留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非开挖随钻检测系统与随机森林的地层岩性识别

徐晗 姚孔轩 程丹仪 宋强银 马志明 朱旭明 乌效鸣 赵官慧 蔡晓春

徐晗, 姚孔轩, 程丹仪, 宋强银, 马志明, 朱旭明, 乌效鸣, 赵官慧, 蔡晓春. 基于非开挖随钻检测系统与随机森林的地层岩性识别[J]. 地质科技通报, 2021, 40(5): 272-280. doi: 10.19509/j.cnki.dzkq.2021.0039
引用本文: 徐晗, 姚孔轩, 程丹仪, 宋强银, 马志明, 朱旭明, 乌效鸣, 赵官慧, 蔡晓春. 基于非开挖随钻检测系统与随机森林的地层岩性识别[J]. 地质科技通报, 2021, 40(5): 272-280. doi: 10.19509/j.cnki.dzkq.2021.0039
Xu Han, Yao Kongxuan, Cheng Danyi, Song Qiangyin, Ma Zhiming, Zhu Xuming, Wu Xiaoming, Zhao Guanhui, Cai Xiaochun. Stratigraphic lithology identification based on no-dig Logging While Drilling system and random forest[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 272-280. doi: 10.19509/j.cnki.dzkq.2021.0039
Citation: Xu Han, Yao Kongxuan, Cheng Danyi, Song Qiangyin, Ma Zhiming, Zhu Xuming, Wu Xiaoming, Zhao Guanhui, Cai Xiaochun. Stratigraphic lithology identification based on no-dig Logging While Drilling system and random forest[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 272-280. doi: 10.19509/j.cnki.dzkq.2021.0039

基于非开挖随钻检测系统与随机森林的地层岩性识别

doi: 10.19509/j.cnki.dzkq.2021.0039
基金项目: 

国家自然科学基金项目 41731284

详细信息
    作者简介:

    徐晗(1994-), 男, 现正攻读地质工程专业博士学位, 主要从事地下空间工程研究工作。E-mail: xuhancug@163.com

    通讯作者:

    乌效鸣(1956-), 男, 教授, 主要从事岩土钻掘与工程浆液研究。E-mail: xmwu5610@163.com

  • 中图分类号: P618.4

Stratigraphic lithology identification based on no-dig Logging While Drilling system and random forest

  • 摘要: 通过自主研发设计的非开挖随钻检测系统,采集非开挖钻进参数,进行非开挖钻进实时地层岩性识别,为非开挖施工提供安全信息保证。针对非开挖工程工勘资料缺乏,掘进地层岩性难以判断的问题,提出了一种基于非开挖随钻检测系统实时采集数据,利用随机森林算法建立地层识别模型,通过模型去识别未知地层,并将识别结果可视化展示。通过非开挖随钻检测系统在工程现场的实际应用,获得了包括钻速、扭矩、转速、拉力、泵压、泵量等钻进敏感参数作为训练样本,利用随机森林算法对采集的钻进参数进行训练,构造决策树与随机森林,对钻进参数进行分类,建立了以典型非开挖地层岩性分类为目标的分类模型,分别确定了杂填土、黏土、粉细砂、砾石和淤泥的地层分类标签。进一步,基于机器学习的分类结果,利用PCA主成分分析将地层识别特征降维至三维,实现了地层岩性识别结果的三维展示。将预测模型应用于实际工程,以验证其有效性。结果表明,该方法能在非开挖实时钻进条件下快速识别钻进地层,识别正确率高达92%。该研究成果通过采集导向随钻参数,识别非开挖掘进段地层岩性,为非开挖扩孔阶段钻具选型、泥浆设计等提供了重要信息。

     

  • 图 1  非开挖随钻检测系统框架

    Figure 1.  Frame diagram of no-dig detection while drilling system

    图 2  扭矩检测原理图

    Figure 2.  Schematic diagram of torque detection

    图 3  泥浆压力传感器

    Figure 3.  Mud pressure sensor

    图 4  随钻检测系统剖面图

    Figure 4.  Profile chart of LWD system

    图 5  随钻检测系统实物图

    Figure 5.  Physical diagram of LWD system

    图 6  随机森林算法实现流程[13]

    Figure 6.  Implementation process of random forest algorithm

    图 7  地层识别模型其中一棵决策树

    Figure 7.  A decision tree in stratum recognition model

    图 8  PCA降维后分类结果展示

    Figure 8.  Display of classification results after PCA dimension reduction

    图 9  奉新液化气站等杆配变增容工程工程地质横剖面图

    Figure 9.  Cross section of engineering geology of equal pole distribution transformer capacity expansion project in Fengxin lpg station

    图 10  地层岩性特征数据PCA展示图

    Figure 10.  PCA display diagram of stratigraphic lithology characteristic data

    表  1  随钻数据举例

    Table  1.   Examples of data while drilling

    识别特征 钻速/(m·h-1) 扭矩/(N·m) 转速/(r·min-1) 轴向力/MPa 泥浆压力/MPa
    杂填土 7.0 13 025 120 6.0 4.0
    6.8 12 661 115 5.9 3.9
    7.2 13 212 126 6.1 4.1
    7.0 13 174 124 6.2 4.1
    7.3 13 300 136 6.4 4.3
    黏土 10.0 3 830 130 4.0 2.6
    12.0 4 042 140 4.4 2.9
    13.0 4 217 150 4.6 2.8
    12.0 3 794 142 4.2 2.7
    9.0 3 835 122 3.8 2.3
    粉细砂 8.0 7 014 120 5.0 3.0
    7.0 6 056 110 4.1 2.1
    7.4 6 537 115 4.5 2.5
    7.2 6 208 112 4.2 2.2
    8.6 7 615 126 5.6 3.6
    砾石 2.0 15 363 100 8.0 4.2
    2.1 15 507 105 8.1 4.2
    2.2 15 766 110 8.3 4.2
    2.4 15 982 120 8.3 4.3
    1.8 15 006 90 7.9 4.1
    淤泥 5.0 10 892 140 2.0 4.0
    5.2 11 254 142 2.0 4.1
    5.1 11 146 138 2.0 3.9
    4.8 10 793 130 2.0 3.8
    5.4 11 404 150 2.0 4.4
    下载: 导出CSV

    表  2  扭矩数据运算展示节选

    Table  2.   Excerpt of torque data operation display

    编号 扭矩/(N·m) 地层岩性
    1 12 661 杂填土
    2 13 174 杂填土
    3 4 042 黏土
    4 3 794 黏土
    5 7 014 粉细砂
    6 6 537 粉细砂
    7 15 507 砾石
    8 15 982 砾石
    9 11 254 淤泥
    10 10 793 淤泥
    下载: 导出CSV

    表  3  模型精确度验证数据

    Table  3.   Validation data of model accuracy

    识别特征 钻速/(m·h-1) 扭矩/(N·m) 转速/(r·min-1) 轴向力/MPa 泥浆压力/MPa 工勘岩性 岩性识别 识别结果
    1 10.0 4 102 139 4.0 2.6 黏土 粉质黏土 正确
    2 2.0 17 100 98 7.0 4.1 砾石 弱胶结砾岩 正确
    3 5.0 11 100 140 1.9 4.0 淤泥 淤泥 正确
    4 7.1 13 061 122 5.9 4.1 杂填土 杂填土 正确
    5 7.9 6 899 114 5.0 3.0 粉细砂 粉砂 正确
    6 13.0 4 200 148 4.5 2.9 黏土 粉质黏土 正确
    7 1.8 15 831 108 7.8 4.0 砾石 中胶结砾岩 正确
    8 5.1 11 156 144 2.0 4.1 淤泥 淤泥 正确
    9 6.9 12 856 118 5.8 4.0 杂填土 杂填土 正确
    10 8.3 7 320 126 5.2 3.3 粉细砂 粉细砂 正确
    11 9.0 3 825 121 3.8 2.2 黏土 粉质黏土 正确
    12 2.1 15 930 113 8.2 4.2 砾石 杂填土 错误
    下载: 导出CSV
  • [1] 颜纯文. 我国非开挖行业现状与展望[J]. 探矿工程: 岩土钻掘工程, 2010(10): 56-60. doi: 10.3969/j.issn.1672-7428.2010.10.013

    Yan C W. Currentstatus of trenchless industry in China and the prospect[J]. Exploration Engineering: Rock & Soil Drilling and Tunneling, 2010(10): 56-60(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7428.2010.10.013
    [2] 刘军. 非开挖水平定向钻进铺管施工技术及工程应用研究[D]. 西安: 西安建筑科技大学, 2004.

    Liu J. Construction technology and project application study of no-dig horizontal directional drilling dipe paving[D]. Xi'an: Xi'an University of Architecture and Technology, 2004(in Chinese with English abstract).
    [3] 冯锐, 张鹏, 苏树尧, 等. 大口径长距离钢顶管注浆减阻技术: 以黄浦江上游水源地连通管工程为例[J]. 地质科技通报, 2020, 39(4): 174-180. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10013.shtml

    Feng R, Zhang P, Su S Y, et al. Resistance reduction by grouting to large diameter and long distance steel pipe jacking: A case study of pipe jacking project in the upstreem water source area of Huangpu River[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 174-180(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10013.shtml
    [4] 谭卓英, 李文, 岳鹏君, 等. 基于钻进参数的岩土地层结构识别技术与方法[J]. 岩土工程学报, 2015, 37(7): 1328-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507023.htm

    Tan Z Y, Li W, Yue P J, et al. Techniques and approaches for identification of geoformation structure based on diamond drilling parameters[J]. Journal of Geotechnical Engineering, 2015, 37(7): 1328-1333(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507023.htm
    [5] 李章林, 吴冲龙, 张夏林, 等. 地质科学大数据背景下的矿体动态建模方法探讨[J]. 地质科技通报, 2020, 39(4): 59-68. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10000.shtml

    Li Z L, Wu L C, Zhang X L, et al. Discussion on dynamic orebody modeling method with geological science big data[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 59-68(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10000.shtml
    [6] 佟晶, 张婉, 张玄杰, 等. 基于航空重、磁数据的南黄海海相地层分布特征识别[J]. 中国地质调查, 2020, 7(5): 95-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202005011.htm

    Tong J, Zhang W, Zhang X J, et al. Characteristics of marine strata distribution in South Yellow Sea based on airborne gravity and magnetic data[J]. Geological Survey of China, 2020, 7(5): 95-106(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202005011.htm
    [7] 宋康明, 姜阳厚, 谭志祥, 等. 基于随机森林方法的岩石节理粗糙度系数研究[J]. 地质科技情报, 2018, 37(3): 263-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201803035.htm

    Song K M, Jiang Y H, Tan Z X, et al. Method to calculate the joint roughness coefficient based on random forest[J]. Geological Science and Technology Information, 2018, 37(3): 263-267(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201803035.htm
    [8] 张幼振, 张宁, 邵俊杰, 等. 基于钻进参数聚类的含煤地层岩性模糊识别[J]. 煤炭学报, 2019, 44(8): 2328-2335. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908007.htm

    Zhang Y B, Zhang N, Shao J J, et al. Fuzzy identification of coal-bearing strata lithology based ondrilling parameter clustering[J]. Journal of Coal Industry, 2019, 44(8): 2328-2335(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908007.htm
    [9] Sair K, Jamai R, Aali N. Review of ground characterization by using instrumented drills for under-ground mining and construction[J]. Rock Mechanics and Rock Engineering, 2016, 49(2): 585-602. doi: 10.1007/s00603-015-0756-4
    [10] 向杰, 陈建平, 肖克炎, 等. 基于机器学习的三维矿产定量预测: 以四川拉拉铜矿为例[J]. 地质通报, 2019, 38(12): 2010-2021. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201912010.htm

    Xiang J, Chen J P, Xiao K Y, et al. 3D metallogenic prediction based on machine learning: A casestudy of the Lala copper deposit in Sichuan Province[J]. Bulletin of Geology, 2019, 38(12): 2010-2021(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201912010.htm
    [11] 王建刚. 基于机器学习的航空高光谱遥感岩性识别技术研究[D]. 北京: 核工业北京地质研究院, 2020.

    Wang J G. Research on lithology recognition technology of aerial hyperspectral remote sensing based on machine learning[D]. Beijing: Beijing Research Institute of Uranium Geology, 2020(in Chinese with English abstract).
    [12] 房昱纬, 吴振君, 盛谦, 等. 基于超前钻探测试的隧道地层智能识别方法[J]. 岩土力学, 2020, 41(7): 2494-2503. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007036.htm

    Fang Y W, Wu Z J, Sheng Q, et al. Intelligent recognition of tunnel stratum based on advanced drilling tests[J]. Geotechnical Mechanics, 2020, 41(7): 2494-2503(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007036.htm
    [13] 曹正凤. 随机森林算法优化研究[D]. 北京: 首都经济贸易大学, 2004.

    Cao Z F. Study on optimization of random forests algorithm[D]. Beijing: Capital University of Economics and Trade, 2004(in Chinese with English abstract).
    [14] Jan P, Bernard D B, Niko E C V, et al. Random forests as a tool for ecohydrological distribution modelling[J]. Ecological Modelling, 2007, 207(2/4): 304-318.
    [15] Lee S L A, Kouzania A Z, Hu E J. Random forest based lung nodule classification aided by clustering[J]. Computerized Medical Imaging and Graphics, 2010, 34(7) 535-542. doi: 10.1016/j.compmedimag.2010.03.006
    [16] Auret L, Aldrich C. Change point detection in time series data with random forests[J]. Control Engineering Practice, 2010, 18(8): 990-1002. doi: 10.1016/j.conengprac.2010.04.005
    [17] Meinshausen N. Quantile regression forests[J]. Journal of Machine Learning Research, 2006, 7(6): 13-14. http://www.ams.org/mathscinet-getitem?mr=2274394
    [18] Dietterich T. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization[J]. Machine Learning, 2000, 40(2): 139-157. doi: 10.1023/A:1007607513941
    [19] 肖勇, 赵云, 涂治东, 等. 基于改进的皮尔逊相关系数的低压配电网拓扑结构校验方法[J]. 电力系统保护与控制, 2019, 47(11): 37-43. doi: 10.7667/PSPC20191106

    Xiao Y, Zhao Y, Tu Z D, et al. Topology checking method for low voltage distribution network based on improved Pearson correlation coefficient[J]. Power System Protection and Control, 2019, 47(11): 37-43(in Chinese with English abstract). doi: 10.7667/PSPC20191106
    [20] 刘士琛. 面向推荐系统的关键问题研究及应用[D]. 合肥: 中国科学技术大学, 2014.

    Liu S T. Research on the key issues for the recommender systems[D]. Hefei: University of Science and Technology of China, 2014(in Chinese with English abstract).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1011
  • PDF下载量:  351
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-30

目录

    /

    返回文章
    返回