Sedimentary characteristics and origin of moundes in Meishan Formation, southern Qiongdongnan Basin
-
摘要: 琼东南盆地南部梅山组具有独特的丘状反射特征,关于其成因机制引起了广泛关注和讨论。以琼东南盆地大量二维地震资料和高分辨率三维地震资料解释为基础,在深水钻井标定下,从地震相特征、沉积物物源、沉积搬运通道、古地貌特征以及海平面变化和构造活动6个方面,阐明了梅山组丘状体的沉积特征,并讨论了其成因机制。研究结果表明,中中新统梅山组沉积时期,受强制性海退影响,琼东南盆地范围内海平面下降至低水位,南部隆起局部暴露剥蚀,提供了大量沉积物源;上中新统黄流组沉积时期,盆地局部构造活动使得南部隆起物源发生重力失稳,通过深水水道向盆地中央以重力流方式搬运沉积物。琼东南盆地梅山组地层的丘状反射特征是黄流组沉积时期以南部隆起沉积物为物源的浊流侵蚀下伏梅山组地层所致。对该丘状体成因机制的深入研究,不但有助于丰富对丘状地震反射现象的认识,而且揭示了其沉积构成为粗碎屑沉积物而非生物礁滩沉积,对深水油气勘探储层特征及评价具有重要意义。Abstract: While the Meishan Formation, southern Qiongdongnan Basin, has been widely discussed because of their unique mound-like reflection characteristics, there is still considerable controversy on the origin of those mounds. This study is based on a large number of 2D seismic data and high-resolution 3D seismic data in the Qiongdongnan Basin, combined with deep-water drillings, elucidates the mound-like reflection characteristics and discusses the origin of the Meishan Formation integrated among seismic facies characteristics, sediment source, transport channels, paleo-geomophic, sea level changes, and tectonic activity. The results show that during Middle Miocene, due to forced retreat, the sea level dropped to a lower level throughout the Qiongdongnan Basin, and the southern uplift was partially exposed and denudated provided a large number of sediments. During the Late Miocene, the regional tectonic activities caused the gravity instability in the southern uplift, and the sediments were transported to the basin center in terms of the turbidite channels. Subsequently, the mound-like reflection features at the top of the Meishan formation in the Qiongdongnan Basin were caused by turbidity erosion which provenance was provided by the sediments from the southern uplift. The further discussions on the origin of the mounds are not only helpful to better understand the formation of mound-like deposits, but also illustrate that the composition of those mound-like deposits is clastic sediments rather than reefs, which has great value for deep-water hydrocarbon reservoirs in the Qiongdongan Basin.
-
Key words:
- Qiongdongnan Basin /
- Meishan Formation /
- submarine channels /
- southern uplift /
- mounds
-
图 4 研究区梅山组丘状体地震反射特征(剖面位置见图 1)
Figure 4. Seismic reflection characteristics of mounds in Meishan Formation
图 7 琼东南盆地南部梅山组水道地震反射特征(剖面位置见图 1)
a.水道口;b.分支水道
Figure 7. Seismic reflection characteristics of the channels in Meishan Formation in southern Qiongdongnan Basin
-
[1] 杨波, 张昌民, 李少华, 等. 珠江口盆地大型丘状地质体地震相分析及地质解释[J]. 石油学报, 2014, 35(1): 37-49. doi: 10.3969/j.issn.1671-4067.2014.01.012Yang B, Zhang C M, Li S H, et al. Seismic facies analysis and geological interpretation of large-scale mounds in Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2014, 35(1): 37-49(in Chinese with English abstract). doi: 10.3969/j.issn.1671-4067.2014.01.012 [2] Sun Q L, Cartwright J, Wu S G, et al. Submarine erosional troughs in the northern South China Sea: Evidence for Early Miocene deepwater circulation and paleoceanographic change[J]. Marine and Petroleum Geology, 2016, 77: 75-91. doi: 10.1016/j.marpetgeo.2016.06.005 [3] Pu R H, Lu Y, Jiang Y S, et al. Growth conditions and 3-D seismic delineation of Carboniferous barrier reefs in the southwestern Tarim Basin[J]. Journal of Earth Science, 2014, 25(2): 315-323. doi: 10.1007/s12583-014-0429-3 [4] Cheng P, Lu Y C, Wang Z F. Seismic image prediction of Cenozoic reef-banks in the northwestern South China Sea[J]. Journal of Earth Science, 2012, 23(4): 597-611. doi: 10.1007/s12583-012-0277-y [5] 甘玉青, 肖传桃, 张斌. 国内外生物礁油气勘探现状与我国南海生物礁油气勘探前景[J]. 海相油气地质, 2009, 14(1): 16-20. doi: 10.3969/j.issn.1672-9854.2009.01.002Gan Y Q, Xiao C T, Zhang B. Situation of Bioherm reservoir exploration in the world and the oil exploration prospect of Bioherm reservoirs in South China Sea[J]. Marine Origin Petroleum Geology, 2009, 14(1): 16-20(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2009.01.002 [6] 范嘉松. 中国生物礁与油气[M]. 北京: 海洋出版社, 1997.Fan J S. Reefs and oil and gas in China[M]. Beijing: Ocean Press, 1997(in Chinese). [7] 田媛媛. 珠江口盆地荔湾凹陷中新统丘形反射的成因探讨[D]. 西安: 西北大学, 2012.Tian Y Y. A Discussion on origin of seismic mound reflections in Miocene Liwan Sag, Pearl River Mouth Basin[D]. Xian: Northwest University, 2012(in Chinese with English abstract). [8] Wynn R B, Stow D A V. Classifcation and characterisation of deep-water sediment waves[J]. Marine Geology, 2002, 192(1): 7-22. http://www.sciencedirect.com/science/article/pii/S0025322702005479 [9] 姜涛, 解习农, 汤苏林, 等. 浊流成因海底沉积波形成机理及其数值模拟[J]. 科学通报, 2007, 52(16): 1945-1950. doi: 10.3321/j.issn:0023-074x.2007.16.017Jiang T, Xie X N, Tang S L, et al. Formation mechanism and numerical simulation of sediment waves of turbidite origin[J]. Chinese Science Bulletin, 2007, 52(16): 1945-1950(in Chinese with English abstract). doi: 10.3321/j.issn:0023-074x.2007.16.017 [10] 赵天亮, 蒲仁海, 屈红军, 等. 琼东南盆地南部中新统"丘"形反射成因探讨[J]. 海洋学报, 2013, 35(4): 112-120. doi: 10.3969/j.issn.0253-4193.2013.04.014Zhao T L, Pu R H, Qu H J, et al. An origin discussion of mound-shaped reflections in miocene southern Qiongdongnan Basin[J]. Acta Oceanologica Sinica, 2013, 35(4): 112-120(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4193.2013.04.014 [11] 李俞锋, 蒲仁海, 牛宁, 等. 谷-丘互相对称的地震反射特征与成因及对琼东南盆地北礁凹陷的意义[J]. 地质科技情报, 2017, 36(3): 286-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703040.htmLi Y F, Pu R H, Niu N, et al. Genesis and characteristics of the mutually symmetric trough mound/hummock seismic reflections and their geological significance in Beijiao Sad, Qiongdongnan Basin[J]. Geological Science and Technology Information, 2017, 36(3): 286-292(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703040.htm [12] Wu S G, Yuan S Q, Zhang G C, et al. Seismic characteristics of a reef carbonate reservoir and implications for hydrocarbon exploration in deepwater of the Qiongdongnan Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2009, 26(6): 817-823. doi: 10.1016/j.marpetgeo.2008.04.008 [13] 马玉波, 吴时国, 许建龙, 等. 琼东南盆地南部深水凹陷生物礁及碳酸盐岩台地发育模式[J]. 天然气地球科学, 2009, 20(1): 119-124. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200901022.htmMa Y B, Wu S G, Xu J L, et al. Distribution and model of reef and carbonate platforms in the south deepwater Sag of Qiongdongnan Basin[J]. Natural Gas Geoscience, 2009, 20(1): 119-124(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200901022.htm [14] 张永贵, 宋在超, 周小进, 等. 琼东南盆地南部中新统生物礁的识别[J]. 石油实验地质, 2011, 33(3): 307-309. doi: 10.3969/j.issn.1001-6112.2011.03.017Zhang Y G, Song Z C, Zhou X J, et al. Identification of reef in Miocene, South of Qiongdongnan Basin[J]. Petroleum Geology and Experiment, 2011, 33(3): 307-309(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2011.03.017 [15] 伊万顺, 邓艳涛, 狄邦让. 琼东南盆地南部隆起带丘状地震相成因讨论[J]. 石油物探, 2012, 51(2): 199-203. doi: 10.3969/j.issn.1000-1441.2012.02.014Yi W S, Deng Y T, Di B R. Discussion on the genesis of domal reflections at the uplift zone of the southern Qiongdongnan Basin[J]. Geophysical Prospecting for Petroleum, 2012, 51(2): 199-203(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2012.02.014 [16] 蒲仁海, 屈红军, 吴晓川, 等. 南海北部中新统的等深流成因的丘形与水道沉积[C]. 第十七届中国科协年会论文集-分九南海深水油气勘探开发技术研讨会论文集. 北京: 海洋出版社, 2015.Pu R H, Qu H J, Wu X C, et al. Miocene contourite mound and channel reflections in Northern South China Sea[C]//The 17th Annual Meeting of China Association for Science and Technology. Beijing: Ocean Press, 2015(in Chinese). [17] 李俞锋, 蒲仁海, 屈红军, 等. 琼东南盆地北礁凹陷梅山组顶部丘形反射特征及成因分析[J]. 海洋学报, 2017, 39(5): 89-102. doi: 10.3969/j.issn.0253-4193.2017.05.009Li Y F, Pu R H, Qu H J, et al. The characteristics and genesis analysis of the mound at the top of Meishan Formation in the Beijiao Sag of the Qiongdongnan Basin[J]. Acta Oceanologica Sinica, 2017, 39(5): 89-102(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4193.2017.05.009 [18] 李俞锋, 蒲仁海, 屈红军, 等. 琼东南盆地古地形对北礁凹陷中中新统丘控制作用[J]. 地质科技情报, 2018, 37(2): 1-8. doi: 10.3969/j.issn.1009-6248.2018.02.001Li Y F, Pu R H, Qu H J, et al. Distribution of bottom current channels and mounds controlled by paleo-morphology in Mid-Miocene in Beijiao Sag of Qiongdongnan Basin[J]. Geological Science and Technology Information, 2018, 37(2): 1-8(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2018.02.001 [19] Feng Y W, Qu H J, Zhang G C, et al. Seismic interpretation and hydrocarbon accumulations implication of the Miocene Meishan Formation reefs in southern Qiongdongnan Basin, northern South China Sea[J]. Journal of Palaeogeography, 2017, 6(3): 206-218. doi: 10.1016/j.jop.2017.05.002 [20] 王云, 冯杨伟, 张功成. 琼东南盆地深水区梅山组丘状反射体地质解释[J]. 矿物岩石, 2018, 38(1): 111-119. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201801013.htmWang Y, Feng Y W, Zhang G C. Geological interpretion of moundy reflectors of Meishan Formation in deepwater area of Qiongdongnan Basin, South China Sea[J]. Journal of Mineralogy and Petrology, 2018, 38(1): 111-119(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201801013.htm [21] Su M, Wu C H, Chen H, et al. Late Miocene provenance evolution at the head of Central Canyon in the Qiongdongnan Basin, Northern South China Sea[J]. Marine and Petroleum Geology, 2019, 110: 787-796. doi: 10.1016/j.marpetgeo.2019.07.053 [22] Liang C, Xie X N, He Y L, et al. Multiple sediment sources and topographic changes controlled the depositional architecture of a palaeoslope-parallel canyon in the Qiongdongnan Basin, South China Sea[J]. Marine and Petroleum Geology, 2020, 113: 104161. doi: 10.1016/j.marpetgeo.2019.104161 [23] Su M, Xie X N, Xie Y H, et al. The segmentations and the significances of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea[J]. Journal of Asian Earth Sciences, 2014, 79: 552-563. doi: 10.1016/j.jseaes.2012.12.038 [24] Gong C L, Wang Y W, Zhu W L, et al. The Central Submarine Canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes[J]. Marine and Petroleum Geology, 2011, 28(9): 1690-1702. doi: 10.1016/j.marpetgeo.2011.06.005 [25] Zhao Y H, Tong D J, Song Y, et al. Seismic reflection characteristics and evolution of intrusions in the Qiongdongnan Basin: Implications for the rifting of the South China Sea[J]. Journal of Earth Science, 2016, 27(4): 642-653. doi: 10.1007/s12583-016-0708-2 [26] 谢玉洪. 莺琼盆地区中央峡谷源头沉积特征及油气勘探前景[J]. 地质科技通报, 2020, 39(5): 69-78. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10052.shtmlXie Y H. Sedimentary characteristics and hydrocarbon exploration potential of upstream of the Central Canyon in the Yinggehai and Qiongdongnan Basins[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 69-78(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10052.shtml [27] 李俞锋. 南海西北部北礁凹陷中新统深水沉积体系及油气意义[D]. 西安: 西北大学, 2017.Li Y F. Deep-Water sedimentary and their hydrocarbon significance systems in the Miocene in the Beijiao Sag, the Northwest South China Sea[D]. Xian: Northwest University, 2017(in Chinese with English abstract). [28] 雷超. 琼东南盆地深水区盆地结构构造及其形成机制研究[D]. 武汉: 中国地质大学(武汉), 2009.Lei C. Basin structure and its formation mechanism in deep water areas of Qiongdongnan Basin, South China Sea[D]. Wuhan: China University of Geosciences(Wuhan), 2009(in Chinese with English abstract). [29] 田姗姗. 琼东南盆地裂后期构造沉降分析及古地貌恢复[D]. 武汉: 中国地质大学(武汉), 2010.Tian S S. Tectonic subsidence analysis and paleotopography restoration of postrifting strata in the Qiongdongnan Basin[D]. Wuhan: China University of Geosciences(Wuhan), 2010(in Chinese with English abstract). [30] 苏明, 解习农, 姜涛, 等. 琼东南盆地裂后期S40界面特征及其地质意义[J]. 地球科学: 中国地质大学学报, 2011, 36(5): 886-894. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201105017.htmSu M, Xie X N, Jiang T, et al. Characteristics of S40 boundary and its significance in Qiongdongnan Basin northern continental margin of South China Sea[J]. Earth Science: Journal of China University of Geosciences, 2011, 36(5): 886-894(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201105017.htm [31] 王亚辉, 张道军, 陈杨, 等. 琼东南盆地三亚组陆架边缘三角洲的发现及其油气勘探意义[J]. 地质科技情报, 2018, 37(5): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805005.htmWang Y H, Zhang D J, Chen Y, et al. Discovery of shelf-edge delta in the Neogene Sanya Formation in the Qiongdongnan Basin and its significance for oil and gas exploration[J]. Geological Science and Technology Information, 2018, 37(5): 30-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805005.htm [32] 张建新, 范彩伟, 谭建财, 等. 莺歌海盆地中新世沉积体系演化特征及勘探意义[J]. 地质科技情报, 2019, 38(6): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906008.htmZhang J X, Fan C W, Tan J C, et al. Evolution characteristics of sedimentary system in Yinggehai Basin in Miocene and its exploration significance[J]. Geological Science and Technology Information, 2019, 38(6): 51-59(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906008.htm [33] Sun Z P, Zhai S K, Xiu C, et al. Geochemical characteristics and their significances of rare-earth elements in deep-water well core at the Lingnan low uplift area of the Qiongdongnan Basin[J]. Acta Oceanologica Sinica, 2014, 33(12): 81-95. doi: 10.1007/s13131-014-0578-3 [34] 李安琪, 叶绮, 王真真, 等. 琼东南盆地陵水凹陷北部梅山组砂质碎屑流沉积特征及油气地质意义[J]. 地质科技通报, 2021, 40(1): 110-118. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10097.shtmlLi A Q, Ye Q, Wang Z Z, et al. Sedimentary characteristics and significance in hydrocarbon exploration of sandy debris flow in Meishan Formation of the northern Lingshui Sag, Qiongdongnan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 110-118(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10097.shtml [35] Lei C, Ren J Y. Hyper-extended rift systems in the Xisha Trough, northwestern South China Sea: Implications for extreme crustal thinning ahead of a propagating ocean[J]. Marine and Petroleum Geology, 2016, 77: 846-864. doi: 10.1016/j.marpetgeo.2016.07.022 [36] 孙辉. 南海西北部深水区重力流沉积体系特征及其控制因素分析[D]. 武汉: 中国地质大学(武汉), 2015.Sun H. Characteristics and controlling factors on gravity flow sedimentary systems development in deep water area, northwestern South China Sea[D]. Wuhan: China University of Geosciences(Wuhan), 2015(in Chinese with English abstract). [37] 李俞锋. 琼东南盆地北礁凹陷梅山组单向迁移水道特征及成因探讨[J]. 海洋学报, 2019, 41(1): 72-86. doi: 10.3969/j.issn.0253-4193.2019.01.008Li Y F. The characteristics and origin of unidirectionally migrating channels of Meishan Formation in the Beijiao Sag, Qiongdongnan Basin[J]. Acta Oceanologica Sinica, 2019, 41(1): 72-86(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4193.2019.01.008 [38] 吴晓川, 蒲仁海, 张功成, 等. 琼东南盆地南部深水区碳酸盐岩台地的地震解释[J]. 石油地球物理勘探, 2017, 52(2): 381-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201702023.htmWu X C, Pu R H, Zhang G C, et al. Seismic interpretation of carbonate platform in the south deepwater area, Qiongdongnan Basin[J]. Oil Geophysical Prospecting, 2017, 52(2): 381-391(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201702023.htm [39] Ma Y B, Wu S G, Xu J L, et al. Seismic characteristics and development of the Xisha carbonate platforms, northern margin of the South China Sea[J]. Journal of Asian Earth Sciences, 2011, 40(3): 770-783. doi: 10.1016/j.jseaes.2010.11.003 [40] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235: 1156-1167. doi: 10.1126/science.235.4793.1156 [41] 刘晓锋. 琼东南盆地深水区沉积古环境和物源演化[D]. 青岛: 中国海洋大学, 2015.Liu X F. The Evolution of sedimentary paleoenvironment and provenance in the deepwater area of the Qiongdongnan Basin[D]. Qingdao Shandong: Ocean University of China, 2015(in Chinese with English abstract). [42] 王华, 陈思, 巩天浩, 等. 牵引流化重力流沉积过程与堆积机制: 以渤海湾盆地歧口凹陷为例[J]. 地质科技通报, 2020, 39(1): 95-104. https://dzkjqb.cug.edu.cn/CN/abstract/abstract9930.shtmlWang H, Chen S, Gong T H, et al. Sedimentary process and accumulation mechanism of traction fluidization gravity flow: An example from Qikou Sag, Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 95-104(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract9930.shtml [43] Hubbard S M, Covault J A, Fildani A, et al. Sediment transfer and deposition in slope channels: Deciphering the record of enigmatic deep-sea processes from outcrop[J]. Geological Society of America Bulletin, 2014, 126(5): 857-871. http://adsabs.harvard.edu/abs/2014GSAB..126..857H [44] 苏明, 张成, 解习农, 等. 深水峡谷体系控制因素分析: 以南海北部琼东南盆地中央峡谷体系为例[J]. 中国科学: 地球科学, 2014, 44(8): 1807-1820. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201408019.htmSu M, Zhang C, Xie X N, et al. Controlling factors on the submarine canyon system: A case study of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea[J]. Science China: Earth Sciense, 2014, 44(8): 1807-1820(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201408019.htm [45] Antobreh A A, Krastel S. Morphology, seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania: A newly discovered canyon preserved-off a major arid climatic region[J]. Marine and Petroleum Geology, 2006, 23(1): 37-59. doi: 10.1016/j.marpetgeo.2005.06.003 [46] Deptuck M E, Sylvester Z, Pirmez C, et al. Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope[J]. Marine and Petroleum Geology, 2007, 24: 406-433. doi: 10.1016/j.marpetgeo.2007.01.005 [47] Prélat A, Covault J A, Hodgson D M, et al. Intrinsic controls on the range of volumes, morphologies, and dimensions of submarine lobes[J]. Sedimentary Geology, 2010, 232: 66-76. doi: 10.1016/j.sedgeo.2010.09.010 [48] 田冬梅, 姜涛, 张道军, 等. 海底水道特征及其成因机制: 以莺歌海盆地乐东区莺歌海组一段为例[J]. 地球科学, 2017, 42(1): 130-141. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201701011.htmTian D M, Jiang T, Zhang D J, et al. Genesis mechanism and characteristics of submarine channel: A case study of the first Member of Yinggehai Formation in Ledong area of Yinggehai Basin[J]. Earth Science, 2017, 42(1): 130-141(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201701011.htm [49] Shanmugam G. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons[J]. Marine and Petroleum Geology, 2003, 20(5): 471-491. http://www.sciencedirect.com/science/article/pii/S0264817203000631 [50] Zhao Q H, Jian Z M, Wang J L, et al. Neogene oxygen isotopic stratigraphy, ODP Site 1148, northern South China Sea[J]. Science in China, 2001, 44(10): 934-942. doi: 10.1007/BF02907086 [51] Su M, Zhang C, Xie X N. Controlling factors on the submarine canyon system: A case study of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea[J]. Journal of Earth Science, 2014, 57(10): 2457-2468. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JDXG201410018.htm [52] Xie X N, Müller R D, Ren J Y, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 2008, 247(3): 129-144. http://www.sciencedirect.com/science/article/pii/S0025322707002228 [53] Song G Z, Wang H, Gan H J. Paleogene tectonic evolution controls on sequence stratigraphic patterns in the central part of deepwater area of Qiongdongnan Basin, northern South China Sea[J]. Journal of Earth Science, 2014, 25(2): 275-288. doi: 10.1007/s12583-014-0433-7 [54] 姜涛. 莺歌海-琼东南盆地区中中新世以来低位扇体形成条件和成藏模式[D]. 武汉: 中国地质大学(武汉), 2005.Jiang T. Formation oflowstand Fans and their hydrocarbon accumulation since Middle Miocene in the Yinggehai and Qiongdongnan basins[D]. Wuhan: China University of Geosciences(Wuhan), 2005(in Chinese with English abstract).