Origin and geological significance of ultra-low resistivity in Lower Paleozoic marine shale, South China
-
摘要: 基于测井电阻率和有机地球化学数据,利用页岩极化率测试和干酪根激光拉曼测试等技术手段,对导致南方下古生界高演化海相页岩呈现极低电阻率(测井电阻率低至10~1Ω·m及以下)的主控因素进行了分析,深入探究了其内在成因,并对其地质意义进行了探讨。结果显示:有机质丰度和成熟度是影响极低电阻率测井的主要因素;w(TOC)与测井电阻率和实测电阻率均呈现出良好的负相关关系;成熟度越高,达到极低电阻率所需要的最低w(TOC)界限值越低,页岩的极化率也随之增加。石墨化的有机质是致使高演化页岩出现极低电阻率的主要"导电矿物",有机质开始发生石墨化的"临界点"对应的Rmc Ro约为3.5%。极低电阻率特征是页岩有机质结构发生显著变化、向石墨化演进的重要标志。极低电阻率测井响应预示着页岩储层品质极可能遭受了巨大的损害:生烃能力枯竭、有机质孔隙大幅减少、吸附性能降低、含气性骤降。因此,圈定极低电阻率页岩范围,排除"有机质石墨化"的高风险区,对下古生界高演化海相页岩选区评价具有重要意义。Abstract: Combining with the data of logging resistivity and organic geochemistry, polarizability test and Laser Raman spectra were used to analysze the main controlling factors of ultra-low resistivity (logging resistivity as low as 10-1 Ω·m and below) in the high evolution marine shale of Lower Paleozoic, southern China.Moreover, its internal cause and geological significance were also discussed in this paper.Results showed:1) The abundance and maturity of organic matter (OM) are the main factors affecting the ultra-low logging resistivity.There is a good negative correlation between TOC, logging resistivity and measured resistivity.Increasing of maturity will lead to the decrease in the minimum TOC threshold required to achieve ultra-low resistivity, and the polarizability of shale also increases.2) Graphitized OM is the main "conductive mineral" that causes ultra-low resistivity in high thermal evolution shales.The RmcRo corresponding to the critical point at which the OM begins to graphitize is about 3.5%.Extremely low resistivity is an important indicator that the structure of shale organic matter changed significantly and evolved to graphite.3) Logging response of the ultra-low resistivity is likely to indicate that the quality of shale reservoir has suffered great damage, such as exhaustion of hydrocarbon generation capacity, severely reduction of OM pores and adsorption capacity, and abruptly decline of gas content.Therefore, delineating the range of extremely low resistivity shale and excluding the high-risk area of "OM graphitization" could play a great significance role in shale gas assessment and target selection in high evolution Lower Paleozoic shale.
-
Key words:
- graphitization /
- ultra-low resistivity /
- marine shale /
- high evolution /
- Lower Paleozoic
-
图 1 中上扬子下古生界极低电阻率钻井分布图(Ro等值线据文献[8]修改)
a.下寒武统页岩;b.上奥陶统五峰组-下志留统龙马溪组页岩
Figure 1. Distribution of Lower Paleozoic ultra-low resistivity wells in middle-upper Yangtze area
-
[1] 赵文智, 李建忠, 杨涛, 等.中国南方海相页岩气成藏差异性比较与意义[J].石油勘探与开发, 2016, 43(4):499-510. doi: 10.11698/PED.2016.04.01 [2] 郭彤楼.中国式页岩气关键地质问题与成藏富集主控因素[J].石油勘探与开发, 2016, 43(3):317-326. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603002.htm [3] 郭旭升, 胡东风, 李宇平, 等.涪陵页岩气田富集高产主控地质因素[J].石油勘探与开发, 2017, 44(4):481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htm [4] 苗凤彬, 彭中勤, 汪宗欣, 等.雪峰隆起西缘下寒武统牛蹄塘组页岩裂缝发育特征及其主控因素[J].地质科技通报, 2020, 39(2):31-42. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9972.shtml [5] 王玉满, 董大忠, 程相志, 等.海相页岩有机质碳化的电性证据及其地质意义:以四川盆地南部地区下寒武统筇竹寺组页岩为例[J].天然气工业, 2014, 34(8):1-7. doi: 10.3787/j.issn.1000-0976.2014.08.001 [6] 杨小兵, 张树东, 张志刚, 等.低阻页岩气储层的测井解释评价[J].成都理工大学学报:自然科学版, 2015, 42(6):692-699. doi: 10.3969/j.issn.1671-9727.2015.06.07 [7] 邹才能, 董大忠, 王玉满, 等.中国页岩气特征、挑战及前景:一[J].石油勘探与开发, 2015, 42(6):689-701. doi: 10.11698/PED.2015.06.01 [8] 刘树根, 邓宾, 钟勇, 等.四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用[J].地学前缘, 2016, 23(1):11-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601004.htm [9] 何志亮, 聂海宽, 张钰莹.四川盆地及其周缘奥陶系五峰组-志留系龙马溪组页岩气富集主控因素分析[J].地学前缘, 2016, 23(2):8-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602004.htm [10] 王朋飞, 姜振学, 韩波, 等.中国南方下寒武统牛蹄塘组页岩气高效勘探开发储层地质参数[J].石油学报, 2018, 39(2):152-162 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201802003.htm [11] 刘德汉, 肖贤明, 田辉, 等.固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J].科学通报, 2013, 58(13):1228-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201313010.htm [12] 付小东, 秦建中, 滕格尔, 等.烃源岩矿物组成特征及油气地质意义:以中上扬子古生界海相优质烃源岩为例[J].石油勘探与开发, 2011, 38(6):671-684. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201106005.htm [13] 陈林, 陈孝红, 张保民, 等.鄂西宜昌地区五峰组-龙马溪组页岩储层特征及其脆性评价[J].地质科技通报, 2020, 39(2):54-61. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9974.shtml [14] 胡华.黑色泥页岩中黄铁矿与有机质含量的关系及勘探意义[D].武汉: 长江大学, 2017. [15] 赵文韬, 荆铁亚, 熊鑫, 等.海相页岩有机质石墨化特征研究:以渝东南地区牛蹄塘组为例[J].地质科技情报, 2018, 37(2):183-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802025.htm [16] 黄涛, 余刚, 王绪本, 等.页岩岩芯复电阻率频散特征主要影响因素的实验研究[J].物探化探计算技术, 2016, 38(2):167-174. doi: 10.3969/j.issn.1001-1749.2016.02.04 [17] 李鹏飞, 严良俊, 余刚, 等.基于富有机碳页岩的复电阻率特性研究[J].石油天然气学报, 2014, 36(11):115-119. doi: 10.3969/j.issn.1000-9752.2014.11.024 [18] Saner S, Al-Harthi A, Htay M T.Use of tortuosity for discriminating electrofacies to interpret the electrical parameters of carbonate reservoir rocks[J].J.Petr.Sci.En., 1996, 16(4):237-249. doi: 10.1016/S0920-4105(96)00045-9 [19] Revil A, Cathles L M, Losh S, et al.Electrical conductivity in shaly sands with geophysical applications[J].J.Geophys.Res., 1998, 103(B10):23925-23936. doi: 10.1029/98JB02125 [20] Wei W, Cai J C, Hu X Y, et al.An electrical conductivity model for fractal porous media[J].Geophys.Res.Lett., 2015, 42(12):4833-4840. doi: 10.1002/2015GL064460 [21] Caiv J C, Wei W, Hu X Y, et al.Electrical conductivity models in saturated porous media:A review[J].Earth-Science Reviews, 2017, 171:419-433 doi: 10.1016/j.earscirev.2017.06.013 [22] 胡凯, 刘英俊, Wilkins R W T.沉积有机质的拉曼光谱研究[J].沉积学报, 1993, 11(3):64-71. [23] Kelemen S R, Fang H L. Maturity trends in Raman spectra from kerogen and coal[J].Energy & Fuels, 2001(15):653-658. doi: 10.1021/ef0002039 [24] Zhou Q, Xiao X M, Pan L, et al.The relationship between microRaman spectral parameters and reflectance of solid bitumen[J].International Journal of Coal Geology, 2014, 121:19-25. doi: 10.1016/j.coal.2013.10.013 [25] 王茂林, 肖贤明, 魏强, 等.页岩中固体沥青拉曼光谱参数作为成熟度指标的意义[J].天然气地球科学, 2015, 26(9):1712-1718. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509013.htm [26] William S J, Kudryavtsev A B, Agresti D G, et al.Raman imagery:A new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils[J].Astrobiology, 2005, 5:333-371. doi: 10.1089/ast.2005.5.333 [27] Quirico E, Rouzaud J N, Bonal L.Maturation grade of coals as revealed by Raman spectroscopy:Progress and problems[J].Spectrochimica Acta:Part A, 2005, 61(10):2368-2377. doi: 10.1016/j.saa.2005.02.015 [28] Zeng Y, Wu C.Raman and infrared spectroscopic study of kerogen treated at elevated temperatures and pressures[J].Fuel, 2007, 86:1192-1200. doi: 10.1016/j.fuel.2005.03.036 [29] Shicto A, Romano C, Corrado S, et al.Diagenetic thermal evolution of organic matter by Raman spectroscopy[J].Org.Geochem., 2017, 106:57-67. doi: 10.1016/j.orggeochem.2016.12.006 [30] Jiang J Y, Yang W H, Cheng Y P, et al.Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy:implications for coalification[J].Fuel, 2019, 239:559-572. doi: 10.1016/j.fuel.2018.11.057 [31] Kouketsu Y, Mizukami T, Mori H, et al.A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width[J].Isl.Arc., 2014, 23:33-50. doi: 10.1111/iar.12057 [32] Louckes R G, Reed R M, Ruppel S C, et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPG Bulletin, 2012, 96:1071-1098. doi: 10.1306/08171111061 [33] Mastalerz M, Schimmelmann A, Drobniak A, et al.Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient:Insights from organic petrology, gas adsorption, and mercury intrusion[J].AAPG Bulletin, 2013, 97:1621-1643. doi: 10.1306/04011312194 [34] 李延钧, 刘欢, 张烈辉, 等.四川盆地南部下古生界龙马溪组页岩气评价指标下限[J].中国科学:地球科学, 2013, 43(7):1088-1095. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201307002.htm [35] 肖贤明, 王茂林, 魏强, 等.中国南方下古生界页岩气远景区评价[J].天然气地球科学, 2015, 26(8):1433-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508002.htm [36] Gao J, He S, Zhao J X, et al.Geothermometry and geobarometry of overpressured lower Paleozoic gas shales in the Jiaoshiba field, Central China:Insight from fluid inclusions in fracture cements[J].Marine and Petroleum Geology, 2017, 83:124-139. doi: 10.1016/j.marpetgeo.2017.02.018 [37] 黄伯钧, Buseck P R.变质岩中碳质物质的石墨化作用[J].矿物学报, 1986(4):350-353. doi: 10.3321/j.issn:1000-4734.1986.04.010 [38] KRíbek B, Sýkorov Á I, Machovic V, et al.Graphitization of organic matter and fluid-deposited graphite in Palaeoproterozoic (Birimian) black shales of the Kaya-Goren greenstone belt (Burkina Faso, West Africa)[J].Journal of Metamorphic Geology, 2008, 26(9):937-958. doi: 10.1111/j.1525-1314.2008.00796.x [39] Barrenechea J F, Rodas M, Arche A.Relation between graphitization of organic matter and clay mineralogy, Silurian black shales in Central Spain[J].Mineralogical Magazine, 1992, 56:478-485. http://www.researchgate.net/publication/249849607_Relation_Between_Graphitization_of_Organic_Matter_and_Clay_Mineralogy_Silurian_Black_Shales_in_Central_Spain [40] Curtis M E, Cardott B J, Sondergeld C H, et al.Development of organic porosity in the Woodford Shale with increasing thermal maturity[J].Int.J.Coal Geol., 2012, 103:26-31. doi: 10.1016/j.coal.2012.08.004 [41] Chen J, Xiao X M.Evolution of nanoporosity in organic-rich shales during thermal maturation[J].Fuel, 2014, 129:173-181. doi: 10.1016/j.fuel.2014.03.058 [42] 彭女佳, 何生, 郝芳, 等.川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性[J].地球科学, 2017, 42(7):1034-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707009.htm [43] 何陈诚, 何生, 郭旭升, 等.焦石坝区块五峰组与龙马溪组一段页岩有机孔隙结构差异性[J].石油与天然气地质学, 2018, 39(3):472-484. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803006.htm [44] Hou Y G, He S, Yi J Z, et al.Effect of pore structure on methane sorption capacity of shales[J].Petrol.Explor.Develop., 2014, 41:272-281. doi: 10.1016/S1876-3804(14)60033-1 [45] Yang F, Ning Z F, Zhang R, et al.Investigations on the methane sorption capacity of marine shales from Sichuan Basin, China[J].Int.J.Coal Geol., 2015, 146:104-117. doi: 10.1016/j.coal.2015.05.009 [46] Sun M D, Yu B S, Hu Q H, et al.Nanoscale pore characteristics of the Lower Cambrian Niutitang Formation Shale:A case study from Well Yuke #1 in the Southeast of Chongqing, China[J].Int.J.Coal Geol., 2016, 154/155:16-19. doi: 10.1016/j.coal.2015.11.015 [47] 张鹏, 张金川, 黄宇琪, 等.黔西北上奥陶统五峰组-下志留统龙马溪组页岩气聚集条件分析[J].地质论评, 2015, 61(1):155-162. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201501017.htm [48] 赵瞻, 余谦, 周小琳, 等.重庆黔江地区下寒武统牛蹄塘组页岩气成藏条件[J].地质科技情报, 2017, 36(3):122-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703017.htm [49] 秦川, 余谦, 刘伟, 等.黔北地区牛蹄塘组富有机质泥岩储层特征[J].西南石油大学学报:自然科学版, 2017, 39(4):13-24. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201704002.htm [50] 李昂, 丁文龙, 张国良, 等.滇东地区马龙区块筇竹寺组海相页岩储层特征及对比研究[J].地学前缘, 2016, 23(2):176-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602021.htm [51] 王胜建, 包书景, 梅建森, 等.柴达木盆地北缘柴页1井中侏罗统大煤沟组页岩储层测井评价[J].地质通报, 2016, 35(2/3):260-272. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2016Z1008.htm [52] 王晓鹏, 李玉宏, 张云鹏, 等.柴达木盆地鱼卡地区中侏罗统页岩气成藏条件[J].地质通报, 2016, 35(2/3):231-241. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2016Z1005.htm [53] 周德华, 焦方正, 郭旭升, 等.川东南涪陵地区下侏罗统页岩油气地质特征[J].石油与天然气地质, 2013, 34(4):450-454. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201304006.htm [54] 孙守亮, 李永飞, 郜晓勇, 等.辽西金羊盆地下侏罗统北票组页岩气地球化学特征及其成因[J].地质通报, 2017, 36(4):575-581. doi: 10.3969/j.issn.1671-2552.2017.04.011 [55] 卢树藩, 何犇, 杜胜江.黔南代页1井下石炭统打屋坝组页岩气地质条件及勘探前景[J].中国地质调查, 2016, 3(4):6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201604002.htm [56] 唐显贵, 刘太琴, 肖鸿, 等.威宁地区下石炭统旧司组页岩气勘查前景探讨[J].天然气技术与经济, 2016, 10(5):23-27, 82. doi: 10.3969/j.issn.2095-1132.2016.05.006 [57] 何继善, 李帝铨, 戴世坤, 等.广域电磁法在湘西北页岩气探测中的应用[J].石油地球物理勘探, 2014, 49(5):1006-1012. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201405029.htm