Diagenetic densification of Chang 8 sandstone reservoirs and its relationship with hydrocarbon accumulation in Tiebiancheng area, Jiyuan Oilfield, Ordos Basin
-
摘要: 通过铸体薄片、扫描电镜、阴极发光、X衍射、高压压汞和流体包裹体等多种测试分析,系统研究了鄂尔多斯盆地姬塬油区东南部铁边城区块延长组长8油层组致密砂岩储层的岩石物性、成岩作用和致密化过程及其与油气充注成藏的时序关系。结果表明,研究区长8储层岩石类型以细粒岩屑长石砂岩为主,成分成熟度和结构成熟度低,储集性能较差,平均孔隙度为7.34%、平均渗透率为0.11×10-3 μm2,属于较为典型的(特)低孔-超低渗致密储层,成岩作用类型以压实、胶结和溶蚀作用为主,成岩演化阶段主体已进入中成岩A期;储层成岩-致密化过程先后经历了早成岩A-B期压实+胶结减孔、中成岩A1期溶蚀增孔+胶结减孔、中成岩A2期胶结减孔3个主要阶段。早白垩世末(100 Ma)最大埋深之前的压实和胶结作用是储层致密化的根本原因,造成孔隙度分别降低了21.14%和14.0%,溶蚀增加的孔隙度仅为1.76%;早白垩世中期2个主要幕次(123 Ma和105 Ma)的大规模烃类充注-成藏事件开始发生时,储层孔隙度已在晚期胶结作用影响下降至7.82%,成为典型的(特)低孔-超低渗致密砂岩储层,因而具有“先致密、后成藏”的特征。Abstract: Based on multiple testing data from the casting slice, cathodoluminescence, scanning electron microscopy, X-ray diffraction, HPMI, reservoir physical property, and fluid inclusion thermometry, systematic research was conducted to investigate the petrologic features, reservoir properties, diagenetic porosity evolution, and temporal relations between the densification and oil charging process of the Chang 8 sandstone reservoirs of the Upper Triassic Yanchang Formation in Tiebiancheng area of Jiyuan Oilfield, Ordos Basin. The results show that the Chang 8 reservoirs in the study area are mainly composed of fine-grained lithic feldspar sandstones with low maturity of composition and texture, featuring unconventional tight reservoirs with an average porosity of 7.34% and permeability of 0.112×10-3μm2, which generally reach the middle diagenetic stage A. The diagenetic porosity evolution of the Chang 8 reservoirs mainly experienced three stages: porosity reduction by compaction and cementation in early diagenetic stage A-B, porosity increase by dissolution and reduction by cementation in middle diagenetic stage A1, and porosity reduction to densification by cementation in middle diagenetic stage A2 to B1. Until the end of the Early Cretaceous, all the occurred compaction and cementation made the reservoir porosity decrements approach 21.14% and 14%, respectively, while the porosity increment by dissolution was only about 1.76%. At the beginning of two episodic large-scale oil charging events that occurred at 125 and 105 Ma during the middle to late period of the Early Cretaceous, the porosity of the Chang 8 sandstone reservoirs decreased to 7.82% under the influence of late cementation. It became a typical ultra-low porosity and ultra-low permeability tight sandstone reservoir, thus most likely indicating that the densification of the Chang 8 reservoirs occurred earlier than the hydrocarbon accumulation in this study.
-
Key words:
- Ordos Basin /
- Tiebiancheng area /
- Chang 8 oil reservoir /
- diagenesis /
- densification /
- hydrocarbon accumulation
-
图 5 研究区长8储层成岩作用的微观镜下特征
a.J209井,2 344.72 m,碎屑颗粒紧密接触,云母弯曲变形;b.J209井,2 343.6 m,粒间孔内充填方解石,阴极发光下呈亮黄色;c.Y263井,2 306.7 m,粒间孔或次生溶孔内充填铁方解石;d.J51井,2 367.4 m,铁方解石胶结物,阴极发光下呈橘红色;e.Y273井,2 329.3 m,碎屑颗粒表面附着的叶片状绿泥石;f.Y263井,2 304.7 m,自生石英晶体表面附着的叶片状绿泥石;g.J209井,2 344.7 m,伊利石薄膜,正交偏光下呈高级干涉色;h.J209井,2 343.6 m,碎屑颗粒表面的鳞片状、丝缕状伊利石;i.J51井,2 362.5 m,碎屑颗粒表面的蜂窝状或卷片状伊/蒙混层;j.J109井,2 213.35 m,呈书页状集合体充填于粒间孔内的高岭石胶结物,部分表面被丝缕状伊利石附着;k.J95井,2 358.5 m,石英次生加大边;l.J51井,2 366 m,自生石英晶体;m.J43井,2 265.27 m,长石溶蚀形成的粒内溶孔;n.J209井,2 347.46 m,长石溶蚀形成的铸模孔,内部可见自生石英晶体;o.J51井,2 363.9 m,晚期铁方解石交代长石颗粒
Figure 5. Micro-features of diagenesis of Chang 8 reservoirs in the study area
图 6 研究区长8储层砂岩的流体包裹体镜下特征
a.J209井,2 343.8 m,石英颗粒内部及早期次生加大边内侧的深褐色烃类包裹体;b.J51井,2 366.2 m,沿切穿石英次生加大边的微裂隙中呈条带状分布的浅褐色-灰色液态烃包裹体;c.J209井,2 342.25 m,串珠状分布在长石溶蚀解理缝中的灰色烃类包裹体;d.J51井,2 364 m,分布在晚期碳酸盐胶结物中的灰色液态烃类包裹体
Figure 6. Characteristics of fluid inclusions under microscope of Chang 8 reservoirs in the study area
表 1 研究区长8储层孔隙度演化模拟计算公式
Table 1. Calculation formula of porosity evolution simulation of Chang 8 reservoirs in the study area
孔隙度演化参数 计算公式[39-42] 符号注解 分选系数 $ {S_0} = \sqrt {{D_{25}}/{D_{75}}} $ φce.现今胶结物体积分数;
φori.粒间面孔率;
φmatr.杂基原生微孔面孔率;
φave.样品实测孔隙度;
φpor.总孔隙面孔率;
φdiss.溶蚀孔面孔率;
φi-e.自生晶间孔面孔率;
φfiss.成岩缝面孔率;
D25.粒度累积频率曲线上25%处的粒径大小;
D75.粒度累积频率曲线上75%处的粒径大小初始孔隙度 φ1=20.91+(22.9/S0) 压实后剩余孔隙度 φ2=φce+(φori+φmatr)·φave/φpor 压实过程损失孔隙度 L1=φ1-φ2 压实过程孔隙度损失率 F1=L1/φ1×100% 压实-胶结-交代后剩余孔隙度 φ3=φ2-φce 胶结-交代过程损失孔隙度 L2=φce 胶结-交代过程孔隙度损失率 F2=L2/φ1×100% 溶蚀作用产生的孔隙度 φ4=φdiss/φpor·φave 自生晶间孔产生的孔隙度 φ5=φi-e/φpor·φave 微破裂作用产生的孔隙度 φ6=φfiss/φpor·φave 成岩作用产生的孔隙度 φ7=φ4+φ5+φ6 次生孔隙度增加率 F3=φ7×100%/φ1 微孔率 Fmicr=(φave-φpor)×100%/φave 计算现今孔隙度 φn=φ3+φ7 -
[1] 邹才能, 陶士振, 侯连华, 等. 非常规油气地质[M]. 北京: 地质出版社, 2013: 93-114. [2] 贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 2012, 33(3): 343-350. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203000.htm [3] 朱筱敏, 潘荣, 朱世发, 等. 致密储层研究进展和热点问题分析[J]. 地学前缘, 2018, 25(2): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201802019.htm [4] 罗晓容, 王忠楠, 雷裕红, 等. 特超低渗砂岩油藏储层非均质性特征与成藏模式: 以鄂尔多斯盆地西部延长组下组合为例[J]. 石油学报, 2016, 37(增刊): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2016S1009.htm [5] Lai Jin, Wang Guiwen, Wang Ziyuan, et al. A review on pore structure characterization in tight sandstones [J]. Earth-Science Reviews, 2018, 177: 436-457. doi: 10.1016/j.earscirev.2017.12.003 [6] Lai Jin, Wang Guiwen, Wang Song, et al. Review of diagenetic facies in tight sandstones: Diagenesis, diagenetic minerals, and prediction via well logs [J]. Earth-Science Reviews, 2019, 185: 234-258. http://www.sciencedirect.com/science/article/pii/S0012825218300527 [7] 赵会涛, 郭英海, 杜小伟, 等. 鄂尔多斯盆地高桥地区本溪组砂岩储层微观孔隙分形特征[J]. 地质科技通报, 2020, 39(6): 175-184. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10083.shtml [8] 周林, 刘皓天, 周坤, 等. 致密砂岩储层"甜点"识别与评价方法[J]. 地质科技通报, 2020, 39(4): 165-173. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10012.shtml [9] 李易隆, 贾爱林, 何东博, 等. 致密砂岩有效储层形成的控制因素[J]. 石油学报, 2013, 34(1): 71-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301007.htm [10] 赵仲祥, 董春梅, 林承焰, 等. 低渗-致密砂岩储层"甜点"成因机制研究: 以西湖凹陷X气田花港组为例[J]. 中国矿业大学学报, 2018, 47(5): 995-1007. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201805009.htm [11] 周志恒, 钟大康, 凡睿, 等. 致密砂岩中岩屑溶蚀及其伴生胶结对孔隙发育的影响: 以川东北元坝西部须二下亚段为例[J]. 中国矿业大学学报, 2019, 48(3): 574-586. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201903013.htm [12] 刘宝珺, 张锦泉. 沉积成岩作用[M]. 北京: 科学出版社, 1992: 24-25. [13] 刘明洁, 刘震, 刘静静, 等. 砂岩储集层致密与成藏耦合关系: 以鄂尔多斯盆地西峰-安塞地区延长组为例[J]. 石油勘探与开发, 2014, 41(2): 168-175. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402006.htm [14] 操应长, 葸克来, 刘可禹, 等. 陆相湖盆致密砂岩油气储层储集性能表征与成储机制: 以松辽盆地南部下白垩统泉头组四段为例[J]. 石油学报, 2018, 39(3): 247-265. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201803001.htm [15] 高长海, 王健, 罗瑞, 等. 致密砂岩储层成岩史与成藏史耦合关系研究: 以南堡凹陷滩海地区沙一段为例[J]. 中国矿业大学学报, 2019, 48(4): 819-829. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201904015.htm [16] 徐国盛, 崔恒远, 刘勇, 等. 东海盆地西湖凹陷古近系花港组砂岩储层致密化与油气充注关系[J]. 地质科技通报, 2020, 39(3): 20-29. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10019.shtml [17] 谢洪升, 李伟, 冷福, 等. 致密砂岩油藏可动流体赋存规律及制约因素研究: 以鄂尔多斯盆地华庆油田长6段储层为例[J]. 地质科技情报, 2019, 38(5): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905011.htm [18] 曾治平, 刘震, 马骥, 等. 深层致密砂岩储层可压裂性评价新方法[J]. 地质力学学报, 2019, 25(2): 223-232. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201902008.htm [19] 杨华, 李士祥, 刘显阳, 等. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm [20] 姚泾利, 邓秀芹, 赵彦德, 等. 鄂尔多斯盆地延长组致密油特征[J]. 石油勘探与开发, 2013, 40(2): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302002.htm [21] 陈红汉. 油气成藏年代学研究进展[J]. 石油与天然气地质, 2007, 28(2): 143-150 doi: 10.3321/j.issn:0253-9985.2007.02.003 [22] 付金华, 邓秀芹, 王琪, 等. 鄂尔多斯盆地三叠系长8储集层致密与成藏耦合关系: 来自地球化学和流体包裹体的证据[J]. 石油勘探与开发, 2017, 44(1): 48-57. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701007.htm [23] Parnell J. Potential of palaeofluid analysis for understanding oil charge history [J]. Geofluids, 2010, 10: 73-82. doi: 10.1111/j.1468-8123.2009.00268.x [24] Zhu Shifa, Wang Xiaoyu, Yi Qin, et al. Occurrence and origin of pore-lining chlorite and its effectiveness on preserving porosity in sandstone of the middle Yanchang Formation in the southwest Ordos Basin [J]. Applied Clay Science, 2017, 148: 25-38. doi: 10.1016/j.clay.2017.08.005 [25] Cao Zhe, Liu Guangdi, Meng Wei, et al. Origin of different chlorite occurrences and their effects on tight clastic reservoir porosity [J]. Journal of Petroleum Science and Engineering, 2018, 160: 384-392. doi: 10.1016/j.petrol.2017.10.080 [26] Wang Wurong, Yue Dali, Zhao Jiyong, et al. Diagenetic alteration and its control on reservoir quality of tight sandstones in lacustrine deep-water gravity-flow deposits: A case study of the Yanchang Formation, southern Ordos Basin, China[J]. Marine and Petroleum Geology, 2019, 110: 676-694. doi: 10.1016/j.marpetgeo.2019.07.046 [27] Li Yang, ChangXiangchun, Yin Wei, et al. Quantitative impact of diagenesis on reservoir quality of the Triassic Chang 6 tight oil sandstones, Zhenjing area, Ordos Basin, China[J]. Marine and Petroleum Geology, 2017, 86: 1014-1028. doi: 10.1016/j.marpetgeo.2017.07.005 [28] Surdam R C, Crossey L J, Hagen E S, et al. Organic-inorganic and sandstone diagenesis [J]. AAPG Bulletin, 1989, 73(1): 1-23. http://ci.nii.ac.jp/naid/80004430238 [29] 魏新善, 傅强, 淡卫东, 等. 鄂尔多斯盆地延长组成岩流体滞留效应与致密砂岩储层成因[J]. 石油学报, 2018, 39(8): 858-868. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201808002.htm [30] Worden R H, Morad S. Clay minerals in sandstones: Controls on formation, distributionand evolution [M]. [S. l. ]: Wiley-Blackwell, 2009. [31] Luo Long, Meng Wanbin, Gluyas J, et al. Diagenetic characteristics, evolution, controlling factors of diagenetic system and their impacts on reservoir quality in tight deltaic sandstones: Typical example from the Xujiahe Formation in Western Sichuan Foreland Basin, SW China[J]. Marine and Petroleum Geology, 2019, 103: 231-254. doi: 10.1016/j.marpetgeo.2019.02.012 [32] Athy L F. Density, porosity and compaction of sedimentary rocks[J]. AAPG Bulletin, 1930, 4(1): 1-24. http://femsec.oxfordjournals.org/lookup/ijlink?linkType=ABST&journalCode=gsaapgbull&resid=14/1/1&atom=%2Ffemsec%2F87%2F1%2F113.atom [33] Maxwell J C. Influence of depth, temperature, and geologic age on porosity of quartzose sandstone[J]. AAPG Bulletin, 1964, 48(5): 697-709. http://www.researchgate.net/publication/308482401_Influence_of_Depth_Temperature_and_Geologic_Age_on_Porosity_of_Quartzose_Sandstone [34] Maxwell M. Parameters influencing porosity in sandstones: A model for sandstone porosity prediction[J]. AAPG Bulletin, 1987, 71(5): 485-491. http://ci.nii.ac.jp/naid/30002453797 [35] 寿建峰, 朱国华. 砂岩储层孔隙保存的定量预测研究[J]. 地质科学, 1998, 33(2): 244-250. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX802.013.htm [36] 潘高峰, 刘震, 赵舒, 等. 砂岩孔隙度演化定量模拟方法: 以鄂尔多斯盆地镇泾地区延长组为例[J]. 石油学报, 2011, 32(2): 249-256. doi: 10.3969/j.issn.1001-8719.2011.02.016 [37] 王艳忠, 操应长, 葸克来, 等. 碎屑岩储层地质历史时期孔隙度演化恢复方法: 以济阳坳陷东营凹陷沙河街组四段上亚段为例[J]. 石油学报, 2013, 34(6): 1100-1111. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306008.htm [38] 刘震, 孙迪, 李潍莲, 等. 沉积盆地地层孔隙动力学研究进展[J]. 石油学报, 2016, 37(10): 1193-1215. doi: 10.7623/syxb201610001 [39] Beard D C, Weyl P K. Influence of texture on porosity and permeability of unconsolidated sand [J]. AAPG Bulletin, 1973, 57(2): 349-369. http://aapgbull.geoscienceworld.org/content/57/2/349 [40] Pate C R. Assessing the relative importance of compaction processes and cemeneation to reduction of porosity in sandstores: Discussion[J]. AAPG Bulletion, 1989, 73(10): 2706-2714. doi: 10.1306/44b4aa19-170a-11d7-8645000102c1865d [41] 任大忠, 孙卫, 屈雪峰, 等. 鄂尔多斯盆地延长组长6储层成岩作用特征及孔隙度致密演化[J]. 中南大学学报: 自然科学版, 2016, 47(8): 2706-2714. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201608023.htm [42] 黎盼, 孙卫, 高永利, 等. 致密砂岩储层差异性成岩演化对孔隙度定量演化表征影响: 以鄂尔多斯盆地马岭地区长8-1储层为例[J]. 地质科技情报, 2018, 37(1): 135-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801018.htm [43] 邓秀芹, 刘新社, 李士祥. 鄂尔多斯盆地三叠系延长组超低渗透储层致密史与油藏成藏史[J]. 石油天然气地质, 2009, 30(2): 156-161. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200902009.htm [44] 罗晓容, 张刘平, 杨华, 等. 鄂尔多斯盆地陇东地区长8-1段低渗油藏成藏过程[J]. 石油与天然气地质, 2010, 31(6): 770-778. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006013.htm [45] 任战利, 李文厚, 梁宇, 等. 鄂尔多斯盆地东南部延长组致密油成藏条件及主控因素[J]. 石油天然气地质, 2014, 35(2): 190-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201402005.htm [46] 邹才能, 朱如凯, 白斌, 等. 论非常规油气与常规油气的区别和联系[J]. 中国石油勘探, 2015, 20(1): 1-16. doi: 10.3969/j.issn.1672-7703.2015.01.001 [47] 赵靖舟, 曹青, 白玉彬, 等. 油气藏形成与分布: 从连续到不连续: 兼论油气藏概念及分类[J]. 石油学报, 2016, 37(2): 145-159. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602001.htm