留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南方下古生界海相页岩极低电阻率成因及其地质意义

侯宇光 张坤朋 何生 覃魏峰 肖艳 王成 余锐

侯宇光, 张坤朋, 何生, 覃魏峰, 肖艳, 王成, 余锐. 南方下古生界海相页岩极低电阻率成因及其地质意义[J]. 地质科技通报, 2021, 40(1): 80-89. doi: 10.19509/j.cnki.dzkq.2021.0104
引用本文: 侯宇光, 张坤朋, 何生, 覃魏峰, 肖艳, 王成, 余锐. 南方下古生界海相页岩极低电阻率成因及其地质意义[J]. 地质科技通报, 2021, 40(1): 80-89. doi: 10.19509/j.cnki.dzkq.2021.0104
Hou Yuguang, Zhang Kunpeng, He Sheng, Qin Weifeng, Xiao Yan, Wang Cheng, Yu Rui. Origin and geological significance of ultra-low resistivity in Lower Paleozoic marine shale, South China[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 80-89. doi: 10.19509/j.cnki.dzkq.2021.0104
Citation: Hou Yuguang, Zhang Kunpeng, He Sheng, Qin Weifeng, Xiao Yan, Wang Cheng, Yu Rui. Origin and geological significance of ultra-low resistivity in Lower Paleozoic marine shale, South China[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 80-89. doi: 10.19509/j.cnki.dzkq.2021.0104

南方下古生界海相页岩极低电阻率成因及其地质意义

doi: 10.19509/j.cnki.dzkq.2021.0104
基金项目: 

国家自然科学基金项目 41772143

国家科技重大专项子课题 2016ZX05034002-003

中国地质调查局项目 DD20190561-1

详细信息
    作者简介:

    侯宇光(1979-), 男, 副教授, 博士生导师, 主要从事油气成藏、页岩油气储层及其资源评价等方面的教学与科研工作。E-mail:sporthyg@126.com

    通讯作者:

    张坤朋(1992-), 男, 助理工程师, 主要从事非常规油气地质和工程地质研究工作。E-mail:1192014346@qq.com

  • 中图分类号: P588.2

Origin and geological significance of ultra-low resistivity in Lower Paleozoic marine shale, South China

  • 摘要: 基于测井电阻率和有机地球化学数据,利用页岩极化率测试和干酪根激光拉曼测试等技术手段,对导致南方下古生界高演化海相页岩呈现极低电阻率(测井电阻率低至10~1Ω·m及以下)的主控因素进行了分析,深入探究了其内在成因,并对其地质意义进行了探讨。结果显示:有机质丰度和成熟度是影响极低电阻率测井的主要因素;w(TOC)与测井电阻率和实测电阻率均呈现出良好的负相关关系;成熟度越高,达到极低电阻率所需要的最低w(TOC)界限值越低,页岩的极化率也随之增加。石墨化的有机质是致使高演化页岩出现极低电阻率的主要"导电矿物",有机质开始发生石墨化的"临界点"对应的Rmc Ro约为3.5%。极低电阻率特征是页岩有机质结构发生显著变化、向石墨化演进的重要标志。极低电阻率测井响应预示着页岩储层品质极可能遭受了巨大的损害:生烃能力枯竭、有机质孔隙大幅减少、吸附性能降低、含气性骤降。因此,圈定极低电阻率页岩范围,排除"有机质石墨化"的高风险区,对下古生界高演化海相页岩选区评价具有重要意义。

     

  • 图 1  中上扬子下古生界极低电阻率钻井分布图(Ro等值线据文献[8]修改)

    a.下寒武统页岩;b.上奥陶统五峰组-下志留统龙马溪组页岩

    Figure 1.  Distribution of Lower Paleozoic ultra-low resistivity wells in middle-upper Yangtze area

    图 2  典型极低电阻率钻井测井电阻率与w(TOC)关系图

    Figure 2.  Correlation between logging resistivity and TOC of typical ultra-low resistivity wells

    图 3  不同成熟度页岩富有机质层段(w(TOC)>2.0%)测井电阻率均值

    Figure 3.  Average logging resistivity of rich organic section (TOC>2.0%) of shale with different maturity

    图 4  极低电阻率钻井样品实测电阻率与w(TOC)关系

    Figure 4.  Correlation between measured resistivity and TOC of samples from ultra-low resistivity wells

    图 5  页岩极化率与w(TOC)关系

    Figure 5.  Correlation between polarizability and TOC of shale samples

    图 6  页岩干酪根典型激光拉曼光谱

    Figure 6.  Typical Raman spectra of shale kerogen samples

    图 7  干酪根激光拉曼光谱的峰高比和峰间距随成熟度变化(a.本文;b.据文献[25];c.据文献[11])

    Figure 7.  Variation trends of kerogen Raman spectra parameters of peak position difference and integrated intensity ratio with increasing thermal maturity

    图 8  极低电阻率页岩的成因模式图

    a.分散有机质阶段;b.有机质网络形成阶段;c.有机质石墨化-极低电阻率形成阶段;Q.石英; Py.黄铁矿;Ca.碳酸盐矿物;Clay.黏土矿物;Kom.干酪根;Bom.迁移有机质;e.示意电子;有机质中的短线示意碳层的有序性和延展性

    Figure 8.  Genetic model of ultra-low resistivity shale

    图 9  页岩电阻率、拉曼光谱参数、孔隙度、含气性随成熟度演化模式图

    Figure 9.  Evolution model diagram of shale resistivity, Raman spectrum parameters, porosity and gas bearing property with maturity

  • [1] 赵文智, 李建忠, 杨涛, 等.中国南方海相页岩气成藏差异性比较与意义[J].石油勘探与开发, 2016, 43(4):499-510. doi: 10.11698/PED.2016.04.01
    [2] 郭彤楼.中国式页岩气关键地质问题与成藏富集主控因素[J].石油勘探与开发, 2016, 43(3):317-326. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603002.htm
    [3] 郭旭升, 胡东风, 李宇平, 等.涪陵页岩气田富集高产主控地质因素[J].石油勘探与开发, 2017, 44(4):481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htm
    [4] 苗凤彬, 彭中勤, 汪宗欣, 等.雪峰隆起西缘下寒武统牛蹄塘组页岩裂缝发育特征及其主控因素[J].地质科技通报, 2020, 39(2):31-42. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9972.shtml
    [5] 王玉满, 董大忠, 程相志, 等.海相页岩有机质碳化的电性证据及其地质意义:以四川盆地南部地区下寒武统筇竹寺组页岩为例[J].天然气工业, 2014, 34(8):1-7. doi: 10.3787/j.issn.1000-0976.2014.08.001
    [6] 杨小兵, 张树东, 张志刚, 等.低阻页岩气储层的测井解释评价[J].成都理工大学学报:自然科学版, 2015, 42(6):692-699. doi: 10.3969/j.issn.1671-9727.2015.06.07
    [7] 邹才能, 董大忠, 王玉满, 等.中国页岩气特征、挑战及前景:一[J].石油勘探与开发, 2015, 42(6):689-701. doi: 10.11698/PED.2015.06.01
    [8] 刘树根, 邓宾, 钟勇, 等.四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用[J].地学前缘, 2016, 23(1):11-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601004.htm
    [9] 何志亮, 聂海宽, 张钰莹.四川盆地及其周缘奥陶系五峰组-志留系龙马溪组页岩气富集主控因素分析[J].地学前缘, 2016, 23(2):8-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602004.htm
    [10] 王朋飞, 姜振学, 韩波, 等.中国南方下寒武统牛蹄塘组页岩气高效勘探开发储层地质参数[J].石油学报, 2018, 39(2):152-162 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201802003.htm
    [11] 刘德汉, 肖贤明, 田辉, 等.固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J].科学通报, 2013, 58(13):1228-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201313010.htm
    [12] 付小东, 秦建中, 滕格尔, 等.烃源岩矿物组成特征及油气地质意义:以中上扬子古生界海相优质烃源岩为例[J].石油勘探与开发, 2011, 38(6):671-684. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201106005.htm
    [13] 陈林, 陈孝红, 张保民, 等.鄂西宜昌地区五峰组-龙马溪组页岩储层特征及其脆性评价[J].地质科技通报, 2020, 39(2):54-61. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9974.shtml
    [14] 胡华.黑色泥页岩中黄铁矿与有机质含量的关系及勘探意义[D].武汉: 长江大学, 2017.
    [15] 赵文韬, 荆铁亚, 熊鑫, 等.海相页岩有机质石墨化特征研究:以渝东南地区牛蹄塘组为例[J].地质科技情报, 2018, 37(2):183-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802025.htm
    [16] 黄涛, 余刚, 王绪本, 等.页岩岩芯复电阻率频散特征主要影响因素的实验研究[J].物探化探计算技术, 2016, 38(2):167-174. doi: 10.3969/j.issn.1001-1749.2016.02.04
    [17] 李鹏飞, 严良俊, 余刚, 等.基于富有机碳页岩的复电阻率特性研究[J].石油天然气学报, 2014, 36(11):115-119. doi: 10.3969/j.issn.1000-9752.2014.11.024
    [18] Saner S, Al-Harthi A, Htay M T.Use of tortuosity for discriminating electrofacies to interpret the electrical parameters of carbonate reservoir rocks[J].J.Petr.Sci.En., 1996, 16(4):237-249. doi: 10.1016/S0920-4105(96)00045-9
    [19] Revil A, Cathles L M, Losh S, et al.Electrical conductivity in shaly sands with geophysical applications[J].J.Geophys.Res., 1998, 103(B10):23925-23936. doi: 10.1029/98JB02125
    [20] Wei W, Cai J C, Hu X Y, et al.An electrical conductivity model for fractal porous media[J].Geophys.Res.Lett., 2015, 42(12):4833-4840. doi: 10.1002/2015GL064460
    [21] Caiv J C, Wei W, Hu X Y, et al.Electrical conductivity models in saturated porous media:A review[J].Earth-Science Reviews, 2017, 171:419-433 doi: 10.1016/j.earscirev.2017.06.013
    [22] 胡凯, 刘英俊, Wilkins R W T.沉积有机质的拉曼光谱研究[J].沉积学报, 1993, 11(3):64-71.
    [23] Kelemen S R, Fang H L. Maturity trends in Raman spectra from kerogen and coal[J].Energy & Fuels, 2001(15):653-658. doi: 10.1021/ef0002039
    [24] Zhou Q, Xiao X M, Pan L, et al.The relationship between microRaman spectral parameters and reflectance of solid bitumen[J].International Journal of Coal Geology, 2014, 121:19-25. doi: 10.1016/j.coal.2013.10.013
    [25] 王茂林, 肖贤明, 魏强, 等.页岩中固体沥青拉曼光谱参数作为成熟度指标的意义[J].天然气地球科学, 2015, 26(9):1712-1718. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509013.htm
    [26] William S J, Kudryavtsev A B, Agresti D G, et al.Raman imagery:A new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils[J].Astrobiology, 2005, 5:333-371. doi: 10.1089/ast.2005.5.333
    [27] Quirico E, Rouzaud J N, Bonal L.Maturation grade of coals as revealed by Raman spectroscopy:Progress and problems[J].Spectrochimica Acta:Part A, 2005, 61(10):2368-2377. doi: 10.1016/j.saa.2005.02.015
    [28] Zeng Y, Wu C.Raman and infrared spectroscopic study of kerogen treated at elevated temperatures and pressures[J].Fuel, 2007, 86:1192-1200. doi: 10.1016/j.fuel.2005.03.036
    [29] Shicto A, Romano C, Corrado S, et al.Diagenetic thermal evolution of organic matter by Raman spectroscopy[J].Org.Geochem., 2017, 106:57-67. doi: 10.1016/j.orggeochem.2016.12.006
    [30] Jiang J Y, Yang W H, Cheng Y P, et al.Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy:implications for coalification[J].Fuel, 2019, 239:559-572. doi: 10.1016/j.fuel.2018.11.057
    [31] Kouketsu Y, Mizukami T, Mori H, et al.A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width[J].Isl.Arc., 2014, 23:33-50. doi: 10.1111/iar.12057
    [32] Louckes R G, Reed R M, Ruppel S C, et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPG Bulletin, 2012, 96:1071-1098. doi: 10.1306/08171111061
    [33] Mastalerz M, Schimmelmann A, Drobniak A, et al.Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient:Insights from organic petrology, gas adsorption, and mercury intrusion[J].AAPG Bulletin, 2013, 97:1621-1643. doi: 10.1306/04011312194
    [34] 李延钧, 刘欢, 张烈辉, 等.四川盆地南部下古生界龙马溪组页岩气评价指标下限[J].中国科学:地球科学, 2013, 43(7):1088-1095. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201307002.htm
    [35] 肖贤明, 王茂林, 魏强, 等.中国南方下古生界页岩气远景区评价[J].天然气地球科学, 2015, 26(8):1433-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508002.htm
    [36] Gao J, He S, Zhao J X, et al.Geothermometry and geobarometry of overpressured lower Paleozoic gas shales in the Jiaoshiba field, Central China:Insight from fluid inclusions in fracture cements[J].Marine and Petroleum Geology, 2017, 83:124-139. doi: 10.1016/j.marpetgeo.2017.02.018
    [37] 黄伯钧, Buseck P R.变质岩中碳质物质的石墨化作用[J].矿物学报, 1986(4):350-353. doi: 10.3321/j.issn:1000-4734.1986.04.010
    [38] KRíbek B, Sýkorov Á I, Machovic V, et al.Graphitization of organic matter and fluid-deposited graphite in Palaeoproterozoic (Birimian) black shales of the Kaya-Goren greenstone belt (Burkina Faso, West Africa)[J].Journal of Metamorphic Geology, 2008, 26(9):937-958. doi: 10.1111/j.1525-1314.2008.00796.x
    [39] Barrenechea J F, Rodas M, Arche A.Relation between graphitization of organic matter and clay mineralogy, Silurian black shales in Central Spain[J].Mineralogical Magazine, 1992, 56:478-485. http://www.researchgate.net/publication/249849607_Relation_Between_Graphitization_of_Organic_Matter_and_Clay_Mineralogy_Silurian_Black_Shales_in_Central_Spain
    [40] Curtis M E, Cardott B J, Sondergeld C H, et al.Development of organic porosity in the Woodford Shale with increasing thermal maturity[J].Int.J.Coal Geol., 2012, 103:26-31. doi: 10.1016/j.coal.2012.08.004
    [41] Chen J, Xiao X M.Evolution of nanoporosity in organic-rich shales during thermal maturation[J].Fuel, 2014, 129:173-181. doi: 10.1016/j.fuel.2014.03.058
    [42] 彭女佳, 何生, 郝芳, 等.川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性[J].地球科学, 2017, 42(7):1034-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707009.htm
    [43] 何陈诚, 何生, 郭旭升, 等.焦石坝区块五峰组与龙马溪组一段页岩有机孔隙结构差异性[J].石油与天然气地质学, 2018, 39(3):472-484. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803006.htm
    [44] Hou Y G, He S, Yi J Z, et al.Effect of pore structure on methane sorption capacity of shales[J].Petrol.Explor.Develop., 2014, 41:272-281. doi: 10.1016/S1876-3804(14)60033-1
    [45] Yang F, Ning Z F, Zhang R, et al.Investigations on the methane sorption capacity of marine shales from Sichuan Basin, China[J].Int.J.Coal Geol., 2015, 146:104-117. doi: 10.1016/j.coal.2015.05.009
    [46] Sun M D, Yu B S, Hu Q H, et al.Nanoscale pore characteristics of the Lower Cambrian Niutitang Formation Shale:A case study from Well Yuke #1 in the Southeast of Chongqing, China[J].Int.J.Coal Geol., 2016, 154/155:16-19. doi: 10.1016/j.coal.2015.11.015
    [47] 张鹏, 张金川, 黄宇琪, 等.黔西北上奥陶统五峰组-下志留统龙马溪组页岩气聚集条件分析[J].地质论评, 2015, 61(1):155-162. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201501017.htm
    [48] 赵瞻, 余谦, 周小琳, 等.重庆黔江地区下寒武统牛蹄塘组页岩气成藏条件[J].地质科技情报, 2017, 36(3):122-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703017.htm
    [49] 秦川, 余谦, 刘伟, 等.黔北地区牛蹄塘组富有机质泥岩储层特征[J].西南石油大学学报:自然科学版, 2017, 39(4):13-24. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201704002.htm
    [50] 李昂, 丁文龙, 张国良, 等.滇东地区马龙区块筇竹寺组海相页岩储层特征及对比研究[J].地学前缘, 2016, 23(2):176-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602021.htm
    [51] 王胜建, 包书景, 梅建森, 等.柴达木盆地北缘柴页1井中侏罗统大煤沟组页岩储层测井评价[J].地质通报, 2016, 35(2/3):260-272. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2016Z1008.htm
    [52] 王晓鹏, 李玉宏, 张云鹏, 等.柴达木盆地鱼卡地区中侏罗统页岩气成藏条件[J].地质通报, 2016, 35(2/3):231-241. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2016Z1005.htm
    [53] 周德华, 焦方正, 郭旭升, 等.川东南涪陵地区下侏罗统页岩油气地质特征[J].石油与天然气地质, 2013, 34(4):450-454. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201304006.htm
    [54] 孙守亮, 李永飞, 郜晓勇, 等.辽西金羊盆地下侏罗统北票组页岩气地球化学特征及其成因[J].地质通报, 2017, 36(4):575-581. doi: 10.3969/j.issn.1671-2552.2017.04.011
    [55] 卢树藩, 何犇, 杜胜江.黔南代页1井下石炭统打屋坝组页岩气地质条件及勘探前景[J].中国地质调查, 2016, 3(4):6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201604002.htm
    [56] 唐显贵, 刘太琴, 肖鸿, 等.威宁地区下石炭统旧司组页岩气勘查前景探讨[J].天然气技术与经济, 2016, 10(5):23-27, 82. doi: 10.3969/j.issn.2095-1132.2016.05.006
    [57] 何继善, 李帝铨, 戴世坤, 等.广域电磁法在湘西北页岩气探测中的应用[J].石油地球物理勘探, 2014, 49(5):1006-1012. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201405029.htm
  • 加载中
图(9)
计量
  • 文章访问数:  865
  • PDF下载量:  5068
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-25

目录

    /

    返回文章
    返回