留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫代砷化合物的合成及其在地下水中的赋存特征:以大同盆地为例

赵欣 孙书堂 谢先军

赵欣, 孙书堂, 谢先军. 硫代砷化合物的合成及其在地下水中的赋存特征:以大同盆地为例[J]. 地质科技通报, 2021, 40(2): 131-137. doi: 10.19509/j.cnki.dzkq.2021.0141
引用本文: 赵欣, 孙书堂, 谢先军. 硫代砷化合物的合成及其在地下水中的赋存特征:以大同盆地为例[J]. 地质科技通报, 2021, 40(2): 131-137. doi: 10.19509/j.cnki.dzkq.2021.0141
Zhao Xin, Sun Shutang, Xie Xianjun. Synthesis of thioarsenate compounds and their occurrence characteristics in groundwater: A case study of Datong Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 131-137. doi: 10.19509/j.cnki.dzkq.2021.0141
Citation: Zhao Xin, Sun Shutang, Xie Xianjun. Synthesis of thioarsenate compounds and their occurrence characteristics in groundwater: A case study of Datong Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 131-137. doi: 10.19509/j.cnki.dzkq.2021.0141

硫代砷化合物的合成及其在地下水中的赋存特征:以大同盆地为例

doi: 10.19509/j.cnki.dzkq.2021.0141
基金项目: 

国家自然科学基金项目 41807203

详细信息
    作者简介:

    赵欣(1979—),男,博士,主要从事环境与安全工程相关领域的研究工作。E-mall:841143698@qq.com

    通讯作者:

    谢先军(1979—),男,教授,博士生导师,主要从事地下水污染与修复、同位素水文学、同位素测试分析方面的研究工作。E-mall:xjxie@cug.edu.cn

  • 中图分类号: X143

Synthesis of thioarsenate compounds and their occurrence characteristics in groundwater: A case study of Datong Basin

  • 摘要: 硫代砷酸盐作为富硫地下水中砷的重要赋存形态,在其迁移转化过程中起着十分重要的作用,但现有硫代砷酸盐的标准合成方法流程复杂、操作繁琐,限制了对地下水中硫代砷酸盐赋存规律的研究。为此,首先改进了硫代砷酸盐标准物质的合成方法,采用操作简便的水热法合成了硫代砷化合物标准物质,建立了基于HPLC-ICPMS的硫代砷化合物分析方法,该方法检出限为0.01 μg/L;探讨了不同保存条件对硫代砷化合物稳定性的影响,发现干冰速冻-20℃是地下水硫代砷酸盐样品的最佳保存条件。应用上述方法对大同盆地地下水中的硫代砷酸盐进行了取样分析,结果表明40%的水样中均检出硫代砷酸盐,最高质量浓度可达209.90 μg/L;弱碱性还原条件有利于硫代砷酸盐的赋存,且硫化物质量浓度对硫代砷酸盐的生成有重要控制作用。对地下水中硫代砷酸盐的深入研究有助于揭示富硫地下水中砷的迁移转化规律,丰富和完善高砷地下水成因理论。

     

  • 图 1  硫代砷酸盐HPLC-ICPMS色谱图

    Figure 1.  HPLC-ICPMS chromatogram of thioarsenate

    图 2  常规法及水热法合成硫代砷酸盐对比图

    Figure 2.  Comparison of conventional and hydrothermal synthesis of thioarsenate

    图 3  硫代砷化合物保存测试

    Figure 3.  Preservation test of thioarsenate

    图 4  大同盆地地下水中的砷形态

    Figure 4.  Arsenic speciation in groundwater of the Datong Basin

    图 5  大同盆地地下水硫代砷酸盐赋存规律

    Figure 5.  Occurrence of thioarsenate in groundwater of the Datong Basin

    表  1  HPLC-ICPMS测试硫代砷酸盐的参数条件

    Table  1.   Parameters of HPLC-ICPMS thioarsenate test method

    液相色谱参数 电感耦合等离子体质谱条件
    流动相A:0.1 mol/L NaOH 等离子射频功率:1 400 W
    流动相B:超纯水 雾化器气体流量:1.00 L/min
    0~7 min:20% A As监测质荷比:m/z=75
    7~17 min:20% A→100% A S监测质荷比:m/z=32
    17~25 min:100% A 采集时间:28 min
    25~28 min:100% A→20% A
    注:上述流动相均经脱气处理
    下载: 导出CSV

    表  2  大同盆地地下水的水化学组成及砷形态

    Table  2.   Water chemistry composition and arsenic speciation of the groundwater in Datong Basin

    样品编号 总砷 亚砷酸盐 砷酸盐 一硫代砷酸盐 二硫代砷酸盐 三硫代砷酸盐 四硫代砷酸盐 其他砷物种 硫化物ρB/(μg·L-1) pH Eh/mV
    ρB/(μg·L-1)
    sy-1 4.47 3.31 1.16 ND ND ND ND 0.00 9 7.77 90.0
    sy-3 0.64 0.06 0.58 ND ND ND ND 0.00 3 7.73 126.1
    sy-4 693.22 642.41 48.45 2.36 ND ND ND 0.00 13 8.00 -98.5
    sy-5 197.78 2.16 195.62 ND ND ND ND 0.00 ND 8.63 113.6
    sy-6 318.75 125.89 168.65 21.14 1.55 ND ND 1.52 32 8.42 -36.2
    sy-7 117.73 2.31 112.51 1.02 ND ND ND 1.89 33 8.74 69.7
    sy-8 384.31 0.35 383.76 ND ND ND ND 0.00 20 8.85 126.2
    sy-9 3.34 0.24 3.10 ND ND ND ND 0.00 25 7.56 73
    sy-10 37.00 4.36 32.64 ND ND ND ND 0.00 5 7.81 -47.6
    sy-13 26.32 0.46 25.86 ND ND ND ND 0.00 3 7.88 39.5
    sy-21 133.38 88.66 36.18 5.71 2.83 ND ND 0.00 33 8.18 -113.6
    sy-25 88.69 35.78 31.28 15.96 4.23 ND ND 1.44 199 8.33 -104.6
    sy-27 614.66 343.67 60.25 82.33 125.79 1.78 ND 0.85 1 137.5 8.02 -129.2
    sy-32 4.35 1.11 3.24 ND ND ND ND 0.00 3 7.51 47.7
    sy-38 102.36 0.64 101.35 ND ND ND ND 0.37 6 8.05 52.5
    注:ND为未检出;①色谱分离后得到的未知砷形态
    下载: 导出CSV
  • [1] Nickson R, Mcarthur J, Burgess W, et al. Arsenic poisoning of Bangladesh groundwater[J]. Nature, 1998, 395: 338-347. doi: 10.1038/26387
    [2] Nordstrom D K. Worldwide occurrences of arsenic in ground water[J]. Science, 2002, 296: 2143-2145. doi: 10.1126/science.1072375
    [3] Wang Y X, Pi K F, Fendorf S, et al. Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems[J]. Earth-Science Reviews, 2019, 189: 79-98. doi: 10.1016/j.earscirev.2017.10.007
    [4] Xie X J, Wang Y X, Ellis A, et al. The sources of geogenic arsenic in aquifers at Datong Basin, northern China: Constraints from isotopic and geochemical data[J]. Journal of Geochemical Exploration, 2011, 110(2): 155-166. doi: 10.1016/j.gexplo.2011.05.006
    [5] Xie X J, Wang Y X, Su C L. Hydrochemical and sediment biomarker evidence of the impact of organic matter biodegradation on arsenic mobilization in shallow aquifers of Datong Basin, China[J]. Water Air and Soil Pollution, 2012, 223(2): 483-498. doi: 10.1007/s11270-011-0875-9
    [6] 何俊蓉, 谢先军, 池泽涌, 等. 古气候变化对大同盆地第四纪沉积物中砷富集过程的影响[J]. 地质科技情报, 2019, 38(5): 212-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905023.htm
    [7] 袁晓芳, 邓娅敏, 杜尧, 等. 江汉平原高砷地下水稳定碳同位素特征及其指示意义[J]. 地质科技通报, 2020, 39(5): 156-163. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10061.shtml
    [8] 张丽萍, 谢先军, 李俊霞, 等. 大同盆地地下水中砷的形态、分布及其富集过程研究[J]. 地质科技情报, 2014, 33(1): 178-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401028.htm
    [9] Pi K F, Wang Y X, Xie X J, et al. Role of sulfur redox cycling on arsenic mobilization in aquifers of Datong Basin, northern China[J]. Applied Geochemistry, 2017, 77: 31-43. doi: 10.1016/j.apgeochem.2016.05.019
    [10] Pi K F, Wang Y X, Xie X J, et al. Remediation of arsenic-contaminated groundwater by in-situ stimulating biogenic precipitation of iron sulfides[J]. Water Research, 2017, 109: 337-346. doi: 10.1016/j.watres.2016.10.056
    [11] Herath I, Vithanage M, Seneweera S, et al. Thiolated arsenic in natural systems: What is current, what is new and what needs to be known?[J]. Environment International, 2018, 115: 370-386. doi: 10.1016/j.envint.2018.03.027
    [12] Planer-Friedrich B, London J, McCleskey R B, et al. Thioarsenates in geothermal waters of Yellowstone National Park: Determination, preservation, and geochemical importance[J]. Environmental Science & Technology, 2007, 41(15): 5245-5251. http://www.tandfonline.com/servlet/linkout?suffix=CIT0036&dbid=8&doi=10.1080%2F01490451.2010.490078&key=17822086
    [13] 庄亚芹, 郭清海, 刘明亮, 等. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟: 以云南腾冲热海水热区为例[J]. 地球科学: 中国地质大学学报, 2016, 41(9): 1499-1510. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201609006.htm
    [14] 郭清海, 刘明亮, 李洁祥, 等. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因[J]. 地球科学, 2017, 42(2): 286-297. doi: 10.3969/j.issn.1672-6561.2017.02.013
    [15] Planer-Friedrich B, Schaller J, Wismeth F, et al. Monothioarsenate occurrence in Bangladesh groundwater and its removal by ferrous and zero-valent iron technologies[J]. Environmental Science & Technology, 2018, 52(10): 5931-5939.
    [16] Kerl C F, Rafferty C, Clemens S, et al. Monothioarsenate uptake, transformation, and translocation in rice plants[J]. Environmental Science & Technology, 2018, 52(16): 9154-9161. http://www.ncbi.nlm.nih.gov/pubmed/30024151
    [17] Stauder S, Raue B, Sacher F. Thioarsenates in sulfidic waters[J]. Environmental Science & Technology, 2005, 39(16): 5933-5593. doi: 10.1021/es048034k
    [18] Keimowitz A R, Mailloux B J, Cole P, et al. Laboratory investigations of enhanced sulfate reduction as a groundwater arsenic remediation strategy[J]. Environmental Science & Technology, 2007, 41(19): 6718-6724. http://pubmedcentralcanada.ca/pmcc/articles/PMC3155844/
    [19] Suess E, Mehlhorn J, Planer-Friedrich B. Anoxic, ethanolic, and cool: An improved method for thioarsenate preservation in iron-rich waters[J]. Applied Geochemistry, 2015, 62: 224-233. doi: 10.1016/j.apgeochem.2014.11.017
    [20] 王敏黛, 郭清海, 郭伟, 等. 硫代砷化物的合成、鉴定和定量分析方法研究[J]. 分析化学, 2016, 44(11): 1715-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201611013.htm
    [21] 童佳荣, 单慧媚, 刘崇炫, 等. 硫代砷形态测试分析技术及环境行为特征[J]. 环境科学与技术, 2018, 41(3): 156-162. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201803024.htm
    [22] Wallschlager D, Stadey C J. Determination of (Oxy)thioarsenates in sulfidic waters[J]. Analytical Chemistry, 2007, 79(10): 3873-80. doi: 10.1021/ac070061g
    [23] Ullrich M K, Misiari V, Planer-Friedrich B. A new method for thioarsenate preservation in iron-rich waters by solid phase extraction[J]. Water Research, 2016, 102: 542-550. doi: 10.1016/j.watres.2016.07.008
    [24] 邬建勋, 余倩, 蒋庆肯, 等. 江汉平原高砷地下水与含水层沉积物的地球化学特征[J]. 地质科技情报, 2019, 38(1): 250-257. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901028.htm
    [25] 严怡君, 谢先军, 郑文君, 等. 灌溉活动对大同盆地表层土壤中砷迁移的影响[J]. 地质科技情报, 2017, 36(3): 235-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703033.htm
    [26] Xie X J, Johnson T M, Wang Y X, et al. Mobilization of arsenic in aquifers from the Datong Basin, China: Evidence from geochemical and iron isotopic data[J]. Chemosphere, 2013, 90(6): 1878-1884. doi: 10.1016/j.chemosphere.2012.10.012
    [27] Besold J, Biswas A, Suess E, et al. Monothioarsenate transformation kinetics determining arsenic sequestration by Sulfhydryl Groups of Peat[J]. Environmental Science & Technology, 2018, 52(13): 7317-7326. doi: 10.1021/acs.est.8b01542
    [28] Wood S A, Tait C D, Janecky D R. A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25 ℃[J]. Geochemical Transactions, 2002, 3(4): 31-39. http://europepmc.org/articles/PMC1475613
    [29] Wilkin R T, Wallschläger D, Ford R G. Speciation of arsenic in sulfidic waters[J]. Geochemical Transactions, 2003, 4(1): 1-7. doi: 10.1186/1467-4866-4-1
    [30] Wilkin R T, Ford R G, Costantino L M, et al. Thioarsenite detection and implications for arsenic transport in groundwater[J]. Environmental Science & Technology, 2019, 53(20): 11684-11693. doi: 10.1021/acs.est.9b04478
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  660
  • PDF下载量:  945
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-23

目录

    /

    返回文章
    返回