐下构造对盐上盖层变形的影响因素分析[J]. 地质科学, 2015, 50(1): 50-62. doi: 10.3969/j.issn.0563-5020.2015.01.003Yu H B, Qi J F, Shi J, et al. Basement fault activities have in fluenced on caprock tectonic deformation in Kuqa Depression[J]. Chinese Journal of Geology, 2015, 50(1): 50-62(in Chinese with English abstract). doi: 10.3969/j.issn.0563-5020.2015.01.003 [96] 余海波, 漆家福, 师骏, 等. 塔里木盆地库车坳陷西秋古隆起的形成及其演化[J]. 地质科学, 2015, 50(2): 524-535. doi: 10.3969/j.issn.0563-5020.2015.02.011Yu H B, Qi J F, Shi J, et al. Paleo-uplift formatrion andevolution in the Xiqiu Structural Blet of the Kuqa Depression, Tarim Basin[J]. Chinese Journal of Geology, 2015, 50(2): 524-535(in Chinese with English abstract). doi: 10.3969/j.issn.0563-5020.2015.02.011 [97] 侯贵廷, 孙帅, 郑淳方, 等. 克拉苏构造带克深区段盐下构造样式[J]. 新疆石油地质, 2019, 40(1): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901004.htmHou G T, Sun S, Zheng C F, et al. Subsalt structural styles of Keshen section in Kelasu tectonic belt[J]. Xinjiang Petroleum Geology, 2019, 40(1): 21-26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901004.htm [98] 李本亮, 陈竹新, 谢会文, 等. 冲断构造带深层变形的空间分布规律: 以库车坳陷克拉苏构造带为例[J]. 地质科学, 2013, 48(1): 167-175. doi: 10.3969/j.issn.0563-5020.2013.01.010Li B L, Chen Z X, Xie H W, et al. The spatial distribution law of deep deformation of the break-off structure belt: Take the Kerasu tectonic belt as an example[J]. Chinese Journal of Geology, 2013, 48(1): 167-175(in Chinese with English abstract). doi: 10.3969/j.issn.0563-5020.2013.01.010 [99] 李艳友, 漆家福. 库车坳陷克拉苏构造带分层收缩构造变形及其主控因素[J]. 地质科学, 2012, 47(3): 607-617. doi: 10.3969/j.issn.0563-5020.2012.03.003Li Ya Y, Qi J F. The deformation and its main control factor of the layered shrink age structure of the Krasu tectonic belt in Kuqu Depression[J]. Chinese Journal of Geology, 2012, 47(3): 607-617(in Chinese with English abstract). doi: 10.3969/j.issn.0563-5020.2012.03.003 [100] 能源, 李勇, 徐丽丽, 等. 克拉苏构造带盐下超深层断背斜裂缝带发育模式及预测方法[J]. 大地构造与成矿学, 2017, 41(1): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201701005.htmNeng Y, Li Y, Xu L L, et al. Patterns of fracture zone in the deep subsalt layer of Kelasu structural belt and prospecting method[J]. Geotectonica et Metallogenia, 2017, 41(1): 61-68(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201701005.htm [101] 汪伟, 尹宏伟, 周鹏, 等. 塔里木盆地含盐褶皱冲断带变形特征与变形机制[J]. 新疆石油地质, 2019, 40(1): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901011.htmWang W, Yin H W, Zhou P, et al. Deformation characteristics and mechanism of salt-related fold thrust belt in Tarim Basin[J]. Xinjiang Petroleum Geology, 2019, 40(1): 68-73(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901011.htm [102] 汤良杰, 贾承造, 皮学军, 等. 库车前陆褶皱带盐相关构造样式[J]. 中国科学: D辑, 2003, 33(1): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200301004.htmTang L J, Jia C Z, Pi X J, et al. Salt-related structural styles of Kuqa foreland fold belt[J]. Science in China: Series D, 2003, 33(1): 38-46(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200301004.htm [103] 范小根, 程晓敢, 陈汉林, 等. 塔西南新生代前陆盆地东段盆山结构与冲断带变形特征[J]. 大地构造与成矿学, 2015, 39(2): 241-249. doi: 10.3969/j.issn.1001-1552.2015.02.004Fan X G, Cheng X G, Chen H L, et al. Basin-range coupling structure and deformation features of the Eastern Cenozoic Foreland Basin in SW Tarim[J]. Geotectonica et Metallogenia, 2015, 39(2): 241-249(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2015.02.004 [104] 程晓敢, 雷刚林, 陈汉林, 等. 西昆仑山前甫沙-克里阳地区新生代变形特征及油气控制作用[J]. 石油学报, 2011, 32(1): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201101013.htmCheng X G, Lei G L, Chen H L, et al. Cenozoic structural deformation of the Fusha-Keliyang area in the piedmont of the western Kunlun Mountains and its control on hydrocarbon accumulation[J]. Acta Petrolei Sinica, 2011, 32(1): 83-89(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201101013.htm [105] 廖晓. 塔里木盆地西南坳陷中新生代构造演化特征及对油气成藏的控制作用[D]. 西安: 西北大学, 2018.Liao X. Meso-Cenozoic tectonic evolution characteristics and its controlling effects on hydrocarbon accumulation in the Southwest Depression of Tarim Basin[D]. Xi'an: Northwest University, 2018(in Chinese with English abstract). [106] 陈迎宾. 柴达木盆地北缘构造发育特征及其对油气成藏的控制[D]. 北京: 中国地质大学(北京), 2010.Chen Y B. Tectonic developmental feature and its control for hydrocarbon accumulation in northern margin of Qaidam Basin[D]. Beijing: China University of Geosciences(Beijing), 2010(in Chinese with English abstract). [107] 龙国徽, 王艳清, 朱超, 等. 柴达木盆地英雄岭构造带油气成藏条件与有利勘探区带[J]. 岩性油气藏, 2021, 33(1): 145-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202101014.htmLong G H, Wang Y Q. Zhu C, et al. Hydrocarbon accumulation conditions and favorable exploration plays in Yingxiongling structural belt, Qaidam Basin[J]. Lithologic Reservoirs, 2021, 33(1): 145-160(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202101014.htm [108] 卞青, 陈琰, 张国卿, 等. 柴达木盆地膏盐层岩石物理特征及其对构造变形的影响[J]. 石油学报, 2020, 41(2): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202002007.htmBian Q, Chen Y, Zhang G Q, et al. Petrophysical characteristics of the gypsum-salt layer in Qaidam Basin and its influences on tectonic deformation[J]. Acta Petrolei Sinica, 2020, 41(2): 197-204(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202002007.htm [109] 李兰斌, 孙家振, 夏晓燕, 等. 柴达木盆地西南地区褶皱构造样式[J]. 石油实验地质, 2012, 34(1): 30-35. doi: 10.3969/j.issn.1001-6112.2012.01.006Li L B, Sun J Z, Xia X Y, et al. Fold structure pattern in southwestern Qaidam Basin[J]. Petroleum Geology&Experiment, 2012, 34(1): 30-35(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2012.01.006 [110] 李兆龙. 柴达木盆地狮子沟构造油气成藏条件与成藏模式研究[J]. 西部探矿工程, 2017, 29(10): 49-52. doi: 10.3969/j.issn.1004-5716.2017.10.017Li Z L. Study on the conditions and patterns of oil and gas formation in the Lion ditch in Qaidam Basin[J]. West-China Exploration Engineering, 2017, 29(10): 49-52(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5716.2017.10.017 [111] 谢会文, 尹宏伟, 唐雁刚, 等. 基于面积深度法对克拉苏构造带中部盐下构造的研究[J]. 大地构造与成矿学, 2015, 39(6): 1033-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201506005.htmXie H W, Yin H W, Tang Y G, et al. Research on subsalt structure in the central Kelasu structure belt based on the area-depth technique[J]. Geotectonica et Metallogenia, 2015, 39(6): 1033-1040(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201506005.htm [112] 林川, 尹宏伟, 汪伟, 等. 临界角库伦楔在盐下楔状体的应用: 以库车坳陷克拉苏构造带为例[J]. 高校地质学报, 2017, 23(3): 491-498. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201703011.htmLin C, Yin H W, Wang W, et al. Application of the critical taper model in the subsalt structural wedges: Example from Kelasu structure belt of Kuqa Depression[J]. Geological Journal of China Universities, 2017, 23(3): 491-498(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201703011.htm [113] 李维波, 李江海, 王洪浩, 等. 库车前陆冲断带克拉苏构造带变形影响因素分析: 基于离散元数值模拟研究[J]. 大地构造与成矿学, 2017, 41(6): 1001-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201706001.htmLi W B, Li J H, Wang H H, et al. Deformation mechanisms of Kelasu tectonic belt in Kuqa foreland thrust belt: Insight from discrete element numerical simulation[J]. Geotectonica et Metallogenia, 2017, 41(6): 1001-1010(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201706001.htm [114] 漆家福, 李勇, 吴超, 等. 塔里木盆地库车坳陷收缩构造变形模型若干问题的讨论[J]. 中国地质, 2013, 40(1): 106-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201301009.htmQi J F, Li Y, Wu C, et al. The interpretation models and discussion on the contractive structure deformation of Kuqa Depression, Tarim Basin[J]. Geology in China, 2013, 40(1): 106-120(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201301009.htm [115] 杨海军, 李勇, 唐雁刚, 等. 塔里木盆地克拉苏盐下深层大气田的发现[J]. 新疆石油地质, 2019, 40(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901003.htmYang H J, Li Y, Tang Y G, et al. Discovery of Kelasu subsalt deep large gas field, Tarim Basin[J]. Xinjiang Petroleum Geology, 2019, 40(1): 12-20(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901003.htm