留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁铁矿LA-ICP-MS原位微量元素分析方法研究

栾燕 孙晓辉 刘民武 何克

栾燕, 孙晓辉, 刘民武, 何克. 磁铁矿LA-ICP-MS原位微量元素分析方法研究[J]. 地质科技通报, 2021, 40(2): 167-175. doi: 10.19509/j.cnki.dzkq.2021.0215
引用本文: 栾燕, 孙晓辉, 刘民武, 何克. 磁铁矿LA-ICP-MS原位微量元素分析方法研究[J]. 地质科技通报, 2021, 40(2): 167-175. doi: 10.19509/j.cnki.dzkq.2021.0215
Luan Yan, Sun Xiaohui, Liu Minwu, He Ke. Analysis method for in-situ trace element determination of magnetite by LA-ICP-MS[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 167-175. doi: 10.19509/j.cnki.dzkq.2021.0215
Citation: Luan Yan, Sun Xiaohui, Liu Minwu, He Ke. Analysis method for in-situ trace element determination of magnetite by LA-ICP-MS[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 167-175. doi: 10.19509/j.cnki.dzkq.2021.0215

磁铁矿LA-ICP-MS原位微量元素分析方法研究

doi: 10.19509/j.cnki.dzkq.2021.0215
基金项目: 

国家自然科学基金项目 41603040

国家自然科学基金项目 41503035

陕西省自然科学基础研究计划 2019JM-160

长安大学中央高校基本科研业务费专项资金 300102271201

详细信息
    作者简介:

    栾燕(1986—),女,讲师,主要从事岩浆岩及其相关矿床研究、LA-ICP-MS相关实验方法开发及应用研究。E-mail:luanyan1234@163.com

  • 中图分类号: P575.9;P599

Analysis method for in-situ trace element determination of magnetite by LA-ICP-MS

  • 摘要: 激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)技术在矿物微量元素分析方面具有原位、高分辨率和高灵敏度等优势,近年来磁铁矿LA-ICP-MS原位微量元素研究进展迅速,并在地质领域得到了广泛应用。利用长安大学成矿作用及其动力学实验室Agilent 7700X四极杆等离子体质谱和Photo Machines Analyte Excite 193 nm激光,建立了LA-ICP-MS测定磁铁矿原位微量元素组成的分析方法。以美国地质调查局(USGS)玻璃标样BIR-1G、BHVO-2G、BCR-2G和GSE-1G为校正标准,采用无内标-多外标法对磁铁矿中微量元素进行了定量计算,并测定了NIST612和自然岩浆磁铁矿BC28的微量元素组成,以评估本实验室建立方法的可靠性。结果表明,NIST612所有微量元素的相对标准偏差(RSD, N=30)变化于1.31%~6.33%之间,多数元素的测定结果与推荐值及前人LA-ICP-MS方法测定值的相对误差小于10%;BC28大部分微量元素的相对标准偏差(RSD, N=30)小于10%,其中11个重要微量元素与前人LA-ICP-MS测定值的相对误差基本小于10%。以上结果表明本实验室建立的方法可以实现对磁铁矿原位微区微量元素的分析测定,分析数据结果准确可靠,具有良好的应用前景。

     

  • 图 1  NIST612中Si归一化和Fe归一化校正结果与推荐值[48]的相对误差

    Figure 1.  Relative error of NIST612 between calibration values obtained by Si and Fe normalization and recommended values

    图 2  自然岩浆磁铁矿BC28两次测定结果与参考值[21, 40]的相对误差(黑色和灰色分别代表与Dare等[40]和孟郁苗等[21]的相对误差)

    Figure 2.  Relative error of average concentrations in natural magmatic magnetite BC 28 obtained by this study and reference values[21, 40]

    图 3  自然岩浆磁铁矿BC28内标法和无内标-多外标法校正结果的相对误差

    Figure 3.  Relative error of average concentrations in natural magmatic magnetite BC28 obtained by internal standard method and non internal standard-multiple external standards method

    表  1  LA-ICP-MS工作参数

    Table  1.   LA-ICP-MS working conditions

    ICP-MS工作参数 激光工作参数
    仪器型号 Agilent7700X 仪器型号 Analyte Excite193 nm
    RF射频功率/W 1 450 激光能量密度/(J·cm-2) 5.9
    冷却气流速/(L·min-1) 15 载气(He)流量/(L·min-1) 0.8
    镍锥 剥蚀方式 点剥蚀
    载气(Ar)流量/(L·min-1) 0.8 束斑直径/μm 50
    采样深度/mm 4.5~5 频率/Hz 5
    积分时间/s 40 脉冲数/次 200
    下载: 导出CSV

    表  2  磁铁矿LA-ICP-MS原位微量元素分析标样类型及其相关元素质量分数

    Table  2.   Types and element contents of standard reference materials for LA-ICP-MS in-situ trace element analysis of magnetite

    标样名称 标样类型 Fe
    wB/%
    其他元素
    wB/10-6
    研制机构
    NIST610 合成硅酸盐玻璃 0.045 8 23.6~516 美国国家标准与技术研究院(NIST)
    NIST612 合成硅酸盐玻璃 0.005 1 4.77~78.4
    BIR-1G 玄武岩玻璃 7.91 0.3~215 133 美国地质调查局(USGS)
    BHVO-2G 玄武岩玻璃 8.63 0.3~232 866
    BCR-2G 玄武岩玻璃 9.66 0.5~252 460
    GSE-1G 合成玄武岩玻璃 9.88 1.17~250 600
    BC 28 自然岩浆磁铁矿 57.20 0.81~17 508 加拿大魁北克大学
    注:表中玻璃标样元素含量参考GeoReM数据库,具体见网站地址http://georem.mpch-mainz.gwdg.de/sample_query_pref.asp;BC28磁铁矿标样数据参考Dare等[40]
    下载: 导出CSV

    表  3  监控样NIST612微量元素分析结果

    Table  3.   Element concentrations ayalysis of monitoring sample NIST612

    项目名称 NIST612测定值 NIST612推荐值 NIST612参考值
    测试方法 LA-ICP-MS 重量分析法 LA-ICP-MS
    数据来源及结果 本文 Pearce等[48] 柳小明等[20] 张德贤等[25]
    Si归一化 Fe归一化 相对误差
    AV 1σ RSD/% AV 1σ RSD/% AV 1σ AV 1σ AV 1σ
    N=30 N=30 N=12~127 N=5
    Na 98 824 1 298 1.3 98 360 1 292 1.3 -0.5 103 719 4 200 97 708 5 988 - -
    Mg 59 2.15 3.6 58.6 2.12 3.6 -1.4 77.4 30.2 64 6 63 5
    Al 10 391 156 1.5 10 271 154 1.5 -1.2 11 165 847 - - 11 360 852
    Ca 84 562 1 463 1.7 84 997 1471 1.7 0.5 85 263 1571 - - - -
    Sc 40.5 0.75 1.8 39.8 0.73 1.8 -1.8 41.1 4.09 40 1 40 3
    Ti 41.9 1.83 4.4 41.7 1.82 4.4 -0.7 48.1 3.01 44 4 39 2
    V 37.2 0.67 1.8 37.1 0.67 1.8 -0.2 39.2 3.76 38 3 39 3
    Cr 38.3 0.77 2.0 37.4 0.75 2.0 -2.2 39.9 15.2 39 2 38 4
    Mn 38.2 0.69 1.8 38.4 0.69 1.8 0.6 38.4 0.99 37 1 43 4
    Co 33.2 0.61 1.8 32.7 0.60 1.8 -1.5 35.3 2.44 35 1 35 3
    Ni 36.7 1.05 2.9 36.0 1.03 2.9 -1.9 38.4 4.64 38 1 38 8
    Cu 36.4 1.00 2.7 36.1 0.99 2.7 -0.8 36.7 3.07 37 2 37 2
    Zn 35.8 1.39 3.9 35.3 1.37 3.9 -1.5 37.9 3.86 38 1 43 3
    Ga 35.4 0.72 2.0 35.2 0.71 2.0 -0.7 36.2 2.03 37 1 38 3
    Ge 35.3 0.78 2.2 35.1 0.77 2.2 -0.6 34.6 2.64 - - 39 3
    Rb 29.9 0.58 1.9 29.7 0.57 1.9 -0.6 31.6 0.59 32 1 - -
    Sr 78.4 1.27 1.6 77.8 1.26 1.6 -0.8 76.2 76.2 75 2 78.4 82
    Y 39.0 0.67 1.7 38.2 0.65 1.7 -1.9 38.3 2.14 38 1 - -
    Zr 37.8 0.80 2.1 37.2 0.79 2.1 -1.6 36.0 1.25 37 1 - -
    Nb 38.3 0.67 1.7 37.5 0.65 1.7 -2.2 38.1 0.86 36 2 - -
    Mo 36.9 0.95 2.6 36.3 0.94 2.6 -1.6 37.0 1.65 35 2 37 3
    Ag 20.9 0.51 2.4 20.4 0.50 2.4 -2.3 21.9 3.26 - - 21 2
    Cd 30.3 1.40 4.6 31.4 1.45 4.6 3.8 28.3 0.65 - - 31 2
    In 45.8 0.69 1.5 46.5 0.70 1.5 1.5 42.9 4.32 - - 39 3
    Sn 42.0 0.88 2.1 41.7 0.88 2.1 -0.7 38.0 1.76 40 2 37 3
    Sb 39.6 0.82 2.1 38.7 0.80 2.1 -2.3 38.4 2.26 - - 33 3
    Ba 40.0 1.18 2.9 39.5 1.16 2.9 -1.2 37.7 1.26 37 1 - -
    Hf 36.3 0.72 2.0 35.5 0.71 2.0 -2.3 34.8 3.65 35 2 - -
    Ta 41.3 0.70 1.7 41.0 0.70 1.7 -0.6 39.8 2.15 36 3 - -
    W 38.3 0.75 2.0 37.4 0.74 2.0 -2.3 39.6 0.78 - - 40 3
    Pb 37.2 0.68 1.8 36.4 0.48 1.3 -2.1 39.0 1.84 38 2 41.4 3.5
    Bi 30.5 0.49 1.6 29.8 0.66 2.2 -2.4 29.8 5.98 - - 33.9 2.9
    Th 38.1 0.65 1.7 37.2 0.64 1.7 -2.3 37.2 0.72 37 1 44.4 3.8
    U 37.5 0.62 1.7 36.7 0.61 1.7 -2.3 37.2 1.23 37 1 45.3 3.9
    注:AV表示测定值的平均值(μg/g);1σ单位μg/g; RSD表示测定值的相对标准偏差;N表示测试点数;“-”代表缺失值;相对误差=(测量值-推荐值或参考值)/推荐值或参考值。①是以Si归一化结果为参考值,Fe归一化结果为测量值计算得到
    下载: 导出CSV

    表  4  监控样自然岩浆磁铁矿BC28微量元素分析结果

    Table  4.   Element concentrations analysis of monitoring sample natural magmatic magnetite BC28

    项目名称 BC28磁铁矿测定值
    测试方法 LA-ICP-MS
    数据来源及结果 本文
    第一次结果 第二次结果
    Fe归一化 Fe作内标 不同方法校正结果相对误差/% Fe归一化 Fe作内标 不同方法校正结果相对误差/%
    AV 1σ RSD/% AV 1σ RSD/% AV 1σ RSD/% AV 1σ RSD/%
    N=30 N=30
    Mg 9 211 108 1.2 9 112 107 1.2 -1.1 9 074 77.4 0.9 8 702 74.2 0.9 -4.1
    Al 18 625 210 1.1 18 418 207 1.1 -1.1 18 337 157 0.9 18 234 157 0.9 -0.6
    Sc 20.2 0.43 2.1 20.5 0.44 2.1 1.8 21.6 0.46 2.1 21.5 0.46 2.1 -0.5
    Ti 74 871 925 1.2 74 048 915 1.2 -1.1 76 836 758 1.0 76 446 753 1.0 -0.5
    V 9 319 118 1.3 9 453 120 1.3 1.4 9 623 90.8 0.9 9 869 93.3 0.9 2.6
    Cr 1 455 17.8 1.2 1 463 17.9 1.2 0.5 1 505 14.0 0.9 1 513 14.1 0.9 0.5
    Mn 1 849 21.8 1.2 1 802 21.2 1.2 -2.5 1 944 16.7 0.9 1 932 16.6 0.9 -0.6
    Co 262 3.35 1.3 260 3.32 1.3 -1.1 263 3.65 1.4 262 3.90 1.5 -0.4
    Ni 551 7.97 1.4 545 8.31 1.5 -1.0 577 8.13 1.4 566 8.49 1.5 -1.9
    Cu 9.01 0.68 7.5 7.91 0.59 7.5 -12.2 24.4 1.92 7.9 24.3 1.92 7.9 -0.5
    Zn 310 5.72 1.8 299 5.82 1.9 -3.5 387 7.38 1.9 375 7.15 1.9 -3.2
    Ga 44.0 0.89 2.0 42.7 0.91 2.1 -2.9 50.4 0.99 2.0 50.1 0.99 2.0 -0.5
    Ge 0.73 0.13 18.3 0.72 0.13 18.4 -1.4 0.94 0.17 17.7 0.94 0.16 17.5 0.3
    Zr 11.0 0.46 4.2 9.59 0.40 4.2 -13.1 12.2 0.50 4.1 11.3 0.46 4.1 -7.6
    Nb 1.05 0.07 6.8 0.98 0.07 6.8 -7.5 1.06 0.07 6.7 1.06 0.07 6.7 -0.3
    Mo 0.42 0.10 24.1 0.39 0.09 24.1 -6.5 0.46 0.13 27.8 0.44 0.12 27.8 -4.9
    Sn 1.25 0.13 10.0 1.24 0.12 10.0 -1.0 1.72 0.16 9.5 1.72 0.16 9.5 -0.2
    Hf 0.62 0.07 10.9 0.61 0.07 10.9 -1.1 0.60 0.07 11.2 0.60 0.07 11.3 -0.6
    Ta 0.06 0.01 18.8 0.06 0.01 18.8 -0.9 0.06 0.01 18.6 0.06 0.01 18.5 0.1
    项目名称 BC28磁铁矿测定值 BC28磁铁矿参考值 BC28钛铁矿测定值
    测试方法 LA-ICP-MS LA-ICP-MS LA-ICP-MS
    数据来源及结果 本文 Dare等[40] Dare等[30] 孟郁苗等[21] 本文
    两次分析结果相对误差/% 两次均值与Dare等[40]相对误差/%
    Fe归一化 Fe作内标 Fe归一化 Fe作内标 AV 1σ AV 1σ AV 1σ AV 1σ RSD/%
    N=30 N=60 N=53 N=11 N=50 N=30
    Mg 1.5 4.7 -7.1 -9.5 9 841 1 397 9 580 1 463 11 933 1 688 24 027 431 1.8
    Al 1.6 1.0 5.6 4.7 17 508 3 003 20 116 2 432 22 043 2 322 649 33.7 5.2
    Sc -6.7 -4.6 -28.0 -27.6 29 5 23.5 2.1 28 2 130 2.39 1.8
    Ti -2.6 -3.1 2.4 1.6 74 064 6 734 74 459 5 765 87 557 3 358 341 734 5 804 1.7
    V -3.2 -4.2 5.7 7.8 8 959 591 8 822 623 10 217 594 728 12.2 1.7
    Cr -3.3 -3.3 9.7 10.3 1 349 97 1 152 103 1 429 83 65.5 1.56 2.4
    Mn -4.8 -6.7 -4.4 -5.9 1 984 121 1 824 118 2 409 297 3 337 64.0 1.9
    Co -0.1 -0.8 -6.9 -7.6 282 27 280 24 316 39 114 1.58 1.4
    Ni -4.6 -3.6 -7.1 -8.5 607 40 565 44 641 74 82.6 2.04 2.5
    Cu -63.1 -67.4 -65.9 -67.2 49 38 52 36 24 22 7.74 0.72 9.3
    Zn -20.0 -20.3 -26.2 -28.7 472 104 569 134 548 81 30.2 1.58 5.2
    Ga -12.7 -14.8 -1.7 -3.3 48 4 39.2 2.4 55 9 0.37 0.07 18.1
    Ge -21.8 -23.2 -3.1 -3.5 0.86 0.11 - - - - 0.11 0.10 98.1
    Zr -9.7 -15.0 -11.9 -20.9 13.2 2.8 26.1 4.81 22 4 172 3.36 2.0
    Nb -0.6 -7.7 -33.5 -36.1 1.59 0.21 1.47 0.17 1.55 0.1 51.8 0.98 1.9
    Mo -8.1 -9.7 -45.8 -48.9 0.81 0.21 - - - - 0.13 0.06 42.1
    Sn -27.2 -27.8 -68.2 -68.4 4.68 4.5 2.29 0.78 1.73 0.58 0.61 0.09 15.4
    Hf 3.1 2.6 -32.2 -32.8 0.90 0.19 - - - - 6.23 0.24 3.9
    Ta -7.3 -8.3 -62.2 -62.3 0.16 0.06 - - - - 4.00 0.11 2.9
    注:AV表示测定值的平均值(10-6);1σ单位10-6RSD表示测定值的相对标准偏差;N表示测试点数;“-”代表缺失值;相对误差=(测量值-推荐值或参考值)/推荐值或参考值。②是以Fe归一化结果为参考值,Fe做内标结果为测量值计算得到;③是以第二次结果为参考值,第一次结果为测量值计算得到
    下载: 导出CSV
  • [1] 陈华勇, 韩金生. 磁铁矿单矿物研究现状, 存在问题和研究方向[J]. 矿物岩石地球化学通报, 2015, 34(4): 724-730. doi: 10.3969/j.issn.1007-2802.2015.04.006
    [2] 方维萱, 李建旭. 智利铁氧化物铜金型矿床成矿规律、控制因素与成矿演化[J]. 地球科学进展, 2014, 29(9): 1011-1024. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201409005.htm
    [3] 黄柯, 朱明田, 张连昌, 等. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3): 262-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201703004.htm
    [4] 熊欣, 徐文艺, 贾丽琼, 等. 斑岩铜矿成矿构造背景研究进展[J]. 地球科学进展, 2014, 29(2): 250-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201402006.htm
    [5] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
    [6] 李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 2015, 89(12): 200-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201512015.htm
    [7] 柳小明, 高山, 第五春容, 等. 单颗粒锆石的20 μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定[J]. 科学通报, 2007, 52(2): 228-235. doi: 10.3321/j.issn:0023-074X.2007.02.017
    [8] 栾燕, 何克, 谭细娟. LA-ICP-MS标准锆石原位微区U-Pb定年及微量元素的分析测定[J]. 地质通报, 2019, 38(7): 1206-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201907014.htm
    [9] 谢烈文, 张艳斌, 张辉煌, 等. 锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定[J]. 科学通报, 2008, 53(2): 220-228. doi: 10.3321/j.issn:0023-074X.2008.02.013
    [10] Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
    [11] 袁继海, 孙冬阳, 赵令浩, 等. 榍石LA-ICP-MS U-Pb定年技术研究[J]. 地质学报, 2016, 90(8): 2059-2069. doi: 10.3969/j.issn.0001-5717.2016.08.032
    [12] 翟文建, 赵焕, 崔霄峰, 等. 北秦岭孤山坪地区辉长岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J]. 地质科技通报, 2020, 39(5): 127-138. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10058.shtml
    [13] 梁文博, 郭瑞清, 刘桂萍, 等. 新疆库鲁克塔格西段橄榄辉长岩脉石LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地质科技情报, 2019, 38(1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901007.htm
    [14] 赵珂, 杜学斌, 贾冀新, 等. 西湖凹陷平湖斜坡带的物源分析: 来自碎屑锆石U-Pb年代学及重矿物的证据[J]. 地质科技通报, 2020, 39(3): 68-76. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10024.shtml
    [15] 陈春飞, 刘先国, 胡兆初. LA-ICP-MS微区原位准确分析含水硅酸盐矿物主量和微量元素[J]. 地球科学: 中国地质大学学报, 2014, 39(5): 525-536. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201405003.htm
    [16] Cook N, Ciobanu C L, George L, et al. Trace element analysis of minerals in magmatic-hydrothermal ores by laser ablation inductively-coupled plasma mass spectrometry: Approaches and opportunities[J]. Minerals, 2016, 6(4): 1-34. http://www.researchgate.net/publication/309322868_Trace_Element_Analysis_of_Minerals_in_Magmatic-Hydrothermal_Ores_by_Laser_Ablation_Inductively-Coupled_Plasma_Mass_Spectrometry_Approaches_and_Opportunities
    [17] Danyushevsky L, Robinson P, Gilbert S, et al. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects[J]. Geochemistry: Exploration, Environment, Analysis, 2011, 11: 51-60. doi: 10.1144/1467-7873/09-244
    [18] Ding Lihua, Yang Guang, Xia Fang, et al. A LA-ICP-MS sulphide calibration standard based on a chalcogenide glass[J]. Mineralogical Magazine, 2011, 75(2): 279-287. doi: 10.1180/minmag.2011.075.2.279
    [19] Guther D, Hattendorf B. Solid sample analysis using laser ablation inductively coupled plasma mass apectrometry[J]. Trends in Analytical Chemistry, 2005, 24(3): 255-263. doi: 10.1016/j.trac.2004.11.017
    [20] 柳小明, 高山, 袁洪林, 等. 193 nm LA-ICP-MS对国际地质标准参考物质中42种主量和微量元素的分析[J]. 岩石学报, 2002, 18(3): 408-418. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203016.htm
    [21] 孟郁苗, 黄小文, 高剑峰, 等. 无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成[J]. 岩矿测试, 2016, 35(6): 585-594. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201606005.htm
    [22] Muller A, Wiedenbeck M, van den Kerkhof A M, et al. Trace elements in quartz: A combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study[J]. European Journal of Mineralogy, 2003, 15(4): 747-763. doi: 10.1127/0935-1221/2003/0015-0747
    [23] Norman M, Rominson P, Clark D. Major-and trace element analysis of sulfide ores by laser-ablation ICPMS, solution ICP-MS, and XRF: New data on international reference materials[J]. The Canadian Mineralogist, 2003, 41(2): 293-305. doi: 10.2113/gscanmin.41.2.293
    [24] 吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J]. 岩矿测试, 2015, 34(5): 503-511. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201505002.htm
    [25] 张德贤, 戴塔根, 胡毅. 磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨[J]. 岩矿测试, 2012, 31(1): 120-126. doi: 10.3969/j.issn.0254-5357.2012.01.015
    [26] Allan M M, Yardley B W D, Forbes L J, et al. Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions[J]. The American Mineralogist, 2005, 90(11/12): 1767-1775.
    [27] Guzmics T, Zajacz Z, Kodolanyi J, et al. LA-ICP-MS study of apatite- and K feldspar-hosted primary carbonatite melt inclusions in clinopyroxenite xenoliths from Lamprophyres, Hungary: Implications for significance of carbonatite melts in the Earth's mantle[J]. Geochimica et Cosmochimica Acta, 2008, 72: 1864-1886. doi: 10.1016/j.gca.2008.01.024
    [28] 蓝廷广, 胡瑞忠, 范宏瑞, 等. 流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用[J]. 岩石学报, 2017, 33(10): 3239-3262. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201710017.htm
    [29] 李晓春, 范宏瑞, 胡芳芳, 等. 单个流体包裹体LA-ICP-MS成分分析及在矿床学中的应用[J]. 矿床地质, 2010, 29(6): 1017-1028. doi: 10.3969/j.issn.0258-7106.2010.06.006
    [30] Dare S A S, Barnes S J, Beaudoin G. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination[J]. Geochimica et Cosmochimica Acta, 2012, 88: 27-50. doi: 10.1016/j.gca.2012.04.032
    [31] Gao Jianfeng, Zhou Meifu, Lightfoot P C, et al. Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, Northwestern China[J]. Economic Geology, 2013, 108: 1833-1848. doi: 10.2113/econgeo.108.8.1833
    [32] Nadoll P, Angerer T, Mauk J L, et al. The chemistry of hydrothermal magnetite: A review[J]. Ore Geology Reviews, 2014, 61: 1-32. doi: 10.1016/j.oregeorev.2013.12.013
    [33] Liu Pingping, Zhou Meifu, Chen Wei, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite: Fe-Ti-(Ⅴ) oxide-bearing mafic-ultramafic layered intrusions of the emeishan large igneous province, SW China[J]. Ore Geology Reviews, 2015, 65: 853-871. doi: 10.1016/j.oregeorev.2014.09.002
    [34] Huang Xiaowen, Zhou Meifu, Qi Liang, et al. Re-Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic-hydrothermal Fe deposit, NW China[J]. Mineralium Deposita, 2013, 48(8): 925-946. doi: 10.1007/s00126-013-0467-2
    [35] Huang Xiaowen, Gao Jianfeng, Qi Liang, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite and Re-Os dating of pyrite: The Tianhu hydrothermally remobilized sedimentary Fe deposit, NW China[J]. Ore Geology Reviews, 2015, 65: 900-916. doi: 10.1016/j.oregeorev.2014.07.020
    [36] Huang Xiaowen, Zhou Meifu, Qiu Yuzhuo, et al. In-situ LA-ICPMS trace elemental analyses of magnetite: The Bayan Obo Fe-REE-Nb deposit, North China[J]. Ore Geology Reviews, 2015, 65: 884-899. doi: 10.1016/j.oregeorev.2014.09.010
    [37] Chen Wei, Zhou Meifu, Gao Jianfeng, et al. Geochemistry of magnetite from Proterozoic Fe-Cu deposits in the Kangdian metallogenic province, SW China[J]. Mineralium Deposita, 2015, 50(7): 795-809. doi: 10.1007/s00126-014-0575-7
    [38] Nadoll P, Mauk J L, Leveille R A, et al. Geochemistry of magnetite from porphyry Cu and skarn deposits in the Southwestern United States[J]. Mineralium Deposita, 2015, 50(4): 493-515. doi: 10.1007/s00126-014-0539-y
    [39] Dupuis C, Beaudoin G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 2011, 46(3): 1-17. doi: 10.1007/s00126-011-0334-y
    [40] Dare S A S, Barnes S J, Beaudoin G, et al. Trace elements in magnetite as petrogenetic indicators[J]. Mineralium Deposita, 2014, 49: 785-796. doi: 10.1007/s00126-014-0529-0
    [41] Huang Xiaowen, Qi Liang, Meng Yumiao. Trace element geochemistry of magnetite from the Fe (-Cu) deposits in the Hami region, Eastern Tianshan Orogenic Belt, NW China[J]. Acta Geologica Sinica: English Edition, 2014, 88(1): 176-195. doi: 10.1111/1755-6724.12190
    [42] 胡浩, 段壮, Luo Yan, 等. 鄂东程潮铁矿床磁铁矿的微量元素组成及其矿床成因意义[J]. 岩石学报, 2014, 30(5): 1292-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201405008.htm
    [43] Boutroy E, Dare S A S, Beaudoin G, et al. Magnetite composition in Ni-Cu-PGE deposits worldwide and its application to mineral exploration[J]. Journal of Geochemical Exploration, 2014, 145: 64-81. doi: 10.1016/j.gexplo.2014.05.010
    [44] Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, et al. Partial least squares-discriminant analysis of rrace element compositions of magnetite from various VMS deposit subtypes: Application to mineral exploration[J]. Ore Geology Reviews, 2016, 78: 388-408. doi: 10.1016/j.oregeorev.2016.04.014
    [45] Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, et al. Principal component analysis of magnetite composition from volcanogenic massive sulfide deposits: Case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits[J]. Ore Geology Reviews, 2016, 72: 60-85. doi: 10.1016/j.oregeorev.2015.06.023
    [46] Liu Yongsheng, Hu Zhaochu, Gao Shan, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43. http://www.sciencedirect.com/science/article/pii/S0009254108003501
    [47] 刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(36): 3753-3769. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201336003.htm
    [48] Pearce N J, Perkins W T, Westgate J A, et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials[J]. Geostandards and Geoanalytical Research, 1997, 21(1): 115-144. doi: 10.1111/j.1751-908X.1997.tb00538.x
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  1152
  • PDF下载量:  878
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-10

目录

    /

    返回文章
    返回