留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于地貌特征的滑坡堰塞坝形成敏感性研究

黄健 贺子城 黄祥 王豪

黄健, 贺子城, 黄祥, 王豪. 基于地貌特征的滑坡堰塞坝形成敏感性研究[J]. 地质科技通报, 2021, 40(5): 253-262. doi: 10.19509/j.cnki.dzkq.2021.0040
引用本文: 黄健, 贺子城, 黄祥, 王豪. 基于地貌特征的滑坡堰塞坝形成敏感性研究[J]. 地质科技通报, 2021, 40(5): 253-262. doi: 10.19509/j.cnki.dzkq.2021.0040
Huang Jian, He Zicheng, Huang Xiang, Wang Hao. Formation sensitivity of landslide dam based on geomorphic characteristics[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 253-262. doi: 10.19509/j.cnki.dzkq.2021.0040
Citation: Huang Jian, He Zicheng, Huang Xiang, Wang Hao. Formation sensitivity of landslide dam based on geomorphic characteristics[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 253-262. doi: 10.19509/j.cnki.dzkq.2021.0040

基于地貌特征的滑坡堰塞坝形成敏感性研究

doi: 10.19509/j.cnki.dzkq.2021.0040
基金项目: 

国家创新研究群体科学基金项目 41521002

详细信息
    作者简介:

    黄健(1984-), 男, 副教授, 主要从事地质灾害预测预报方面的研究工作。E-mail: hjian.2010@qq.com

    通讯作者:

    贺子城(1997-), 男, 现正攻读地质工程专业硕士学位, 主要从事地质灾害风险评价方面的研究工作。E-mail: hezicheng00@163.com

  • 中图分类号: P642.22

Formation sensitivity of landslide dam based on geomorphic characteristics

  • 摘要: 滑坡堰塞坝是由斜坡失稳堵塞河道而形成的天然坝体,且易溃坝诱发洪水,对沿岸群众生命财产构成巨大的威胁。为提升主动减灾防灾能力,急需构建了一种快速预测与判断滑坡堵江成坝能力的方法。通过文献资料查阅,结合遥感技术,提取了70处典型滑坡的地貌特征参数,其中50处为堵江成坝滑坡。运用K-S检验和M-W U检验方法分析了滑坡地貌特征因子的敏感性,利用Boruta算法确定了因子重要度,筛选了滑坡体积、面积、高差、长度及河宽共5个地貌特征参数。基于此,利用Bayes判别法与逻辑回归方法,分别建立了滑坡堰塞坝形成的预测模型,准确率超过90%。选取高重要度且差异显著的因子,利用比值法建立了滑坡堵江成坝阈值判据,实现了滑坡堰塞坝形成的快速判定。统计不同诱因下滑坡地貌特征,对比V-Wr经验公式,确定了滑坡堰塞坝形成与诱因间的关系,为进一步构建不同诱因下滑坡堰塞坝形成预测模型提供了技术支撑。

     

  • 图 1  地貌特征参数示意图(以白格滑坡为例,具体含义见表 1)

    Figure 1.  Schematic diagram of geomorphic characteristics

    图 2  堵江成坝滑坡地貌特征参数统计分布图

    Figure 2.  Statistical distribution diagram of geomorphic characteristics parameters in damming landslides

    图 3  地貌特征因子重要程度排序

    Figure 3.  Order of importance degree of geomorphic characteristics

    图 4  滑坡高差H与(滑坡长度/河宽)L/Wr的关系

    Figure 4.  Relation between H and L/Wr

    图 5  滑坡高差H与(滑坡长度/河宽)L/Wr的统计分析

    Figure 5.  Statistical analysis of H and L/Wr

    图 6  不同诱因下的滑坡地貌特征参数统计分析

    Figure 6.  Statistics analysis of geomorphic characteristics under different incentives

    图 7  滑坡体积V与河宽Wr的关系

    Figure 7.  Relation between V and Wr

    表  1  地貌特征参数的确定及量值提取方法[3, 5, 7, 10-24]

    Table  1.   Determination of the geomorphologic characteristic parameters and extraction method for the quantitative value

    地貌特征 定义 提取方法
    滑坡面积A/m2 滑坡形成(破坏)和堆积的平面面积 结合文献资料和Google Earth的历史影像信息解译滑坡范围,计算面积;同时可借助经验公式计算体积
    滑坡体积V/104m3 估算发生滑坡的体积
    滑坡高差H/m 滑坡高程的变化量(滑坡后缘与前缘的高程差) 结合文献资料并利用Google Earth历史影像信息与标尺工具提取滑坡高差、长度、宽度和河宽
    滑坡长度L/m 滑坡纵向长度
    滑坡宽度WL/m 滑坡最大的横向宽度
    河宽Wr/m 河道的宽度
    滑坡坡度S/(°) 滑坡体表面与水平方向的夹角,取其平均值为滑坡坡度 利用GIS中3D分析工具与DEM计算坡度、坡向
    H/L比值 HL的比值 根据滑坡高差与长度值,计算H/L
    下载: 导出CSV

    表  2  堵江成坝滑坡的地貌特征参数[2, 4, 6, 10-24]

    Table  2.   Geomorphic characteristics parameters of damming landslide

    编号 诱因 A/m2 V/104m3 H/m L/m H/L S/(°) WL/m Wr/m 资料来源
    1 台风 55 667 31 119 373 0.319 22.5 311 273 Chen等[7]
    2 台风 34 954 16 102 287 0.355 24.0 116 33
    3 台风 61 590 35 263 574 0.458 29.8 349 92
    4 台风 149 377 114 346 608 0.569 41.8 518 24
    5 台风 38 910 19 117 307 0.381 29.7 228 47
    6 台风 83 997 53 294 1 046 0.281 15.7 144 145
    7 台风 324 744 320 429 1523 0.282 27.3 450 173
    8 台风 25 192 11 106 352 0.301 2.5 105 184
    9 台风 329 953 327 597 807 0.740 32.2 556 69
    10 台风 366 400 376 500 919 0.544 24.6 810 188
    11 台风 2 487 075 4 824 621 1 990 0.312 24.7 2 782 16
    12 台风 6 109 2 36 116 0.310 4.5 109 20
    13 台风 61 870 35 53 193 0.275 1.7 438 102
    14 台风 204 452 173 318 1 428 0.223 26.4 322 16
    15 台风 41 3071 441 331 917 0.361 24.7 1 290 265
    16 台风 8 576 3 60 97 0.619 12.3 131 24
    17 台风 87 926 56 289 308 0.938 33.4 280 26
    18 台风 47 884 25 140 678 0.206 15.1 88 28
    19 台风 58 936 33 161 539 0.299 30.4 137 26
    20 地震 26 267 11 197 270 0.730 17.4 165 46
    21 降雨 76 233 46 261 419 0.623 28.6 290 5
    22 台风 20 603 8 193 379 0.509 26.5 267 52
    23 台风 92 679 60 181 451 0.401 32.1 400 16
    24 地震 6 045 884 15 749 822 2 046 0.402 24.9 1 663 194
    25 地震 1 982 762 3 567 505 1 212 0.417 21.9 1 268 38
    26 降雨 165 621 131 406 937 0.433 27.5 205 179
    27 降雨 61 081 35 121 398 0.304 27.7 113 17
    28 降雨 277 593 260 155 350 0.443 36.0 120 55 樊晓一等[10]
    29 地震 1 490 909 2 440 835 1 200 0.696 27 130 611.8 胡卸文等[11]
    30 地震 3 730 000 115 900 1 567 3 400 0.461 29 1 500 170 许强等[3]
    31 降雨 520 000 1 542 300 1 205 0.249 25 445 65 樊晓一等[5]
    32 降雨 1 954 688 3 500 850 1 413 0.602 57.5 560 112 许强等[12]
    33 地震 255 770 350 250 472 0.530 36 308 160 樊晓一等[5]
    34 地震 182 000 468 562 880 0.639 48 400 172
    35 降雨 1 400 000 9 500 1 000 1 500 0.667 60 1 150 200
    36 降雨 251 880 424 430 770 0.558 65 432 150
    37 降雨 1 075 000 2 500 190 725 0.262 15 1 300 90 乔建平等[13]
    38 地震 1 504 264 2 110 552 1317 0.419 35 980 156 龙维[14]
    39 降雨 540 000 540 325 1 350 0.241 21 550 65 简文星等[15]
    40 降雨 10 440 18 108 280 0.386 30 100 10 樊晓一等[16]
    41 地震 1 650 000 15 000 238 800 0.298 22 800 436 柴贺军等[17]
    42 地震 91 185 12 280 450 0.622 43 87 130
    43 地震 1 400 387 10 250 1 395 2136 0.653 65 986 330
    44 地震 192 367 300 430 1 000 0.430 45 120 83 裴向军等[18]
    45 地震 313 917 4 000 509 1 034 0.492 22.5 404 135 杨琴等[19]
    46 地震 750 000 60 000 640 1 300 0.492 35 320 90 王家柱等[20]
    47 降雨 10 725 806 30 000 3 330 8 000 0.416 30 912 327 吕杰堂等[21]
    48 降雨 3 100 000 5 040 400 1 000 0.400 25 900 180 周洪福等[22]
    49 地震 500 000 2 000 440 950 0.463 37.5 900 95 陈丹[23]
    50 地震 360 000 2 800 650 750 0.867 60 500 220 柴贺军等[24]
    下载: 导出CSV

    表  3  Bayes线性判别系数

    Table  3.   Bayes linear discriminace coefficient

    因子 M1 M2 M3
    0 1 0 1 0 1
    滑坡面积A -4.632×10-7 -1.338×10-6 -4.606×10-7 -8.381×10-7 -4.259×10-7 -1.154×10-6
    滑坡体积V -2.773×10-5 0.000 -6.514×10-6 -1.092×10-5 5.399×10-7 -9.188×10-6
    滑坡高差H -0.002 0.004 -0.002 0.001 -0.003 0.001
    滑坡长度L 0.002 0.005 0.001 0.002 0.002 0.002
    河宽Wr 0.008 2.901×10-5 0.010 0.002 0.008 0.001
    常量 -2.784 -2.741 -2.527 -1.507 -2.672 -1.601
    下载: 导出CSV

    表  4  各模型分析结果对比

    Table  4.   Comparison of analysis results of each model

    模型 精确度/% 准确率/% 漏报率/% 误报率/%
    M1 93.9 90.0 8.0 6.1
    M2 82.1 80.0 8.0 17.9
    M3 80.4 77.1 10.0 19.6
    下载: 导出CSV

    表  5  Logistic回归分析分类

    Table  5.   Classification of logistic regression analysis

    实测 预测 准确率/%
    0 1
    0 17 3 85.0
    1 2 48 96.0
    总准确率/% 92.9
    下载: 导出CSV

    表  6  Logistic回归分析分类

    Table  6.   Classification of logistic regression analysis

    实测 预测 准确率/%
    0 1
    0 17 3 85.0
    1 4 46 92.0
    总准确率/% 90.0
    下载: 导出CSV

    表  7  滑坡地貌特征参数[29-30]

    Table  7.   Geomorphic characteristics parameters of landslide

    滑坡 类别 H/m lnH L/m Wr/m ln(L/Wr)
    平溪村 1 144 4.970 414 36 2.442
    二蛮山 0 610 6.413 1 000 1 542 -0.433
    下载: 导出CSV
  • [1] Schuster R L, Costa J E, Perspective on landslide dams[C]//Anon. Landslide Dams: Processes, risk, and mitigation. [S. l. ]: [s. n. ], 1986: 1-20.
    [2] 柴贺军, 刘汉超, 张倬元. 滑坡堵江的基本条件[J]. 地质灾害与环境保护, 1996, 7(1): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB601.007.htm

    Chai H J, Liu H C, Zhang Z Y. The main conditions of landslide dam[J]. Journal of Geological Hazards and Environment Preservation, 1996, 7(1): 41-46(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB601.007.htm
    [3] Xu Q, Fan X M, Huang R Q, et al. Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, southwest China[J]. Bulletin of Engineering Geology and the Environment, 2009, 68: 373-386. doi: 10.1007/s10064-009-0214-1
    [4] Fan X M, van Westen C J, Xu Q, et al. Aanlysis of landslide dams induced by the 2008 Wenchuan Earthquake[J]. Journal of Asian Earth Sciences, 2012, 57: 25-37. doi: 10.1016/j.jseaes.2012.06.002
    [5] 樊晓一, 黄润秋, 乔建平, 等. 未受河流阻止的滑坡水平运动距离与滑坡堵江判别[J]. 水文地质工程地质, 2014, 41(1): 128-133. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201401023.htm

    Fan X Y, Huang R Q, Qiao J P. Horizontal movement distances of no-blocking landslide and blocking river assessment[J]. Hydrogeology & Engineering Geology, 2014, 41(1): 128-133(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201401023.htm
    [6] Fan X M, Rossiter D G, van Westen C J, et al. Empirical prediction of Coseismic landslide dam formation[J]. Earth Surface Processes and Landforms, 2014, 39: 1913-1926. doi: 10.1002/esp.3585
    [7] Chen C Y, Chang J M. Landslide dam formation susceptibility analysis based on geomorphic features[J]. Landslide, 2016, 13: 1019-1033. doi: 10.1007/s10346-015-0671-5
    [8] Kursa M B, Rudnicki W R. Feature selection with the Boruta Package[J]. Journal of Statistical Software, 2010, 36(11): 1-13. http://www.jstatsoft.org/article/view/v036i11/v36i11.pdf
    [9] Li D, Tang X, Phhoon K. Bootstrap method for characterizing the effect of uncertainty in shear strength parameters on slope reliability[J]. Reliability Engineering and System Safety, 2015, 140: 99-106. doi: 10.1016/j.ress.2015.03.034
    [10] 樊晓一. 地震与非地震诱发滑坡的运动特征对比研究[J]. 岩土力学, 2010, 11(2): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2008.htm

    Fan X Y. Comparative study on movement behaviors of seismic and non-seismic induced landslides[J]. Rock and Soil Mechanics, 2010, 11(2): 32-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2008.htm
    [11] 胡卸文, 黄润秋, 施裕兵, 等. 唐家山滑坡堵江机制及堰塞坝溃坝模式分析[J]. 岩石力学与工程学报, 2009, 28(1): 182-189. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200901027.htm

    Hu X W, Huang R Q, Shi Y B et al. Analysis on blocking river mechanism of Tangjiashan landslide and bam-breaking mode of its barrier dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 182-189(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200901027.htm
    [12] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 2018, 26(6): 1534-1551. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806016.htm

    Xu Q, Zheng G, Li W L, et al. Study on successive landslide damming events of Jinsha River in Baige Village on octorber 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 26(6): 1534-1551(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806016.htm
    [13] 乔建平, 吴彩燕, 李秀珍, 等. 四川省宣汉县天台乡特大型滑坡分析[J]. 山地学报, 2005, 23(4): 458-461. doi: 10.3969/j.issn.1008-2786.2005.04.013

    Qiao J P, Wu C Y, Li X Z, et al. Analysis on super large-scale landslide in Tiantai, Xuanhan, Sichuan[J]. Journal of Mountain Science, 2005, 23(4): 458-461(in Chinese with English abstract). doi: 10.3969/j.issn.1008-2786.2005.04.013
    [14] 龙维. 金沙江上游特米大型古滑坡成因及稳定性研究[D]. 北京: 中国地质大学(北京), 2015.

    Long W. Study on causation and stability of Temi large-scale ancient landslide in the upper Jinsha River[D]. Beijing: China University of Geosciences(Beijing), 2015(in Chinese with English abstract).
    [15] 简文星, 殷坤龙, 闫天俊, 等. 重庆万州区民国场滑坡基本特征及形成机制[J]. 中国地质灾害与防治学报, 2005, 16(4): 20-23. doi: 10.3969/j.issn.1003-8035.2005.04.005

    Jian W X, Yin K L, Yan T J, et al. Characteristics and formation mechanism of Minguochang landslide in Wanzhou District, Chongqing[J]. The Chinese Journal of Geological Hazard and Control, 2005, 16(4): 20-23(in Chinese with English abstract). doi: 10.3969/j.issn.1003-8035.2005.04.005
    [16] 樊晓一, 王成华, 乔建平. 两龙滑坡特征及转化泥石流机制分析[J]. 水土保持研究, 2015, 12(6): 156-158. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY200506047.htm

    Fan X Y, Wang C H, Qiao J P. Feature of lianglong landslide and the mechanism analysis of landslide-induced debris flow[J]. Research of Soil and Water Conservation, 2015, 12(6): 156-158(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STBY200506047.htm
    [17] 柴贺军, 刘汉超, 张倬元. 一九三三年叠溪地震滑坡堵江事件及其环境效应[J]. 地质灾害与环境保护, 1995, 6(1): 7-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB501.001.htm

    Chai H J, Liu H C, Zhang Z Y. Landslide dams induced by diexi earthquake in 1933 and its environmental effect[J]. Journal of Geological Hazards and Environment Preservation, 1995, 6(1): 7-17(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB501.001.htm
    [18] 裴向军, 郝永峰, 张军新, 等. 老鹰岩滑坡成因机制与运动特征研究[J]. 地质灾害与环境保护, 2010, 21(4): 28-32. doi: 10.3969/j.issn.1006-4362.2010.04.005

    Pei X J, Hao Y F, Zhang J X, et al. Movement characteristics and mechanism of Laoyingyan landslide triggered by Wenchuan Earthquake[J]. Journal of Geological Hazards and Environment Preservation, 2010, 21(4): 28-32(in Chinese with English abstract). doi: 10.3969/j.issn.1006-4362.2010.04.005
    [19] 杨琴, 范宣梅, 许强, 等. 北川唐家湾滑坡变形历史与形成机制研究[J]. 水文地质工程地质, 2018, 45(2): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201802021.htm

    Yang Q, Fan X M, Xu Q, et al. A study of the deformation history and mechanism of the Tangjiawan landslide[J]. Hydrogeology & Engineering Geology, 2018, 45(2): 136-141(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201802021.htm
    [20] 王家柱, 任光明, 葛华. 金沙江上游某特大型滑坡发育特征及堵江机制[J]. 长江科学院院报, 2019, 36(2): 46-57. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201902011.htm

    Wang J Z, Ren G M, Ge H. Development characteristics and river-blocking mechanism of a Mega-landslide in the upper reach of Jinsha River[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(2): 46-57(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201902011.htm
    [21] 吕杰堂, 王治华, 周成虎. 西藏易贡大滑坡成因探讨[J]. 地球科学: 中国地质大学学报, 2003, 28(1): 107-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200301018.htm

    Wang Z H, Zhou C H. Discussion on the occurrence of Yigong landslide in Tibet[J]. Earth Science: Journal of China University of Geosciences, 2003, 28(1): 107-110(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200301018.htm
    [22] 周洪福, 韦玉婷, 聂德新. 黄河上游戈龙布滑坡高速下滑成因机制及堵江分析[J]. 工程地质学报, 2009, 17(4): 483-488. doi: 10.3969/j.issn.1004-9665.2009.04.008

    Zhou H F, Wei Y T, Nie D X. Formation mechanism of high-speed Gelongbu landslide and associated blockage of upper reach of Yellow River[J]. Journao of Engineering Geology, 2009, 17(4): 483-488(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2009.04.008
    [23] 陈丹. 茂县苦地瓜子滑坡成因机制与古地震效应研究[D]. 成都: 成都理工大学, 2014.

    Chen D. The research of Maoxian Kudiguazi landslide's formation mechanism and seismic effect[D]. Chengdu: Chengdu University of Technology, 2014(in Chinese with English abstract).
    [24] 柴贺军, 刘汉超. 岷江上游多级多期崩塌堵江事件初步研究[J]. 山地学报, 2002, 20(5): 616-620. doi: 10.3969/j.issn.1008-2786.2002.05.019

    Chai H J, Liu H C. Study on landslide damming of river in upper of Minjiang River[J]. Journal of Mountain Science, 2002, 20(5): 616-620(in Chinese with English abstract). doi: 10.3969/j.issn.1008-2786.2002.05.019
    [25] Larsen L J, Montgomery D R, Korup O. Landslide erosion controlled by hillslope material[J]. Nature Geoscience, 2010, 3: 247-251. http://www.onacademic.com/detail/journal_1000034762469710_be19.html
    [26] 胡涛, 樊鑫, 王硕, 等. 基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J]. 地质科技通报, 2020, 39(2): 113-121. https://dzkjqb.cug.edu.cn/CN/abstract/abstract9980.shtml

    Hu T, Fan X, Wang S, et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 113-121(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract9980.shtml
    [27] 郑迎凯, 陈建国, 王成彬, 等. 确定性系数与随机森林模型在云南芒市滑坡易发性评价中的应用[J]. 地质科技通报, 2020, 39(6): 131-144. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10079.shtml

    Zheng Y K, Chen J G, Wang C B, et al. Application of certainty factor and random forests model in landslide susceptibility evaluation in Mangshi City, Yunnan Province[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 131-144(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10079.shtml
    [28] 连志鹏, 徐勇, 付圣, 等. 采用多模型融合方法评价滑坡灾害易发性: 以湖北省五峰县为例[J]. 地质科技通报, 2020, 39(3): 178-186. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10035.shtml

    Lian Z P, Xu Y, Fu S, et al. Landslide susceptibility assessment based on multi-model fusion method: A case study in Wufeng County, Hubei Province[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 178-186(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10035.shtml
    [29] 袁进科, 黄润秋, 裴向军, 等. 汶川地震触发平溪村滑坡特征及成因分析[J]. 水文地质工程地质, 2011, 38(3): 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201103025.htm

    Yuan J K, Huang R Q, Pei X J, et al. Characteristics and cause analysis of the Pingxi landslide triggered by Wenchuan Earthquake[J]. Hydrogeology & Engineering Geology, 2011, 38(3): 110-114(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201103025.htm
    [30] 顾成壮, 胡卸文, 方力, 等. 四川汉源二蛮山高速滑坡-碎屑流基本特征及地质演化[J]. 山地学报, 2014, 32(5): 568-578. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201405007.htm

    Gu C Z, Hu X W, Fang L, et al. Basic characteristics and evolution history of Ermanshan high-speed slide-debris flow in Hanyuan, Sichuan[J]. Journal of Mountain Science, 2014, 32(5): 568-578(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201405007.htm
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  1154
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-04

目录

    /

    返回文章
    返回