Synthesis of thioarsenate compounds and their occurrence characteristics in groundwater: A case study of Datong Basin
-
摘要: 硫代砷酸盐作为富硫地下水中砷的重要赋存形态,在其迁移转化过程中起着十分重要的作用,但现有硫代砷酸盐的标准合成方法流程复杂、操作繁琐,限制了对地下水中硫代砷酸盐赋存规律的研究。为此,首先改进了硫代砷酸盐标准物质的合成方法,采用操作简便的水热法合成了硫代砷化合物标准物质,建立了基于HPLC-ICPMS的硫代砷化合物分析方法,该方法检出限为0.01 μg/L;探讨了不同保存条件对硫代砷化合物稳定性的影响,发现干冰速冻-20℃是地下水硫代砷酸盐样品的最佳保存条件。应用上述方法对大同盆地地下水中的硫代砷酸盐进行了取样分析,结果表明40%的水样中均检出硫代砷酸盐,最高质量浓度可达209.90 μg/L;弱碱性还原条件有利于硫代砷酸盐的赋存,且硫化物质量浓度对硫代砷酸盐的生成有重要控制作用。对地下水中硫代砷酸盐的深入研究有助于揭示富硫地下水中砷的迁移转化规律,丰富和完善高砷地下水成因理论。
-
关键词:
- 硫代砷酸盐 /
- 水热合成 /
- 液相色谱-电感耦合等离子体质谱 /
- 大同盆地 /
- 地下水
Abstract: As an important occurrence form of arsenic in sulfur-rich groundwater, thioarsenate plays a very important role in its migration and transformation. However, the standard synthesis method of thioarsenate is complex and the occurrence characteristics and influencing factors in low temperature groundwater are rarely reported. In this paper, firstly, the synthesis method of thioarsenate reference material was improved, the standard reference material of thioarsenate was synthesized by hydrothermal method, and the analytical method of thioarsenate based on HPLC-ICPMS was established. The detection limit of this method was 0.01 μg/L. The effects of different preservation conditions on the stability of thioarsenate compounds were discussed. It was found that quick freezing of dry ice at -20℃ was the best way to keep the stability of thioarsenate samples in groundwater. The above method was used to analyze thioarsenate in groundwater in Datong Basin. The results showed that thioarsenate was detected in 40% of the water samples, and the highest concentrate was 209.90 μg/L. The weak alkaline reduction condition is beneficial to the occurrence of thioarsenate, and the sulfide concentration plays an important role in controlling the formation of thioarsenate. The in-depth study of thioarsenate in groundwater is helpful to reveal the law of migration and transformation of arsenic in sulfur-rich groundwater and is of great significance to enrich the genetic theory of high-arsenic groundwater. -
表 1 HPLC-ICPMS测试硫代砷酸盐的参数条件
Table 1. Parameters of HPLC-ICPMS thioarsenate test method
液相色谱参数 电感耦合等离子体质谱条件 流动相A:0.1 mol/L NaOH 等离子射频功率:1 400 W 流动相B:超纯水 雾化器气体流量:1.00 L/min 0~7 min:20% A As监测质荷比:m/z=75 7~17 min:20% A→100% A S监测质荷比:m/z=32 17~25 min:100% A 采集时间:28 min 25~28 min:100% A→20% A 注:上述流动相均经脱气处理 表 2 大同盆地地下水的水化学组成及砷形态
Table 2. Water chemistry composition and arsenic speciation of the groundwater in Datong Basin
样品编号 总砷 亚砷酸盐 砷酸盐 一硫代砷酸盐 二硫代砷酸盐 三硫代砷酸盐 四硫代砷酸盐 其他砷物种① 硫化物ρB/(μg·L-1) pH Eh/mV ρB/(μg·L-1) sy-1 4.47 3.31 1.16 ND ND ND ND 0.00 9 7.77 90.0 sy-3 0.64 0.06 0.58 ND ND ND ND 0.00 3 7.73 126.1 sy-4 693.22 642.41 48.45 2.36 ND ND ND 0.00 13 8.00 -98.5 sy-5 197.78 2.16 195.62 ND ND ND ND 0.00 ND 8.63 113.6 sy-6 318.75 125.89 168.65 21.14 1.55 ND ND 1.52 32 8.42 -36.2 sy-7 117.73 2.31 112.51 1.02 ND ND ND 1.89 33 8.74 69.7 sy-8 384.31 0.35 383.76 ND ND ND ND 0.00 20 8.85 126.2 sy-9 3.34 0.24 3.10 ND ND ND ND 0.00 25 7.56 73 sy-10 37.00 4.36 32.64 ND ND ND ND 0.00 5 7.81 -47.6 sy-13 26.32 0.46 25.86 ND ND ND ND 0.00 3 7.88 39.5 sy-21 133.38 88.66 36.18 5.71 2.83 ND ND 0.00 33 8.18 -113.6 sy-25 88.69 35.78 31.28 15.96 4.23 ND ND 1.44 199 8.33 -104.6 sy-27 614.66 343.67 60.25 82.33 125.79 1.78 ND 0.85 1 137.5 8.02 -129.2 sy-32 4.35 1.11 3.24 ND ND ND ND 0.00 3 7.51 47.7 sy-38 102.36 0.64 101.35 ND ND ND ND 0.37 6 8.05 52.5 注:ND为未检出;①色谱分离后得到的未知砷形态 -
[1] Nickson R, Mcarthur J, Burgess W, et al. Arsenic poisoning of Bangladesh groundwater[J]. Nature, 1998, 395: 338-347. doi: 10.1038/26387 [2] Nordstrom D K. Worldwide occurrences of arsenic in ground water[J]. Science, 2002, 296: 2143-2145. doi: 10.1126/science.1072375 [3] Wang Y X, Pi K F, Fendorf S, et al. Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems[J]. Earth-Science Reviews, 2019, 189: 79-98. doi: 10.1016/j.earscirev.2017.10.007 [4] Xie X J, Wang Y X, Ellis A, et al. The sources of geogenic arsenic in aquifers at Datong Basin, northern China: Constraints from isotopic and geochemical data[J]. Journal of Geochemical Exploration, 2011, 110(2): 155-166. doi: 10.1016/j.gexplo.2011.05.006 [5] Xie X J, Wang Y X, Su C L. Hydrochemical and sediment biomarker evidence of the impact of organic matter biodegradation on arsenic mobilization in shallow aquifers of Datong Basin, China[J]. Water Air and Soil Pollution, 2012, 223(2): 483-498. doi: 10.1007/s11270-011-0875-9 [6] 何俊蓉, 谢先军, 池泽涌, 等. 古气候变化对大同盆地第四纪沉积物中砷富集过程的影响[J]. 地质科技情报, 2019, 38(5): 212-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905023.htm [7] 袁晓芳, 邓娅敏, 杜尧, 等. 江汉平原高砷地下水稳定碳同位素特征及其指示意义[J]. 地质科技通报, 2020, 39(5): 156-163. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10061.shtml [8] 张丽萍, 谢先军, 李俊霞, 等. 大同盆地地下水中砷的形态、分布及其富集过程研究[J]. 地质科技情报, 2014, 33(1): 178-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401028.htm [9] Pi K F, Wang Y X, Xie X J, et al. Role of sulfur redox cycling on arsenic mobilization in aquifers of Datong Basin, northern China[J]. Applied Geochemistry, 2017, 77: 31-43. doi: 10.1016/j.apgeochem.2016.05.019 [10] Pi K F, Wang Y X, Xie X J, et al. Remediation of arsenic-contaminated groundwater by in-situ stimulating biogenic precipitation of iron sulfides[J]. Water Research, 2017, 109: 337-346. doi: 10.1016/j.watres.2016.10.056 [11] Herath I, Vithanage M, Seneweera S, et al. Thiolated arsenic in natural systems: What is current, what is new and what needs to be known?[J]. Environment International, 2018, 115: 370-386. doi: 10.1016/j.envint.2018.03.027 [12] Planer-Friedrich B, London J, McCleskey R B, et al. Thioarsenates in geothermal waters of Yellowstone National Park: Determination, preservation, and geochemical importance[J]. Environmental Science & Technology, 2007, 41(15): 5245-5251. http://www.tandfonline.com/servlet/linkout?suffix=CIT0036&dbid=8&doi=10.1080%2F01490451.2010.490078&key=17822086 [13] 庄亚芹, 郭清海, 刘明亮, 等. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟: 以云南腾冲热海水热区为例[J]. 地球科学: 中国地质大学学报, 2016, 41(9): 1499-1510. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201609006.htm [14] 郭清海, 刘明亮, 李洁祥, 等. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因[J]. 地球科学, 2017, 42(2): 286-297. doi: 10.3969/j.issn.1672-6561.2017.02.013 [15] Planer-Friedrich B, Schaller J, Wismeth F, et al. Monothioarsenate occurrence in Bangladesh groundwater and its removal by ferrous and zero-valent iron technologies[J]. Environmental Science & Technology, 2018, 52(10): 5931-5939. [16] Kerl C F, Rafferty C, Clemens S, et al. Monothioarsenate uptake, transformation, and translocation in rice plants[J]. Environmental Science & Technology, 2018, 52(16): 9154-9161. http://www.ncbi.nlm.nih.gov/pubmed/30024151 [17] Stauder S, Raue B, Sacher F. Thioarsenates in sulfidic waters[J]. Environmental Science & Technology, 2005, 39(16): 5933-5593. doi: 10.1021/es048034k [18] Keimowitz A R, Mailloux B J, Cole P, et al. Laboratory investigations of enhanced sulfate reduction as a groundwater arsenic remediation strategy[J]. Environmental Science & Technology, 2007, 41(19): 6718-6724. http://pubmedcentralcanada.ca/pmcc/articles/PMC3155844/ [19] Suess E, Mehlhorn J, Planer-Friedrich B. Anoxic, ethanolic, and cool: An improved method for thioarsenate preservation in iron-rich waters[J]. Applied Geochemistry, 2015, 62: 224-233. doi: 10.1016/j.apgeochem.2014.11.017 [20] 王敏黛, 郭清海, 郭伟, 等. 硫代砷化物的合成、鉴定和定量分析方法研究[J]. 分析化学, 2016, 44(11): 1715-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201611013.htm [21] 童佳荣, 单慧媚, 刘崇炫, 等. 硫代砷形态测试分析技术及环境行为特征[J]. 环境科学与技术, 2018, 41(3): 156-162. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201803024.htm [22] Wallschlager D, Stadey C J. Determination of (Oxy)thioarsenates in sulfidic waters[J]. Analytical Chemistry, 2007, 79(10): 3873-80. doi: 10.1021/ac070061g [23] Ullrich M K, Misiari V, Planer-Friedrich B. A new method for thioarsenate preservation in iron-rich waters by solid phase extraction[J]. Water Research, 2016, 102: 542-550. doi: 10.1016/j.watres.2016.07.008 [24] 邬建勋, 余倩, 蒋庆肯, 等. 江汉平原高砷地下水与含水层沉积物的地球化学特征[J]. 地质科技情报, 2019, 38(1): 250-257. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901028.htm [25] 严怡君, 谢先军, 郑文君, 等. 灌溉活动对大同盆地表层土壤中砷迁移的影响[J]. 地质科技情报, 2017, 36(3): 235-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703033.htm [26] Xie X J, Johnson T M, Wang Y X, et al. Mobilization of arsenic in aquifers from the Datong Basin, China: Evidence from geochemical and iron isotopic data[J]. Chemosphere, 2013, 90(6): 1878-1884. doi: 10.1016/j.chemosphere.2012.10.012 [27] Besold J, Biswas A, Suess E, et al. Monothioarsenate transformation kinetics determining arsenic sequestration by Sulfhydryl Groups of Peat[J]. Environmental Science & Technology, 2018, 52(13): 7317-7326. doi: 10.1021/acs.est.8b01542 [28] Wood S A, Tait C D, Janecky D R. A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25 ℃[J]. Geochemical Transactions, 2002, 3(4): 31-39. http://europepmc.org/articles/PMC1475613 [29] Wilkin R T, Wallschläger D, Ford R G. Speciation of arsenic in sulfidic waters[J]. Geochemical Transactions, 2003, 4(1): 1-7. doi: 10.1186/1467-4866-4-1 [30] Wilkin R T, Ford R G, Costantino L M, et al. Thioarsenite detection and implications for arsenic transport in groundwater[J]. Environmental Science & Technology, 2019, 53(20): 11684-11693. doi: 10.1021/acs.est.9b04478