留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CryoSat DEM与多种南极DEM的对比分析

岳文丽 董玉森 阿布都拉·阿不都卡地尔 崔静月 张帮政

岳文丽, 董玉森, 阿布都拉·阿不都卡地尔, 崔静月, 张帮政. CryoSat DEM与多种南极DEM的对比分析[J]. 地质科技通报, 2021, 40(3): 219-227. doi: 10.19509/j.cnki.dzkq.2021.0315
引用本文: 岳文丽, 董玉森, 阿布都拉·阿不都卡地尔, 崔静月, 张帮政. CryoSat DEM与多种南极DEM的对比分析[J]. 地质科技通报, 2021, 40(3): 219-227. doi: 10.19509/j.cnki.dzkq.2021.0315
Yue Wenli, Dong Yusen, Abudula-Abudukadier, Cui Jingyue, Zhang Bangzheng. Comparison and analysis of CryoSat DEM and the several Antarctic DEM[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 219-227. doi: 10.19509/j.cnki.dzkq.2021.0315
Citation: Yue Wenli, Dong Yusen, Abudula-Abudukadier, Cui Jingyue, Zhang Bangzheng. Comparison and analysis of CryoSat DEM and the several Antarctic DEM[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 219-227. doi: 10.19509/j.cnki.dzkq.2021.0315

CryoSat DEM与多种南极DEM的对比分析

doi: 10.19509/j.cnki.dzkq.2021.0315
基金项目: 

国家自然科学基金项目 41001248

国家自然科学基金项目 41404027

中国地质调查局项目 1212011220106

中国地质调查局项目 12120115063201

智能地学信息处理湖北省重点实验室开放研究课题 KLIGIP201605

详细信息
    作者简介:

    岳文丽(1994-), 女, 现正攻读地理学专业硕士学位, 主要从事卫星测高方面的研究工作。E-mail: 1829134712@qq.com

    通讯作者:

    董玉森(1976-), 男, 副教授, 主要从事地学遥感及全球变化的理论与方法研究工作。E-mail: dongyusen@gmail.com

  • 中图分类号: P226

Comparison and analysis of CryoSat DEM and the several Antarctic DEM

  • 摘要: 南极洲被巨厚冰雪覆盖,地质构造以南极横断山脉为界,总体分为东南极地盾和西南极活动带。数字高程模型(DEM)是研究南极冰盖变化的基础数据之一。通过多期次数字高程模型相比较获得高程的变化信息,是分析南极冰盖厚度变化和物质平衡的重要手段。然而不同类型DEM之间存的平面误差和垂直误差影响分析结果的精度。首先利用配准消除DEM间的水平误差,然后计算并按坡度提取CryoSat DEM与其他DEM的平均高程差和标准差,最后分析高程差的时空变化特征。通过分析发现,DEM之间存在不同的平面误差。其中TanDEM_X DEM与CryoSat DEM的高程平面偏差最小,而ICESat DEM与CryoSat DEM的高程平面偏差最大。在垂直方向上,0°~1°的坡度范围内,CryoSat DEM与TanDEM_X DEM的平均高程差在3.5~5.5 m之间,标准差小于18.0 m;CryoSat DEM和Bamber 1km DEM的平均高程差在-2.5~+1.0 m之间,标准差小于24.2 m;CryoSat DEM与ICESat DEM的平均高程差在-25.0~-1.0 m之间,标准差小于47.2 m;CryoSat DEM与RAMPv2 DEM的平均高程差在1.3~3.2 m之间,标准差小于45.6 m。通过研究发现南极冰盖内部高程增加,但西南极冰盖和东南极冰盖高程均在降低,且西南极降低明显,同时南极边缘地区高程降低明显。本研究为全球变化研究和南极物质平衡研究提供了重要参考。

     

  • 图 1  流程图

    Figure 1.  Flowchart of DEM to DEM validation

    图 2  南极地区各类DEM与CryoSat DEM的水平位移

    Figure 2.  Horizontal shifts of various Antarctic with CryoSat DEM

    图 3  南极地区5种DEM间高程差分布

    Figure 3.  Distribution of the elevation differences for the 5 Antarctic DEMs

    图 4  南极地区5种DEM间高程差按坡度统计

    Figure 4.  Elevation differences of the 5 Antarctic DEMs as a function of surface slope

    图 5  南极地区5种DEM间高程差空间分布

    Figure 5.  Spatial distribution of the elevation differences of the 5 Antarctic DEMs

    图 6  南极地区DEM间高程差空间分布

    Figure 6.  Spatial distribution of the elevation differences of the Antarctic DEMs

    表  1  南极地区5种DEM对比

    Table  1.   Comparison of the 5 digital elevation models of Antarctica

    RAMPv2 DEM ICESat DEM Bamber 1km DEM TanDEM_X DEM CryoSat DEM
    发布时间 1999年 2007年 2009年 2016年 2018年
    使用数据 ERS-1测高数据,ADD、USGS
    等制图数据,GPS实测数据等
    ICESat测高数据 ERS-1和ICEsat测高数据 SAR数据 CryoSat-2测高数据
    覆盖范围 63°~90°S 63°~86°S 60°~86°S 60°~90°S 60°~88°S
    空间分辨率 200,400,1 000 m 500 m 1 km 1 km
    数据采集时间 20世纪40年代-90年代 2003/02-2005/06 1994/03-1995/05,
    2003/02-2008/03
    2010/12-2015/01 2010/07-2016/07
    网格投影 极方位 极方位 极方位 极方位
    投影椭球 TOPEX/Poseidon、WGS84 TOPEX/Poseidon WGS84 WGS84
    高程基准 WGS84、OSU91A WGS84、EGM96 WGS84 WGS84 WGS84
    数据格式 ARC/INFO、二进制、ASCII 二进制 二进制、ASCII 二进制 二进制
    下载: 导出CSV

    表  2  南极地区5种DEM高程求差统计

    Table  2.   Statistics of elevation differences for the 5 Antarctic DEMs

    统计参数 CryoSat-TanDEM_X CryoSat-Bamber1km CryoSat-ICESat CryoSat-RAMPv2
    均值/m 5.126 0.532 -6.808 2.812
    标准差/m 11.167 13.154 24.379 22.424
    下载: 导出CSV

    表  3  南极地区5种DEM间高程差按坡度统计结果

    Table  3.   Statistics of the elevation differences for the 5 Antarctic DEMs as a function of the regional surface slope

    坡度/(°) CryoSat-TanDEM_X CryoSat-Bamber 1 km CryoSat-ICESat CryoSat-RAMPv2
    均值/m 标准差/m 均值/m 标准差/m 均值/m 标准差/m 均值/m 标准差/m
    (0.00, 0.05] 3.949 4.649 0.154 4.616 -1.109 6.915 1.752 6.594
    (0.05, 0.10] 4.966 4.082 0.642 4.269 -1.404 8.995 2.821 8.034
    (0.10, 0.15] 5.120 4.531 0.816 4.680 -2.490 11.659 3.134 10.230
    (0.15, 0.20] 5.203 5.382 0.930 5.586 -4.313 14.803 3.189 13.002
    (0.20, 0.25] 5.292 6.355 0.952 6.753 -6.391 17.884 2.956 15.925
    (0.25, 0.30] 5.401 7.442 0.897 8.036 -8.259 20.897 2.815 19.151
    (0.30, 0.35] 5.388 8.504 0.684 9.382 -9.945 23.813 2.405 22.317
    (0.35, 0.40] 5.260 9.521 0.367 10.650 -11.580 26.540 2.023 25.334
    (0.40, 0.45] 4.987 10.301 -0.117 11.623 -13.548 29.004 1.772 28.034
    (0.45, 0.50] 4.631 11.134 -0.623 12.763 -15.659 31.390 1.609 30.524
    (0.50, 0.55] 4.282 11.724 -1.186 13.726 -18.008 33.504 1.428 32.892
    (0.55, 0.60] 3.984 12.406 -1.536 14.846 -19.577 35.645 1.372 35.004
    (0.60, 0.65] 3.819 12.989 -1.928 15.859 -21.417 37.412 1.504 36.881
    (0.65, 0.70] 3.585 13.709 -2.219 16.909 -22.908 39.135 1.334 38.524
    (0.70, 0.75] 3.586 14.366 -2.382 18.080 -24.090 40.840 1.427 40.171
    (0.75, 0.80] 3.569 14.860 -2.499 18.966 -24.894 42.180 1.417 41.532
    (0.80, 0.85] 3.642 15.669 -2.477 20.311 -24.829 43.712 1.647 42.782
    (0.85, 0.90] 3.756 16.393 -2.464 21.601 -24.724 44.894 1.602 43.993
    (0.90, 0.95] 3.875 17.257 -2.410 22.702 -24.654 46.150 2.548 45.103
    (0.95, 1.00] 4.015 17.971 -2.417 24.130 -23.645 47.162 2.523 45.569
    注:圆形空白区为数据不覆盖区
    下载: 导出CSV

    表  4  LRM测量区和SARIn测量区高程差统计

    Table  4.   Statistics of elevation differences for LRM measurement area and SARIn measurement area

    统计参数 CryoSat-TanDEM_X CryoSat-Bamber 1 km
    LRM测量区 SARIn测量区 LRM测量区 SARIn测量区
    均值/m 6.514 3.657 2.008 -0.982
    标准差/m 7.047 14.140 6.368 17.447
    下载: 导出CSV
  • [1] 秦大河, 任贾文. 南极冰川学[M]. 北京: 科学出版社, 2001.

    Qin D H, Ren J W. Antarctic glaciology[M]. Beijing: Science Press, 2001(in Chinese).
    [2] Vaughan D G. Reassessment of net surface mass balance in Antarctica[J]. Journal of Climate, 1999, 12(4): 933-946. doi: 10.1175/1520-0442(1999)012<0933:RONSMB>2.0.CO;2
    [3] Zwally J H, Brenner A C, Dimarzio J P, et al. Ice sheet topography, slopes and flow directions from ERS altimetry[C]//Florence, Italy: The 3rd ERS Symposium. 1997.
    [4] Rignot E, Bamber J L, Van D, et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling[J]. Nature Geoscience, 2008, 1(2): 106-110. doi: 10.1038/ngeo102
    [5] 王旭, 周爱国, 孙自永, 等. 1972-2009年念青唐古拉山西段冰湖分布及其变化特征[J]. 地质科技情报, 2012, 31(4): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201204017.htm

    Wang X, Zhou A G, Sun Z Y, et al. Distribution and Changes Characteristics of Glacial Lakes in Western Nyainqentanglha Range During 1972-2009[J]. Geological Science and Technology Information, 2012, 31(4): 91-97(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201204017.htm
    [6] 阿布都拉·阿不都卡地尔, 董玉森, 务宇宽, 等. 1972-2017年南阿尔泰山中部冰湖变化特征及其对气候变化的响应[J]. 地质科技通报, 2020, 39(4): 94-102. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10004.shtml

    Abudula·Abudukadier, Dong Y S, Wu Y K, et al. Characteristics of glacial lakes in the central part of the southern Altai Mountains from 1927 to 2017 and their responses to climate changes[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 94-102(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract10004.shtml
    [7] 胡涛, 樊鑫, 王硕, 等. 基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J]. 地质科技通报, 2020, 39(2): 113-121. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9980.shtml

    Hu T, Fan X, Wang S, et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 113-121(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract9980.shtml
    [8] 赵洪波, 梁涛, 何远信. ICDP湖泊科学钻探进展[J]. 地质科技通报, 2020, 39(2): 204-214. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9991.shtml

    Zhao H B, Liang T, He Y X. Advances of ICDP lake scientific drilling program[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 204-214(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract9991.shtml
    [9] Zwally H J, Binschadler R A, Brenner A C, et al. Surface elevation contours of Greenland and Antarctic Ice Sheet[J]. Journal of Geophysical Research: Oceans, 1983, 88(C3): 1589-1598. doi: 10.1029/JC088iC03p01589
    [10] Budd W F, Jenssen D, Smith I N. A three-dimensional time-dependent model of the West Antarctic ice sheet[J]. Annals of Glaciology, 1984, 5: 29-36. doi: 10.3189/1984AoG5-1-29-36
    [11] Zwally H J, Major J A, Brenner A C, et al. Ice measurements by GEOSAT radar altimetry[J]. Johns Hopkins APL Technical Digest, 1987, 8(2): 251-254. http://adsabs.harvard.edu/abs/1987JHATD...8..251Z
    [12] Bamber J L, Bindschadler R A. An improved elevation data set for climate and ice-sheet modeling: Validation with satellite imagery[J]. Annals of Glaciology, 1997, 25: 439-444. doi: 10.3189/S0260305500014427
    [13] Liu H, Jezek K, Li B. Development of Antarctic digital elevation model by integrating cartographic and remotely sensed data: A geographic information system based approach[J]. Journal of Geophysical Research, 1999, 104(B10): 23199-23213. doi: 10.1029/1999JB900224
    [14] Di Marzio J, Brenner A, Schutz R, et al. GLAS/ICESat 500 m laser altimetry digital elevation model of Antarctica[R]. Colorado, USA: National Snow and Ice Data Center (Digital Media), 2007.
    [15] Bamber J L, Gomez-Dans J L, Griggs J A. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data - Part 1: Data and methods[J]. The Cryosphere, 2009, 3: 101-111. doi: 10.5194/tc-3-101-2009
    [16] Griggs J A, Bamber J L. A new 1 km digital elevation model of Antarctica derived from combined radar and laser data - Part 2: Validation and error estimates[J]. The Cryosphere, 2009, 3: 113-123. doi: 10.5194/tc-3-113-2009
    [17] Helm V, Humbert A, Miller H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2[J]. The Cryosphere, 2014, 8(4): 1539-1559. doi: 10.5194/tc-8-1539-2014
    [18] Wessel B, Huber M, Wohlfart C, et al. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2018, 139: 171-182. http://www.sciencedirect.com/science/article/pii/S0924271618300522
    [19] Slater T, Shepherd A, McMillan M, et al. A new digital elevation model of Antarctica derived from CryoSat-2 altimetry[J]. The Cryosphere, 2018, 12(4): 1551-1562. doi: 10.5194/tc-12-1551-2018
    [20] Hamilton G S, Spikes V B. Evaluating a satellite altimeter-derived digital elevation model of Antarctica using precision kinematic GPS profiling[J]. Global and Planetary Change, 2004, 42(1/4): 17-30. https://www.sciencedirect.com/science/article/pii/S0921818104000323
    [21] 肖峰, 李斐, 张胜凯, 等. 联合CryoSat-2测高数据和地面高程数据建立东南极拉斯曼丘陵地区DEM[J]. 武汉大学学报: 信息科学版, 2017, 42(10): 1417-1422. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201710012.htm

    Xiao F, Li F, Zhang S K, et al. DEM production for larsemann hills combining Cryosat-2 and ground-based elevation data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1417-1422(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201710012.htm
    [22] 袁乐先, 李斐, 张胜凯, 等. 基于ICESat数据的南极冰盖DEM插值方法比较及精度分析[J]. 冰川冻土, 2015, 37(4): 946-953. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201504011.htm

    Yuan L X, Li F, Zhang S K, et al. Comparing the interpolation algorithms and analyzing the accuracy of a digital elevation model of the Antarctic Ice Sheet based on ICESat data[J]. Journal of Glaciology and Geocryology, 2015, 37(4): 946-953(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201504011.htm
    [23] 万雷, 周春霞, 鄂栋臣, 等. 基于InSAR和ICESat的南极冰盖地区DEM提取和精度分析[J]. 冰川冻土, 2015, 37(5): 1160-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201505004.htm

    Wan L, Zhou C X, E D C, et al. DEM generation and precision analysis of Antarctic ice sheet based on InSAR and ICESat data[J]. Journal of Glaciology and Geocryology, 2015, 37(5): 1160-1167(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201505004.htm
    [24] Li F, Xiao F, Zhang S K, et al. DEM development and precision analysis for Antarctic ice sheet using Cryosat-2 altimetry data[J]. Chinese Journal of Geophysics, 2017, 60(3): 231-243. doi: 10.1002/cjg2.30041
    [25] 黄科伟, 李斐, 张胜凯, 等. 南极冰盖DEM机载测高验证与分析——以西南极Thwaites冰川为例[J]. 测绘学报, 2016, 45(5): 544-551. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201605006.htm

    Huang K W, Li F, Zhang S K, et al. Validation and analysis of the Antarctic digital elevation models based on airborne altimetry: A case study of thwaites glacier, West Antarctica[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5): 544-551(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201605006.htm
    [26] Bamber J, Gomez-Dans J L. The accuracy of digital elevation models of the Antarctic continent[J]. Earth and Planetary Science Letters, 2005, 237(3/4): 516-523. http://www.sciencedirect.com/science/article/pii/S0012821X05003729
    [27] 墙强, 周春霞, 赵秋阳, 等. 基于CryoSat-2的东南极PANDA断面考察沿线DEM制作及精度分析[J]. 冰川冻土, 2016, 38(2): 445-452. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201602019.htm

    Qiang Q, Zhou C X, Zhao Q Y, et al. DEM generation and analysis using CryoSat-2 data along the expedition route in PANDA transection, East Antarctica[J]. Journal of Glaciology and Geocryology, 2016, 38(2): 445-452(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201602019.htm
    [28] 詹蕾, 汤国安, 杨昕. SRTM DEM高程精度评价[J]. 地理与地理信息科学, 2010, 26(1): 34-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201001009.htm

    Zhan L, Tang G A, Yang X. Evaluation of SRTM DEMs' elevation accuracy: A case study in Shaanxi Province[J]. Geography and Geo-Information Science, 2010, 26(1): 34-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201001009.htm
    [29] 肖峰, 张胜凯, 鄂栋臣, 等. 4种南极数字高程模型的精度比较与分析[J]. 冰川冻土, 2014, 36(3): 640-648. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201403020.htm

    Xiao F, Zhang S K, E D C, et al. Precision comparison and analysis of the 4 Antarctic digital elevation models[J]. Journal of Glaciology and Geocryology, 2014, 36(3): 640-648(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201403020.htm
    [30] Zwally H J, Schutz B, Abdalati W, et al. ICESat's laser measurement of polar ice, atmosphere, ocean and land[J]. Journal of Geodynamics, 2002, 34(3/4): 405-445. http://www.sciencedirect.com/science/article/pii/S026437070200042X
    [31] Wang X W, Cheng X, Gong P, et al. Earth science applications of ICESat/GLAS: A review[J]. International Journal of Remote Sensing, 2011, 32(23): 8837-8864. doi: 10.1080/01431161.2010.547533
    [32] Wingham D J, Francis C R, Baker S, et al. CryoSat: A mission to determine the fluctuations in Earth's land and marine ice fields[J]. Advances in Space Research, 2006, 37(4): 841-871. doi: 10.1016/j.asr.2005.07.027
    [33] Leprince S, Barbot S, Ayoub F, et al. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007, 45(6): 1529-1558. http://ieeexplore.ieee.org/document/4215064
    [34] Scherler D, Leprince S, Strecker M R. Glacier-surface velocities in alpine terrain from optical satellite imagery: Accuracy improvement and quality assessment[J]. Remote Sensing of Environment, 2008, 112(10): 3806-3819. doi: 10.1016/j.rse.2008.05.018
    [35] Wang F, Bamber J L, Cheng X. Accuracy and performance of CryoSat-2 SARIn mode data over antarctica[J]. IEEE Geoscience & Remote Sensing Letters, 2015, 12(7): 1516-1520. http://ieeexplore.ieee.org/document/7083707/
    [36] Wouters B, Martinespañol A, Helm V, et al. Dynamic thinning of glaciers on the Southern Antarctic Peninsula[J]. Science, 2015, 348(6237): 899-903. doi: 10.1126/science.aaa5727
    [37] Shen Q, Wang H S, Shum C K, et al. Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica[J]. Scientific Reports, 2018, 8(1): 4477-4484. doi: 10.1038/s41598-018-22765-0
    [38] Sutterley T C, Velicogna I, Rignot E, et al. Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques[J]. Geophysical Research Letters, 2015, 41(23): 8421-8428. doi: 10.1002/2014GL061940
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  12
  • PDF下载量:  601
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-02

目录

    /

    返回文章
    返回