Action law of geometrical characteristic parameters in the anti-dip rock slopes under different free face condition
-
摘要: 层状反倾岩质边坡是一种常见边坡类型,其变形破坏模式多样、力学机制复杂、影响因素众多。为揭示层状反倾岩质边坡不同临空条件几何特征参数对反倾边坡倾倒变形影响规律,通过3DEC并结合数理统计系统深入研究几何特征参数对倾倒变形影响。研究表明:①反倾边坡具有3个临空面时边坡变形最大,1个临空面时边坡变形最小;②变形随边坡高度、切坡角度增大而增大,随节理面与临空面夹角的增大而减小,随岩层厚度增大先增大后减小;③2个临空面夹角90°时边坡变形最大;④1个、2个临空面时节理倾角60°时位移最大,3个临空面时随节理倾角增大而增大。Abstract: The anti-dumping layered rock slope is a common type of slope, which has various deformation and failure modes, complicated mechanics mechanism and many influencing factors.In order to reveal the influence law of the geometric characteristic parameters in different fronting surface conditions on the flexural toppling deformation of the reversed inclined layered rock slope, this study used 3DEC to research the influence law of geometric characteristic parameters on flexural toppling deformation, combined with mathematical statistics system.The obtained results show that: ① The maximum deformation displacement is found on three faces of the slope and the minimum on one face; ② The deformation displacement of slope increases with slope height, slope angle and joint inclination, and it decreases with the increase of the included angle between the joint surface and the free face; ③ The deformation displacement of the slope is the largest when the angle between the two free faces is 90°; ④ The deformation displacement is the largest when joint inclination angle is 60° on the one and two free faces, and it increases with the joint inclination angle increasing.
-
Key words:
- anti-dumping layered rock slope /
- 3DEC /
- free face /
- geometry characteristic parameters
-
表 1 数值模拟选取参数
Table 1. Parameter selection of numerical stimulation
岩体参数 密度/(kg·m-3) 体积模量/GPa 剪切模量/GPa 黏聚力/MPa 内摩擦角/(°) 抗拉强度/MPa 岩体 2 600 2.1 1.14 5 45 0.7 结构面参数 法向刚度/(GPa·m-1) 剪切刚度/(GPa·m-1) 黏聚力/MPa 内摩擦角/(°) 结构面 5 6 0.09 30 -
[1] Goodman R E, Bray J W.Toppling of rock slopes[C]//Proceedings of ASCE.specialty conference rock engineering for foundations and slopes.Colorado Boulder: University of Colorado Boulder Press, 1976. [2] Zanbak C.Design charts for rock slopes susceptible to toppling[J].Journal of Geotechnical Engineering, 1983, 109(8):1039-1062. doi: 10.1061/(ASCE)0733-9410(1983)109:8(1039) [3] Aydan O, Shimizu Y, Ichikawa Y.The effective failure modes and stability of slopes in rock mass with two discontinuity sets[J].Rock Mechanics and Rock Engineering, 1989, 22(3):163-188. doi: 10.1007/BF01470985 [4] Kliche C A.Rock slope stability[M].Colombia:Society for Mining, Metallurgy, and Exploration(SME), 1999. [5] Liu C H, Jaksa M B, Meyers A G.A transfer coefficient method for rock slope toppling[J].Canadian Geotechnical Journal, 2009, 46(1):1-9. doi: 10.1139/T08-094 [6] Liu C H, Jaksa M B, Meyers A G.Toppling mechanisms of rock slopes considering stabilization from the underlying rock mass[J].International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8):348-354. http://www.sciencedirect.com/science/article/pii/S1365160909001750 [7] 卢海峰, 刘泉声, 陈从新.反倾岩质边坡悬臂梁极限平衡模型的改进[J].岩土力学, 2012, 33(2):577-584. doi: 10.3969/j.issn.1000-7598.2012.02.040 [8] 王飞, 唐辉明, 宁奕冰, 等.基于演化过程的互层斜坡深层倾倒稳定性评价[J].地质科技情报, 2019, 38(5):186-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905020.htm [9] 尹锡杰, 晏鄂川, 孙兆来.某反倾页岩边坡破坏面确定及其稳定性分析[J].岩土力学, 2007, 28(增刊1):595-598. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1120.htm [10] 李兴明, 晏鄂川, 严媛, 等.某水电站导流明渠边坡倾倒变形分区与治理[J].地质科技情报, 2019, 38(3):227-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903024.htm [11] 韩贝传, 王思敬.边坡倾倒变形的形成机制与影响因素分析[J].工程地质学报, 1999, 7(3):213-217. doi: 10.3969/j.issn.1004-9665.1999.03.004 [12] 李明霞, 董联杰.层状反倾边坡变形特征及影响因素分析[J].计算力学学报, 2015, 32(6):831-837. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201506019.htm [13] Xie Liangfu, Yan Echuan, Ren Xubin, et al.Sensitivity analysis of bending and toppling deformation for anti-slope based on the grey relation method[J].Geotechnical and Geological Engineering, 2015, 33(1):35-41. doi: 10.1007/s10706-014-9817-9 [14] Huang Runqiu, Zhao Jianjun, Ju Nengpan, et al.Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China[J].Natural Hazards 2013, 68:1021-1039. doi: 10.1007/s11069-013-0671-5 [15] Nichol S L, Hungr O, Evans S G.Large-scale brittle and ductile toppling of rock slopes[J].Canadian Geotechnical Journal, 2002, 39(4):773-787. doi: 10.1139/t02-027 [16] 朱继良, 黄润秋, 王运生.某水电站洼里滑坡的成因机制及其稳定性研究[J].中国地质灾害与防治学报, 2001, 15(1):57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200401012.htm [17] 伍法权.云母石英片岩斜坡弯曲倾倒变形的理论分析[J].工程地质学报, 1997, 5(4):306-311. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ704.004.htm [18] Mohtaramin E, Jafari A, Amini M.Stability analysis of slopes against combined circular-toppling failure[J].International Journal of Rock Mechanics & Mining Sciences, 2014, 67:43-56. http://www.sciencedirect.com/science/article/pii/S1365160914000185 [19] Amini M, Majdi A, Aydan Ö.Stability analysis and the stabilisation of flexural toppling failure[J].Rock Mechanics Rock Engineering, 2009, 42:751-782. doi: 10.1007/s00603-008-0020-2 [20] Aydan Ö, Kawamoto T.The stability of slopes and underground openings against flexural toppling and their stabilisation[J].Rock Mechanics and Rock Engineering, 1992, 25(3):143-165. doi: 10.1007/BF01019709 [21] 罗红明, 唐辉明, 胡斌, 等.基于突变理论的反倾层状岩石边坡稳定性研究[J].地质科技情报, 2007, 26(6):101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200706019.htm [22] 吴益平, 卢里尔, 薛阳.基于临界状态的边坡渐进破坏力学模型分析及应用[J].地质科技通报, 2020, 39(5):1-7. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10043.shtml [23] 吴凯峰, 郑志勇, 余海兵.基于应变软化特征的含软弱层公路边坡稳定性研究[J].地质科技情报, 2019, 38(6):150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906018.htm [24] Yoon W S, Jeong U T, Kim J H.Kinematic analysis for sliding failure of multi-faced rock slopes[J].Engineering Geology, 2002, 67(1/2):51-56. http://www.sciencedirect.com/science/article/pii/S0013795202001448 [25] 王亮清, Kulatilake P H S W, 唐辉明, 等.双临空面岩质边坡滑动与倾倒破坏的运动学分析[J].岩土力学, 2011, 32(增刊1):72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1014.htm [26] 卢远航.南江县红层地区两面临空型滑坡成因机理与早期识别研究[D].成都: 成都理工大学, 2013. [27] 邱俊, 任光明, 吴龙科, 等.金沙江某水电站左坝肩岩体双面倾倒形成机制研究[J].山地学报, 2016, 34(1):77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201601010.htm [28] 张潇敏.反倾层状岩质边坡倾倒变形二维坡面效应研究[D].成都: 成都理工大学, 2016.