留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用GS-LightGBM机器学习模型识别致密砂岩地层岩性

谷宇峰 张道勇 鲍志东 郭海晓 周立明 任继红

谷宇峰, 张道勇, 鲍志东, 郭海晓, 周立明, 任继红. 利用GS-LightGBM机器学习模型识别致密砂岩地层岩性[J]. 地质科技通报, 2021, 40(4): 224-234. doi: 10.19509/j.cnki.dzkq.2021.0416
引用本文: 谷宇峰, 张道勇, 鲍志东, 郭海晓, 周立明, 任继红. 利用GS-LightGBM机器学习模型识别致密砂岩地层岩性[J]. 地质科技通报, 2021, 40(4): 224-234. doi: 10.19509/j.cnki.dzkq.2021.0416
Gu Yufeng, Zhang Daoyong, Bao Zhidong, Guo Haixiao, Zhou Liming, Ren Jihong. Lithology prediction of tight sandstone formation using GS-LightGBM hybrid machine learning model[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 224-234. doi: 10.19509/j.cnki.dzkq.2021.0416
Citation: Gu Yufeng, Zhang Daoyong, Bao Zhidong, Guo Haixiao, Zhou Liming, Ren Jihong. Lithology prediction of tight sandstone formation using GS-LightGBM hybrid machine learning model[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 224-234. doi: 10.19509/j.cnki.dzkq.2021.0416

利用GS-LightGBM机器学习模型识别致密砂岩地层岩性

doi: 10.19509/j.cnki.dzkq.2021.0416
详细信息
    作者简介:

    谷宇峰(1988-), 男, 助理研究员, 主要从事油气储量评审、地层表征和测井解释研究工作。E-mail: aaaaa3377@126.com

  • 中图分类号: P618.13

Lithology prediction of tight sandstone formation using GS-LightGBM hybrid machine learning model

  • 摘要: 以交会图为代表的传统岩性识别图版无法适用于致密砂岩地层,其主要原因是大部分地层岩性的测井响应特征相似度高,难以基于图版分析被有效识别。LightGBM较传统模式识别模型能更高效地解决问题,为此采用该模型识别致密砂岩地层岩性。由于LightGBM在建模时利用了较多的超参数,导致预测结果难以保证为最优,所以采用GS算法进行优化,进而提出GS-LightGBM。实验目的层为姬塬油田西部长4+5段致密砂岩地层。提出模型的预测能力通过设计两个实验来验证。为突出验证效果,实验中加入SVM和XGBoost作为对比模型。实验结果显示,GS-XGBoost和GS-LightGBM的准确率、F1-score和AUC指标相接近,都最高,但GS-LightGBM的计算时间只有GS-XGBoost的约1/23。实验结果表明,GS-LightGBM模型可在不失精度的情况下,能快速给出预测结果,具备了在致密砂岩地层岩性识别研究上的应用价值和推广性。

     

  • 图 1  GS-LightGBM岩性识别计算流程

    Figure 1.  Computing flow of GS-LightGBM used for lithology prediction

    图 2  姬塬油田西部中北部研究区

    Figure 2.  North central study zone in western Jiyuan Oilfield

    图 3  岩性识别三维交会图版

    a.AT90-SP-DEN交会图版;b.AT90-AC-GR交会图版

    Figure 3.  Three dimensional crossplots used for lithology prediction

    图 4  实验1岩性预测结果

    a.GS-SVM模型(P为识别准确率(%)下同);b.GS-XGBoost模型;c.GS-LightGBM模型

    Figure 4.  Results of lithology prediction in the first experiment

    图 5  实验1三种模型部分岩性识别结果柱状图(22xx.~23xx.m)

    Figure 5.  Columns of partial predicted lithologies of three validated models in the first experiment

    图 6  实验1各模型岩性ROC曲线和平均ROC曲线

    a.GS-SVM模型;b.GS-XGBoost模型;c.GS-LightGBM模型;d.各模型平均ROC曲线

    Figure 6.  ROC curve of each predicted lithology and mean ROC curve of all predicted lithologies produced by all validated models in the first experiment

    图 7  实验所得各岩性F1-score和AUC变化趋势

    a.实验所得各岩性F1-score变化趋势;b.实验所得各岩性AUC变化趋势

    Figure 7.  Variations of F1-score and AUC of each predicted lithology in the experiments

    表  1  测井曲线数据统计参数

    Table  1.   Statistical parameters produced by logging data

    测井曲线 Q1 Q3 IQR LIF UIF
    AC/(μs·m-1) 218.42 242.12 35.55 182.87 277.66
    DEN/(g·cm-3) 2.45 2.63 0.26 2.20 2.88
    GR/API 84.82 116.51 47.53 37.29 164.04
    PE/(b·e-1) 2.68 3.43 1.12 1.56 4.56
    AT90/(Ω·m) 7.22 16.11 13.32 -6.10 29.43
    SP/mV 64.83 81.70 25.32 39.51 107.02
    下载: 导出CSV

    表  2  各验证模型、GS优化算法初始参数设置和各验证模型超参数优化结果

    Table  2.   Initial parameter settings of all validated models and GS optimizing algorithm, and optimal results of hyper-parameters of all validated models

    验证模型 SVM XGBoost LightGBM
    参数初始化
    (是否为超参数)
    惩罚系数(c)=1(是);
    核函数=RBF1 (否);
    核函数平滑因子(σ)=0.1 (是)
    S=100 (是);
    η=0.1 (是);
    最大回归树深度
    max_depth=3 (是) 2;
    λ=0.1 (是);
    叶节点最小样本权重之和
    min_chile_weight =0.001 (否) 3;
    最小分裂梯度下降值
    δ=0.001 (否) 4;
    损失函数=对数似然损失函数(否)
    S=100 (是);
    η=0.1 (是);
    max_depth=3 (是);
    λ=0.1 (是);
    叶节点最大数目
    num_leaves=2 (是) 5;
    叶节点样本最少数量
    min_data_in_leaf=5 (是) 6;
    min_chile_weight=0.001 (否);
    桶数max_bin=2 (是) 7;
    每桶最小样本数量
    min_data_in_bin=1 (是) 8;
    损失函数=对数似然损失函数(否)
    GS参数设置
    (左界限,右界限,步长)
    c (1, 100, 0.2);
    σ(0.1, 1, 0.05)
    S (100, 5000, 50);
    η (0.1, 1, 0.05);
    max_depth (3, 10, 1);
    λ (0.1, 10, 0.1)
    S (100, 5000, 50);
    η(0.1, 1, 0.05);
    max_depth (3, 10, 1);
    λ(0.1, 10, 0.1);
    num_leaves (2, 1024, ×2) 9;
    min_data_in_leaf (5, 100, 5);
    max_bin (2, 255, ×2);
    min_data_in_bin (1, 100, 5)
    超参数最优结果 c=9.2;
    σ=0.8
    S=1500;
    η=0.2;
    max_depth=8;
    λ=0.3
    S=1300;
    η=0.35;
    max_depth=7;
    λ=0.3;
    num_leaves=64;
    min_data_in_leaf=20;
    max_bin=8;
    min_data_in_bin=31
    注:1.Radial Basis Function (径向基函数); 2.回归树最大分裂次数;3.如果叶节点中样本二阶导之和小于该值,则剪掉该叶节点;4.如果叶节点中样本对应的梯度下降值之和小于该值,则停止分裂;5.如果叶节点个数超过该值,则停止分裂;6.如果叶节点中样本容量小于该值,则剪掉该叶节点;7.Historgram算法寻找最佳分裂点时所用桶的数量以该值为准;8.如果桶中样本容量小于该值,则弃用该桶;9.“×2”表示以2倍速度增长
    下载: 导出CSV

    表  3  实验中各模型综合评价信息

    Table  3.   Summary of comprehensive evaluation information of all validated models produced in the experiments

    验证
    模型
    GS-SVM GS-XGBoost GS-LightGBM
    准确率/% 平均
    AUC
    计算时间/s 准确率/% 平均
    AUC
    计算时间/s 准确率/% 平均
    AUC
    计算时间/s
    实验1 67.66 0.79 139.87 88.50 0.91 553.31 87.78 0.91 22.95
    实验2 70.53 0.81 175.32 92.81 0.93 859.35 92.61 0.93 37.54
    下载: 导出CSV
  • [1] 周林, 刘皓天, 周坤, 等. 致密砂岩储层"甜点"识别及评价方法[J]. 地质科技通报, 2020, 39(4): 165-173. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10012.shtml

    Zhou L, Liu H T, Zhou K, et al. "Sweet spot" identification and evaluation of tight sandstone reservoir[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 165-173(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10012.shtml
    [2] 李峰峰, 郭睿, 余义常. 层序地层划分方法进展及展望[J]. 地质科技情报, 2019, 38(4): 215-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904022.htm

    Li F F, Guo R, Yu Y C. Progress and prospect of the division of sequence stratigraphy[J]. Geological Science and Technology Information, 2019, 38(4): 215-224(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904022.htm
    [3] 刘惠民, 郑金凯, 赵文山, 等. 深层致密砂岩储层脆性指数评价新方法[J]. 地质力学学报2019, 25(4): 492-500. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904005.htm

    Liu H M, Zheng J K, Zhao W S, et al. A new method for evaluation brittleness index of deep tight sandstone reservoir[J]. Journal of Geomechanics, 2019, 25(4): 492-500(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904005.htm
    [4] 韦阿娟. 渤海海域中生界火成岩岩性测井识别技术及应用[J]. 地质科技情报, 2015, 34(6): 207-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506030.htm

    Wei A J. Well-logging identification technique and its application in Mesozoic igneous rocks in Bohai Sea area[J]. Geological Science and Technology Information, 2015, 34(6): 207-213(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506030.htm
    [5] 赵建, 高福红. 测井资料交会图法在火山岩岩性识别中的应用[J]. 世界地质, 2003, 22(2): 136-140. doi: 10.3969/j.issn.1004-5589.2003.02.006

    Zhao J, Gao F H. Application of crossplots based on well log data in identifying volcanic lithology[J]. Global Geology, 2003, 22(2): 136-140(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2003.02.006
    [6] 吴磊, 徐怀民, 季汉成. 基于交会图和多元统计法的神经网络技术在火山岩识别中的应用[J]. 石油地球物理勘探, 2006, 41(1): 81-86. doi: 10.3321/j.issn:1000-7210.2006.01.016

    Wu L, Xu H M, Ji H C. Application of neural network technique based on crossplot and multielement statistics to recognition of volcanic rocks[J]. Oil Geophysical Prospecting, 2006, 41(1): 81-86(in Chinese with English abstract). doi: 10.3321/j.issn:1000-7210.2006.01.016
    [7] 范训礼, 戴航, 张新家, 等. 神经网络在岩性识别中的应用[J]. 测井技术, 1999, 23(1): 50-52. doi: 10.3969/j.issn.1004-1338.1999.01.012

    Fan X L, Dai H, Zhang X J, et al. Application of neural network in lithology identification[J]. Well Logging Technology, 1999, 23(1): 50-52(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1338.1999.01.012
    [8] 李政宏, 刘永福, 张立强, 等. 数据挖掘方法在测井岩性识别中的应用[J]. 断块油气藏, 2019, 26(6): 713-718. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201906008.htm

    Li Z H, Liu Y F, Zhang L Q, et al. Application of data mining method in lithology identification using well log[J]. Fault-Block Oil & Gas Field, 2019, 26(6): 713-718(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201906008.htm
    [9] Chen T, Guestrin C. XGBoost: A scalable tree boosting system[C]//Anon. Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining. New York, USA: ACM, 2016.
    [10] 卢新卫, 金章东. 前馈神经网络的岩性识别方法[J]. 石油与天然气地质, 1999, 20(1): 82-84. doi: 10.3321/j.issn:0253-9985.1999.01.019

    Lu X W, Jin Z D. Method of lithologic recognizing based on feedforward neural network[J]. Oil and Gas Geology, 1999, 20(1): 82-84(in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.1999.01.019
    [11] 张洪, 邹乐君, 沈晓华. BP神经网络在测井岩性识别中的应用[J]. 地质与勘探, 2002, 38(6): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200206015.htm

    Zhang H, Zou L J, Shen X H. The application of BP neural network in well lithology identification[J]. Geology and Prospecting, 2002, 38(6): 63-65(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200206015.htm
    [12] 林香亮, 朱建伟, 刘光涛, 等. 基于PCA-SVM的砂砾岩岩性识别[J]. 长江大学学报: 自然科学版, 2020, 17(1): 21-26. doi: 10.3969/j.issn.1673-1409.2020.01.005

    Lin X L, Zhu J W, Liu G T, et al. Lithologic identification of glutenite based on PCA-SVM[J]. Journal of Yangtze University: Natural Science Edition, 2020, 7(1): 21-26(in Chinese with English abstract). doi: 10.3969/j.issn.1673-1409.2020.01.005
    [13] 石锁, 余继峰, 曹慧涛, 等. 基于高斯核SVM的地层岩性识别: 以东濮凹陷上古生界碎屑岩为例[J]. 中国科技论文, 2020, 15(1): 112-118. doi: 10.3969/j.issn.2095-2783.2020.01.017

    Shi S, Yu J F, Cao H T, et al. Reservoir lithology identification based on SVM using radial basis function: An example of Upper Paleozoic clastic rock in Dongpu Sag[J]. China Science Paper, 2020, 15(1): 112-118(in Chinese with English abstract). doi: 10.3969/j.issn.2095-2783.2020.01.017
    [14] Dev V A, Eden M R. Formation lithology classification using scalable gradient boosted decision trees[J]. Computers & Chemical Engineering, 2019, 128: 392-404. http://www.sciencedirect.com/science/article/pii/S0098135419302200
    [15] Sun Z, Jiang B, Li X, et al. A data-driven approach for lithology identification based on parameter-optimized ensemble learning[J]. Energies, 2020, 13(15): 3903. doi: 10.3390/en13153903
    [16] Ke G L, Meng Q, Finley T, et al. Light GBM: A highly efficient gradient boosting decision tree[C]//Anon. Proceedings of the 31st international conference on neural information processing systems. California, USA: ACM, 2017.
    [17] Zhang X X, Deng T, Jia G Z. Nuclear spin-spin coupling constants prediction based on XGboost and lightGBM algorithms[J]. Molecular Physics, 2019, 118(14): 1-10. doi: 10.1080/00268976.2019.1696478
    [18] 韩学辉, 卢时林, 支乐菲, 等. 应用最小二乘支持向量机识别J13井区杜家台油层岩性[J]. 特种油气藏, 2011, 18(6): 18-21. doi: 10.3969/j.issn.1006-6535.2011.06.005

    Han X H, Lu S L, Zhi L F, et al. Identification of the lithology of Dujiatai Formation in Well J13 block with east squares support vector machine[J]. Special Oil and Gas Reservoirs, 2011, 18(6): 18-21(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2011.06.005
    [19] 邓呈祥, 高文利, 潘和平, 等. 庐枞矿集区科学钻探的岩性识别方法[J]. 物探与化探, 2015, 39(6): 1144-1149. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201506008.htm

    Deng C X, Gao W L, Pan H P, et al. Lithologic identification method in scientific drilling of the Luzong ore district[J]. Geophysical & Geochemical Exploration, 2015, 39(6): 1144-1149(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201506008.htm
    [20] Tukey J W. Mathematics and the picturing of data[C]//Anon. Proceedings of the international congress of mathematicians. Vancouver, USA: BC, 1975.
    [21] Han S, Horsfield B, Zhang J, et al. Hydrocarbon generation kinetics of lacustrine Yanchang shale in southeast Ordos Basin, North China[J]. Energy & Fuels, 2014, 28(9): 5632-5639. doi: 10.1021/ef501011b
    [22] Liu H, Li X, Liao J, et al. Genesis of the high gamma sandstone of the Yanchang Formation in the Ordos Basin[J]. China Petroleum Science, 2013, 10(1): 50-54. doi: 10.1007/s12182-013-0248-7
    [23] Li J, Zhou S, Li Y, et al. Effect of organic matter on pore structure of mature lacustrine organic-rich shale: A case study of the Triassic Yanchang shale, Ordos Basin, China[J]. Fuel, 2016, 185: 421-431. doi: 10.1016/j.fuel.2016.07.100
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  767
  • PDF下载量:  554
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30

目录

    /

    返回文章
    返回