留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西藏错那地热田水化学特征与物源机制

余浩文 刘昭 荣峰 陈康 男达瓦 刘仕娟 刘绍赟

余浩文, 刘昭, 荣峰, 陈康, 男达瓦, 刘仕娟, 刘绍赟. 西藏错那地热田水化学特征与物源机制[J]. 地质科技通报, 2021, 40(3): 34-44. doi: 10.19509/j.cnki.dzkq.2021.0318
引用本文: 余浩文, 刘昭, 荣峰, 陈康, 男达瓦, 刘仕娟, 刘绍赟. 西藏错那地热田水化学特征与物源机制[J]. 地质科技通报, 2021, 40(3): 34-44. doi: 10.19509/j.cnki.dzkq.2021.0318
Yu Haowen, Liu Zhao, Rong Feng, Chen Kang, Nan Dawa, Liu Shijuan, Liu Shaoyun. Characteristics and source mechanism of geothermal field in Cuona, Tibet[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 34-44. doi: 10.19509/j.cnki.dzkq.2021.0318
Citation: Yu Haowen, Liu Zhao, Rong Feng, Chen Kang, Nan Dawa, Liu Shijuan, Liu Shaoyun. Characteristics and source mechanism of geothermal field in Cuona, Tibet[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 34-44. doi: 10.19509/j.cnki.dzkq.2021.0318

西藏错那地热田水化学特征与物源机制

doi: 10.19509/j.cnki.dzkq.2021.0318
基金项目: 

国家自然科学基金项目 41502220

中国地质调查局项目 12120114024601

西藏自治区自然科学基金重点项目 XZ202001ZR0044G

西藏自治区自然科学基金项目 XZ2019ZRG-158

详细信息
    作者简介:

    余浩文(1995-), 男, 现正攻读地质工程专业硕士学位, 主要从事水文地质方面的研究工作。E-mail: 2935458509@qq.com

    通讯作者:

    刘昭(1983-), 男, 副教授, 主要从事地热地质、水文地球化学及地下水科学教学及科研工作。E-mail: liuzhao0129@126.com

  • 中图分类号: P618.4

Characteristics and source mechanism of geothermal field in Cuona, Tibet

  • 摘要: 错那县位于西藏自治区山南地区南部、喜马拉雅山脉中段,是我国重要的边境口岸。为了研究错那地区地热田的水化学特征与物源机制,通过对研究区的温泉点水样的水化学数据进行化验分析,结合研究区的地热地质条件,使用piper三线图和Gibbs图等分析了水化学特征和物质来源。在阐明几种主要的地热温度计原理和适用条件的基础上,利用各种地球化学温度计和多矿物平衡图解法对研究区地下热水进行了温度估算。基于综合分析,最终得出热储温度为117℃左右,分析出地下热水的水化学类型以HCO3-Na型为主,并进行了相应的地热资源评价。这有助于查明地下热水物质来源,探明该地区地热资源,以便在今后为该地区的地热资源开发利用提供技术支持,同时也推动了生态环境的保护和能源结构的逐步改变。

     

  • 图 1  研究区地质简图及采样点位置图

    Figure 1.  Geological sketch of the distribution and location of sampling points in the study area

    图 2  水样主要水化学指标箱型图

    Figure 2.  Box plot of the major chemical index of water samples

    图 3  研究区水样piper图

    Figure 3.  Piper diagram of water samples in the study area

    图 4  Q01采样点历年水质动态曲线图

    Figure 4.  Dynamic graph of water quality at sampling point Q01 over the years

    图 5  研究区天然水阳离子及阴离子Gibbs分布模式图

    Figure 5.  Gibbs distribution model of cations and anions of natural water samples in the study area

    图 6  研究区水样Na-K-Mg三角图

    Figure 6.  Ternary diagram of Na-K-Mg of water samples in the study area

    图 7  研究区ZK02水样lg(Q/K)-t

    Figure 7.  lg(Q/K)-t diagram of water samples at Point ZK02 in the study area

    图 8  研究区Q01水样lg(Q/K)-t

    Figure 8.  lg(Q/K)-t diagram of water samples at Point Q01 in the study area

    表  1  研究区主要水化学组分测试结果

    Table  1.   Results of major hydrochemical properties of water samples in the study area

    序号 水样编号 ρ(TDS)/(mg·L-1) 阳离子ρB/(mg·L-1) 阴离子ρB/(mg·L-1) SiO2 Sr pH T/℃ 属性
    原始值 平均值 Li+ K+ Na+ Ca2+ Mg2+ NO3- CO32- Cl- SO42- F- HCO3- ρB/(mg·L-1)
    1 H1 132.94 101.53 0.027 1.25 3.52 25.68 2.10 0.50 0 1.42 14.62 0.28 73.39 6.88 0.192 7.76 15 河流水
    2 H2 142.67 0.020 0.70 3.62 25.68 2.92 < 0.02 1.42 3.85 0.17 91.41 9.01 0.196 8.00 17
    3 H3 28.98 0.020 0.37 0.75 3.21 0 0.35 0 0.71 0.38 0.26 14.81 4.77 0.064 8.10 14
    4 J01 234.11 308.35 0.020 1.23 9.92 40.14 3.89 6.70 0 7.09 25.01 0.22 124.88 9.24 - 7.86 5 地下水
    5 ZK01 506.34 0.305 4.73 124.56 17.64 0.97 0.10 15.12 29.78 119.17 4.60 157.42 11.80 0.230 8.20 22.5
    6 Q04 344.67 0.064 1.75 42.51 32.10 6.82 1.70 0 8.58 44.25 1.30 181.53 15.81 0.389 7.77 13
    7 Q05 388.85 0.350 1.88 67.74 22.47 5.84 0.40 0 17.02 86.25 1.80 151.92 22.79 0.369 7.90 23
    8 Q06 225.20 0.043 0.40 2.57 38.52 7.79 3.30 0 7.10 19.24 0.02 131.32 11.58 0.515 7.84 9
    9 Q07 234.46 0.030 0.31 4.39 36.92 8.76 1.90 0 7.70 4.25 0.04 149.35 16.26 0.586 7.80 9
    10 Q08 367.21 0.144 2.75 49.98 32.10 5.84 0.45 0 12.41 62.56 1.70 168.66 22.08 0.506 7.90 19
    11 Q09 165.96 0.041 0.41 14.49 17.66 2.92 0.75 0 6.21 19.24 0.28 74.67 16.99 0.227 8.03 8
    12 ZK02 327.25 361.95 0.235 1.61 62.86 13.83 0.97 0.20 29.64 12.76 43.25 3.30 78.83 68.20 0.063 8.93 55 地热水
    13 Q01 396.65 2.790 3.59 83.25 11.24 0.97 4.50 17.73 3.19 96.20 4.70 83.68 69.10 0.146 8.83 56
    下载: 导出CSV

    表  2  错那研究区温泉热储温度计算结果

    Table  2.   Calculation results of hot springs geothermal temperature in the study area of Cuona, Tibet

    实验编号 二氧化硅温度计 钠钾温度计 钾镁温度计 钠钾钙温度计
    t/℃
    Q01 118 133 71 727
    ZK02 116 96 53 581
    平均值 117 115 62 654
    下载: 导出CSV
  • [1] 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201704002.htm

    Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4): 449-459(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201704002.htm
    [2] 王贵玲, 张发旺, 刘志明. 国内外地热能开发利用现状及前景分析[J]. 地球学报, 2000, 21(2): 134-139. doi: 10.3321/j.issn:1006-3021.2000.02.004

    Wang G L, Zhang F W, Liu Z M. Development and utilization of geothermal resources at home and abroad present situation and prospect analysis[J]. Acta Geoscientica Sinica, 2000, 21(2): 134-139(in Chinese with English abstract). doi: 10.3321/j.issn:1006-3021.2000.02.004
    [3] 章铭陶. 古堆热田初探: 西藏高原地热考察散记之一[J]. 地理知识, 1977, 17(5): 14-18.

    Zhang T M. Preliminary study on Gudui geothermal field: Geothermal survey of Tibet Plateau[J]. Geographical Knowledge, 1977, 17(5): 14-18(in Chinese with English abstract).
    [4] 朱梅湘, 徐勇. 西藏羊八井地热田水热蚀变[J]. 地质科学, 1989, 24(2): 162-175, 214. doi: 10.3321/j.issn:0563-5020.1989.02.001

    Zhu M X, Xu Y. Hydrothermal alteration in the Yangbajain geothermal field, Tibet[J]. Scientia Geologica Sinica, 1989, 24(2): 162-175, 214(in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.1989.02.001
    [5] 杨期隆. 西藏羊八井地热田侧向舌型系统[J]. 水文地质工程地质, 1994, 21(4): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG404.013.htm

    Yang Q L. The lateral tongue type of geothermal system in the Yangbajain geothermal field, Tibet[J]. Hydrogeology & Engineering Geology, 1994, 21(4): 48-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG404.013.htm
    [6] 佟伟, 廖志杰, 刘时彬, 等. 西藏温泉志[M]. 北京: 科学出版社, 2000.

    Tong W, Liao Z J, Liu S B, et al. Thermal springs in Tibet[M]. Beijing: Science Press, 2000(in Chinese with English abstract).
    [7] 李振清, 侯增谦, 聂凤军, 等. 西藏地热活动中铯的富集过程探讨[J]. 地质学报, 2006, 80(9): 1457-1464. doi: 10.3321/j.issn:0001-5717.2006.09.019

    Li Z Q, Hou Z Q, Nie F J, et al. Enrichment of element cesium during modern geothermal action in Tibet, China[J]. Acta Geologica Sinica, 2006, 80(9): 1457-1464(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.09.019
    [8] 周立. 西藏中部典型温泉特征[D]. 北京: 中国地质大学(北京), 2012.

    Zhou L. Characteristics of the typical hot springs in the central Tibet[D]. Beijing: China University of Geosciences (Beijing), 2012(in Chinese with English abstract).
    [9] 刘昭. 西藏尼木-那曲地热带典型高温地热系统形成机理研究[D]. 北京: 中国地质科学院, 2014.

    Liu Z. The forming mechanism of typical high-temperature geothermal systems in Nimu-Naqu geothermal belt, Tibet[D]. Beijing: Chinese Academy of Geological Sciences, 2014(in Chinese with English abstract).
    [10] 王思琪. 西藏古堆高温地热系统水文地球化学过程与形成机理[D]. 北京: 中国地质大学(北京), 2017.

    Wang S Q. Hydrogeochemical processes and genesis machenism of high-temperature geothermal system in Gudui, Tibet[D]. Beijing: China University of Geosciences (Beijing), 2017(in Chinese with English abstract).
    [11] 章旭, 郝红兵, 刘康林, 等. 西藏加查象牙泉水文地球化学特征及成因[J]. 水文地质工程地质, 2019, 46(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201904002.htm

    Zhang X, Hao H B, Liu K L, et al. Hydrogeochemical characteristics and formation of the Ivory Spring in Jiacha County of Tibet[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 1-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201904002.htm
    [12] 郭宁, 刘昭, 男达瓦, 等. 西藏昌都觉拥温泉水化学特征及热储温度估算[J]. 地质论评, 2020, 66(2): 499-509. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002022.htm

    Guo N, Liu Z, Nan D W, et al. The characteristics and reservoir temperatures of hot springs in Jueyong, Chamdo, Xizang(Tibet)[J]. Geological Review, 2020, 66(2): 499-509(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002022.htm
    [13] Tannock L, 王亚, 李景富, 等. 广东河源断裂带地热成因及与构造关系初探[J]. 地质力学学报, 2019, 25(3): 400-411. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201903007.htm

    Tannock L, Wang Y, Li J F, et al. A preliminary study on the mechanics and tectonic relationship to the geothermal field of the Heyuan fault zone in Guangdong Province[J]. Journal of Geomechanics, 2019, 25(3): 400-411(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201903007.htm
    [14] Kose R. Geothermal energy potential for power generation in Turkey: A case study in Simav, Kutahya[J]. Renewable and Sustainable Energy Reviews, 2007, 11(3): 497-511. doi: 10.1016/j.rser.2005.03.005
    [15] 刘仕娟. 西藏错那中高温地热流体物源分析[D]. 石家庄: 河北地质大学, 2016.

    Liu S J. The provenance analysis of the medium-high temperature geothermal fluid in Cona, Tibet[D]. Shijiazhuang: Hebei GEO University, 2016(in Chinese with English abstract).
    [16] 孙红丽, 马峰, 刘昭, 等. 西藏高温地热显示区氟分布及富集特征[J]. 中国环境科学, 2015, 35(1): 251-259. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201501045.htm

    Sun H L, Ma F, Liu Z, et al. The distribution and enrichment characteristics of fluoride in geothermal active area in Tibet[J]. China Environmental Science, 2015, 35(1): 251-259(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201501045.htm
    [17] 付中彪, 何宁洁, 鲍征宇, 等. 赣南地区水稻: 根系土系统中硒含量影响因素分析[J]. 地质科技情报, 2019, 38(5): 220-229. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905024.htm

    Fu Z B, He N J, Bao Z Y, et al. Analysis of influencing factors of selenium content in rice-root soil system in southern Jiangxi[J]. Geological Science and Technology Information, 2019, 38(5): 220-229(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905024.htm
    [18] 刘基, 高敏, 靳德武, 等. 榆神矿区地表水水化学特征及其影响因素分析[J]. 煤炭科学技术, 2020, 48(7): 354-361. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202007041.htm

    Liu J, Gao M, Jin D W, et al. Hydrochemical characteristics of surface water and analysis on influence factors in Yushen mining area[J]. Coal Science and Technology, 2020, 48(7): 354-361(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202007041.htm
    [19] 孙红丽, 马峰, 蔺文静, 等. 西藏高温地热田地球化学特征及地热温标应用[J]. 地质科技情报, 2015, 34(3): 171-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503024.htm

    Sun H L, Ma F, Lin W J, et al. Geochemical characteristics and geothermometer application in high temperature geothermal field in Tibet[J]. Geological Science and Technology Information, 2015, 34(3): 171-177(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503024.htm
    [20] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9922.shtml

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract9922.shtml
    [21] Brown G H. Glacier meltwater hydrochemistry[J]. Applied Geochemistry, 2002, 17(7): 855-883. doi: 10.1016/S0883-2927(01)00123-8
    [22] 邢文乐, 马瑞, 孙自永, 等. 敦煌盆地地下水水化学特征及水质评价[J]. 地质科技情报, 2016, 35(5): 196-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605027.htm

    Xing W L, Ma R, Sun Z Y, et al. Hydrochemical characteristics and water quality assessment of groundwater in the Dunhuang Basin, Northwestern China[J]. Geological Science and Technology Information, 2016, 35(5): 196-202(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605027.htm
    [23] 胡静, 涂良全, 刘会平. 河南省九龙山汤池温泉地热地质特征及成因机制[J]. 地质科技情报, 2012, 31(4): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201204016.htm

    Hu J, Tu L Q, Liu H P. Geological features and formation mechanism of Tangchi hot spring in Jiulongshan mountain area[J]. Geological Science and Technology Information, 2012, 31(4): 86-90(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201204016.htm
    [24] Fournier R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1977, 5(1): 41-50. http://www.sciencedirect.com/science/article/pii/0375650577900074
    [25] Arnósson S, Andrésdóttir A. Processes controlling the distribution of boron and chlorine in natural waters in Iceland[J]. Geochimica et Cosmochimica Acta, 1995, 59(20): 4125-4146. doi: 10.1016/0016-7037(95)00278-8
    [26] Wang L H, Dong Y H, Xie Y X, et al. Distinct groundwater recharge sources and geochemical evolution of two adjacent subbasins in the lower Shule River Basin, northwest China[J]. Hydrogeology Journal, 2016, 24(8): 1967-1979. doi: 10.1007/s10040-016-1456-1
    [27] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170: 1088-1090. doi: 10.1126/science.170.3962.1088
    [28] 刘峰, 李忠勤, 郝嘉楠, 等. 额尔齐斯河源春季水化学及稳定同位素特征研究[J]. 冰川冻土, 2020, 42(1): 234-242. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202001021.htm

    Liu F, Li Z Q, Hao J N, et al. Study on the hydrochemical and stable isotope characteristics at the headwaters of the Irtysh River in spring[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 234-242(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202001021.htm
    [29] Tóth J. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations[J]. Hydrogeology Journal, 1999, 7(1): 1-14. doi: 10.1007/s100400050176
    [30] Peiffer L, Wanner C, Spycher N, et al. Optimized multicompo-nent vs. classical geothermometry: Insights from modelling studies at the Dixie Valley geothermal area[J]. Geothermics, 2014, 51: 154-169. doi: 10.1016/j.geothermics.2013.12.002
    [31] Ballantyne J M, Moore J N. Arsenic geochemistry in geothermal systems[J]. Geochimica et Cosmochimica Acta, 1988, 52(2): 475-483. doi: 10.1016/0016-7037(88)90102-0
    [32] Dotsika E, Poutoukis D, Raco B. Fluid geochemistry of the Methana Peninsula and Loutraki Geothermal area, Greece[J]. Journal of Geochemical Exploration, 2010, 104(3): 97-104. doi: 10.1016/j.gexplo.2010.01.001
    [33] Saibi H, Ehara S. Temperature and chemical changes in the fluids of the Obama geothermal field in response to field utilization[J]. Geothermics, 2010, 39(3): 228-241. doi: 10.1016/j.geothermics.2010.06.005
    [34] Truesdell A H, Haizlip J R, Armannsson H, et al. Origin and transport of chloride in superheated Geothermal steam[J]. Geothermics, 1989, 18(1): 295-304. http://www.sciencedirect.com/science/article/pii/0375650589900394
    [35] Armienta M A, Rodríguez R, Ceniceros N, et al. Groundwater quality and geothermal energy. The case of Cerro Prieto Geothermal Field, México[J]. Renewable Energy, 2014, 63: 236-254. doi: 10.1016/j.renene.2013.09.018
    [36] Grassi S, Amadori M, Pennisi M, et al. Identifying sources of B and As contamination in surface water and groundwater downstream of the Larderello geothermal-industrial area[J]. Journal of Hydrology, 2014, 509: 66-82. doi: 10.1016/j.jhydrol.2013.11.003
    [37] Nordstrom D K, Jenne E A. Fluorite solubility equilibria in selected geothermal waters[J]. Geochimica et Cosmochimica Acta, 1977, 41(2): 175-188. doi: 10.1016/0016-7037(77)90224-1
    [38] 李明礼, 多吉, 王祝, 等. 西藏日多温泉水化学特征及其物质来源[J]. 中国岩溶, 2015, 34(3): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201503002.htm

    Li M L, Duo J, Wang Z, et al. Hydrochemical characteristics and material sources of Riduo thermal spring in Tebit[J]. Carsologica Sinica, 2015, 34(3): 209-216(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201503002.htm
    [39] 袁晓芳, 邓娅敏, 杜尧, 等. 江汉平原高砷地下水稳定碳同位素特征及其指示意义[J]. 地质科技通报, 2020, 39(5): 156-163. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10061.shtml

    Yuan X F, Deng Y M, Du Y, et al. Characteristics of stable carbon isotopes and its implications on arsenic enrichment in shallow groundwater of the Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 156-163(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract10061.shtml
    [40] 王彩会, 左丽琼, 荆慧, 等. 江苏东海温泉热储温度估算[J]. 地质学刊, 2015, 39(1): 111-115. doi: 10.3969/j.issn.1674-3636.2015.01.111

    Wang C H, Zuo L Q, Jing H, et al. Estimation of geothermal reservoir temperature for the Donghai hot spring in Jiangsu[J]. Journal of Geology, 2015, 39(1): 111-115(in Chinese with English abstract). doi: 10.3969/j.issn.1674-3636.2015.01.111
    [41] 徐世光, 郭远生. 地热学基础[M]. 北京: 科学出版社, 2009.

    Xu S G, Guo Y S. Fundamentals of geothermal science[M]. Beijing: Science Press, 2009(in Chinese with English abstract).
    [42] Giggenbach W F. Geothermal solute equilibria: Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2765. doi: 10.1016/0016-7037(88)90143-3
    [43] Giggenbach W F. Geothermal gas equilibria[J]. Geochimica et Cosmochimica Acta, 1980, 44(12): 2021-2032. doi: 10.1016/0016-7037(80)90200-8
    [44] Verma S P, Santoyo E. New improved equations for Na/K, Na/Li and SiO2 geothermometers by Outlier detetion and rejection[J]. Journal of Volcanology and Geothermal Research, 1997, 79(1): 9-23. http://www.sciencedirect.com/science/article/pii/S0377027397000243
    [45] Chandrajith R, Barth J A C, Subasinghe N D, et al. Geochemical and isotope characterization of geothermal spring waters in Sri Lanka: Evidence for steeper than expected geothermal gradients[J]. Journal of Hydrology, 2013, 476: 360-369. doi: 10.1016/j.jhydrol.2012.11.004
    [46] 丁仲礼. 固体地球科学研究方法[M]. 北京: 科学出版社, 2013.

    Ding Z L. Research methods of solid Earth science[M]. Beijing: Science Press, 2013(in Chinese with English abstract).
    [47] Reed M, Spycher N. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1479-1492. doi: 10.1016/0016-7037(84)90404-6
    [48] 王莹, 周训, 于湲, 等. 应用地热温标估算地下热储温度[J]. 现代地质, 2007, 21(4): 605-612. doi: 10.3969/j.issn.1000-8527.2007.04.003

    Wang Y, Zhou X, Yu Y, et al. Application of geothermometers to calculation of temperature of geothermal Reservoirs[J]. Geoscience, 2007, 21(4): 605-612(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2007.04.003
    [49] 吴红梅, 孙占学. 地热系统中矿物-流体化学平衡的计算[J]. 华东地质学院学报, 2000, 23(1): 39-42. doi: 10.3969/j.issn.1674-3504.2000.01.009

    Wu H M, Sun Z X. Calculation of the fluid-rock equilibrium state in the geothermal system[J]. Journal of East China Geological Institute, 2000, 23(1): 39-42(in Chinese with English abstract). doi: 10.3969/j.issn.1674-3504.2000.01.009
    [50] 刘军强. 应用地热温标估算热储温度: 以嵊州崇仁热水为例[J]. 西部探矿工程, 2014, 26(5): 129-132. doi: 10.3969/j.issn.1004-5716.2014.05.043

    Liu J Q. Estimation of heat storage temperature using geothermal temperature scale: Take Shengzhou Chongren hot water as an example[J]. West China Exploration Engineering, 2014, 26(5): 129-132(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5716.2014.05.043
    [51] 黄珣, 李晓, 余中友, 等. 康定中谷地区热储特征及温度计算[J]. 地质灾害与环境保护, 2018, 29(4): 96-104. doi: 10.3969/j.issn.1006-4362.2018.04.017

    Huang X, Li X, Yu Z Y, et al. Thermal storage characteristics and temperature calculation in Zhonggu area, Kangding[J]. Journal of Geological Hazards and Environment Preservation, 2018, 29(4): 96-104(in Chinese with English abstract). doi: 10.3969/j.issn.1006-4362.2018.04.017
    [52] 张振国, 何江涛, 王磊, 等. 衡水地区深层地下水水化学特征及其演化过程[J]. 现代地质, 2018, 32(3): 565-573. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201803014.htm

    Zhang Z G, He J T, Wang L, et al. Hydrochemical characteristics and evolution processes of deep groundwater in Hengshui area[J]. Geoscience, 2018, 32(3): 565-573(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201803014.htm
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  16
  • PDF下载量:  661
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-20

目录

    /

    返回文章
    返回