留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渝东南地区龙马溪组构造应力场数值模拟及裂缝有利区预测

李萧 吴礼明 王丙贤 胡秋媛 董大伟

李萧, 吴礼明, 王丙贤, 胡秋媛, 董大伟. 渝东南地区龙马溪组构造应力场数值模拟及裂缝有利区预测[J]. 地质科技通报, 2021, 40(6): 24-31. doi: 10.19509/j.cnki.dzkq.2021.0603
引用本文: 李萧, 吴礼明, 王丙贤, 胡秋媛, 董大伟. 渝东南地区龙马溪组构造应力场数值模拟及裂缝有利区预测[J]. 地质科技通报, 2021, 40(6): 24-31. doi: 10.19509/j.cnki.dzkq.2021.0603
Li Xiao, Wu Liming, Wang Bingxian, Hu Qiuyuan, Dong Dawei. Numerical simulation of tectonic stress field and prediction of fracture target in the Longmaxi Formation, southeastern Chongqing[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 24-31. doi: 10.19509/j.cnki.dzkq.2021.0603
Citation: Li Xiao, Wu Liming, Wang Bingxian, Hu Qiuyuan, Dong Dawei. Numerical simulation of tectonic stress field and prediction of fracture target in the Longmaxi Formation, southeastern Chongqing[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 24-31. doi: 10.19509/j.cnki.dzkq.2021.0603

渝东南地区龙马溪组构造应力场数值模拟及裂缝有利区预测

doi: 10.19509/j.cnki.dzkq.2021.0603
基金项目: 

国家自然科学基金项目 42072162

详细信息
    作者简介:

    李萧(1987-), 女, 讲师, 主要从事构造地质学教学与研究工作。E-mail: 136930394@qq.com

    通讯作者:

    胡秋媛(1984-), 女, 副教授, 主要从事盆地构造解析研究工作。E-mail: 000160@slcupc.edu.cn

  • 中图分类号: P542

Numerical simulation of tectonic stress field and prediction of fracture target in the Longmaxi Formation, southeastern Chongqing

  • 摘要: 渝东南地区页岩储层发育,以下志留统龙马溪组为主力储层。此类页岩储层以构造裂缝发育为主要特征,是控制研究区油气运移与富集的主要因素。对渝东南地区龙马溪组的裂缝进行预测,可为研究区下一步勘探开发提供重要依据。以野外地质踏勘为基本方法,选取区内典型剖面,对渝东南地区的构造特征进行系统分析;在此基础上,针对研究区龙马溪组页岩储层建立地质模型,利用有限元分析软件ANSYS15.0进行构造应力场数值模拟。以构造应力场数值模拟结果为依据,进一步综合页岩储层的多个影响因素,引入"裂缝综合发育系数IF",定量表征与预测页岩储层的裂缝分布与发育程度。结果表明,裂缝综合发育系数IF越大,页岩储层裂缝越发育。依此将渝东南地区龙马溪组页岩储层划分为Ⅰ类裂缝有利区带(IF ≥ 3.0,裂缝发育)、Ⅱ类裂缝有利区带((3.0,2.0],裂缝较发育)和Ⅲ类裂缝有利区带(2.0,1.0]。构造应力场数值模拟结果恢复再现了喜马拉雅时期的构造应力场,与实际地质构造取得了较高的吻合度。

     

  • 图 1  研究区区域构造位置

    (据文献[3, 8]修改)

    Figure 1.  Regional tectonic location of the study area

    图 2  研究区典型构造剖面

    Figure 2.  Typical geological section of the study area

    图 3  研究区构造应力场数值模拟基本原理

    Figure 3.  Fundamental principle of tectonic stress field numerical simulation in the study area

    图 4  研究区构造应力场数值模拟力学模型

    σ1.最大主应力;σ3.最小主应力;σs.最大剪应力

    Figure 4.  Mechanical model of tectonic stress field numerical simulation in the study area

    图 5  研究区构造应力场数值模拟结果

    Figure 5.  Numerical simulation results of tectonic stress field in the study area

    图 6  研究区龙马溪组页岩储层裂缝有利区分布预测图

    Figure 6.  Prediction diagram of fracture distribution of the Longmaxi shale reservoirs in the study area

    表  1  渝东南地区战略选取拟探井构造特征

    Table  1.   Structural characteristics of the proposed exploration wells in the strategically selected area of Southeast Chongqing

    表  2  研究区龙马溪组各结构单元岩石力学参数

    Table  2.   Rock mechanics parameters of structural units of the Longmaxi Formation in the study area

    介质类型 岩石密度
    ρ/(g·cm-3)
    杨氏模量
    E/MPa
    泊松比μ
    沉积地层 2.715 72 860 0.269
    褶皱带 隔槽式褶皱 2.747 114 680 0.206
    过渡性褶皱 2.751 99 200 0.232
    隔档式褶皱 2.745 73 725 0.252
    断层带 Ⅰ级断层带 2.657 20 890 0.328
    Ⅱ级断层带 2.660 33 285 0.315
    Ⅲ级断层带 2.659 36 720 0.308
    辅助区域 2.700 72 500 0.200
    下载: 导出CSV

    表  3  页岩储层裂缝有利区带划分标准

    Table  3.   Classification standard of the favorable zone of fracture development in shale reservoirs

    裂缝发育有利区带类型 裂缝综合发育系数IF 裂缝发育程度
    Ⅰ类裂缝有利区带 ≥3.0 发育
    Ⅱ类裂缝有利区带 (3.0, 2.0] 较发育
    Ⅲ类裂缝有利区带 (2.0, 1.0] 不发育
    下载: 导出CSV
  • [1] 于豪, 黄家强, 兰雪梅, 等. 川西北双鱼石地区栖霞组地震资料优化处理及裂缝预测技术应用[J]. 科学技术与工程, 2020, 20(22): 8934-8942. doi: 10.3969/j.issn.1671-1815.2020.22.012

    Yu H, Huang J Q, Lan X M, et al. Application of seismic data optimal processing and fracture prediction in the Shuangyushi Block, Northwest Sichuan[J]. Science Technology and Engineering, 2020, 20(22): 8933-8942(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2020.22.012
    [2] 孙文峰, 李玮, 李卓, 等. 页岩储层微裂缝发育程度预测方法[J]. 科学技术与工程, 2019, 19(19): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201919019.htm

    Sun W F, Li W, Li Z, et al. Prediction method of micro-fracture development degree of shale reservoir[J]. Science Technology and Engineering, 2019, 19(19): 118-123(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201919019.htm
    [3] 刘敬寿, 丁文龙, 肖子亢, 等. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展, 2019, 34(6): 2283-2300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htm

    Liu J S, Ding W L, Xiao Z K, et al. Advances in comprehensive characterization and prediction of reservoir fractures[J]. Progress in Geophysics, 2019, 34(6): 2283-2300(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htm
    [4] 李梦萍, 戴俊生, 王硕, 等. 渤南洼陷古近纪早中期应力场数值模拟及其与断层发育的关系[J]. 地质科技情报, 2017, 36(4): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704006.htm

    Li M P, Dai J S, Wang S, et al. Tectonic stress field simulation of early-middle paleogene and its relationship with fault development in Bonan Sub-sag[J]. Geological Science and Technology Information, 2017, 36(4): 42-48(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704006.htm
    [5] Guo P, Ren D S, Xue Y H. Simulation of multi-period tectonic stress fields and distribution prediction of tectonic fractures in tight gas reservoirs: A case study of the Tianhuan Depression in western Ordos Basin, China[J]. Marine and Petroleum Geology, 2019, 109: 530-546. doi: 10.1016/j.marpetgeo.2019.06.026
    [6] Ren Q Q, Jin Q, Feng J W, et al. Simulation of stress fields and quantitative prediction of fractures distribution in upper Ordovician biological limestone formation within Hetianhe field, Tarim Basin, NW China[J]. Journal of Petroleum Science and Engineering, 2018, 173: 1236-1253. doi: 10.1017/s0024282916000463
    [7] 张继标, 刘士林, 戴俊生, 等. 塔里木盆地玉北地区奥陶系储层构造裂缝定量预测[J]. 地质力学学报, 2019, 25(2): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201902003.htm

    Zhang J B, Liu S L, Dai J S, et al. The quantitative prediction of structural fractures in Ordovician reservoir in Yubei area, Tarim Basin[J]. Journal of Geomechanics, 2019, 25(2): 177-186(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201902003.htm
    [8] 张浩然, 姜华, 陈志勇, 等. 四川盆地及周缘地区加里东运动幕次研究现状综述[J]. 地质科技通报, 2020, 39(5): 118-126. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10057.shtml

    Zhang H R, Jiang H, Chen Z Y, et al. A review of the research status of Caledonian movement stages in Sichuan Basin and surrounding areas[J]. Bulletin of Geological Science and Techonlogy, 2020, 39(5): 118-126(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10057.shtml
    [9] 胡秋媛, 李理. 鲁西地区晚中生代-古近纪伸展构造的应力场数值模拟[J]. 石油实验地质, 2015, 37(2): 259-266. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201502021.htm

    Hu Q Y, Li L. Numerical simulations of tectonic stress fields for Late Mesozoic-Paleogene extensional tectonics in western Shandong[J]. Petroleum Geology & Experiment, 2015, 37(2): 259-266(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201502021.htm
    [10] Wang R Y, Ding W L, Gong D J, et al. Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation, southeastern Chongqing-northern Guizhou area[J]. Acta Petrolei Sinica, 2016, 37(7): 832-845. http://d.wanfangdata.com.cn/periodical/syxb201607002
    [11] Zhao G, Ding W L, Sun Y X, et al. Fracture development characteristics and controlling factors for reservoirs in the Lower Silurian Longmaxi Formation marine shale of the Sangzhi block, Hunan Province, China-Science Direct[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106470-106470. doi: 10.1016/j.petrol.2019.106470
    [12] 张宝一, 刘肖莉, 蒙菲, 等. 红透山铜矿区F8断层构造应力场的有限元数值模拟[J]. 地质找矿论丛, 2021, 36(1): 114-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK202101014.htm

    Zhang B Y, Liu X L, Meng F, et al. Finite element numerical simulation of tectonic stress field of fault F8 in Hongtoushan copper mine[J]. Contributions to Geology and Mineral Resources Research, 2021, 36(1): 114-125(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK202101014.htm
    [13] Ju W, Wang J, Fang H, et al. Paleotectonic stress field modeling and prediction of natural fractures in the Lower Silurian Longmaxi shale reservoirs, Nanchuan region, South China[J]. Mar. Pet. Geol., 2019, 100: 20-30. doi: 10.1016/j.marpetgeo.2018.10.052
    [14] Jing T Y, Zhang J C, Xu S S, et al. Critical geological characteristics and gas bearing controlling factors in Longmaxi shales in southeastern Chongqing, China[J]. Energy Exploit, 2016, 34(1): 42-60. doi: 10.1177/0144598715623666
    [15] 赵瞻, 余谦, 周小琳, 等. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报, 2021, 40(3): 67-77. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10139.shtml

    Zhao Z, Yu Q, Zhou X L, et al. Microscopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10139.shtml
    [16] Zeng W T, Zhang J C, Ding W T, et al. Fracture development in Paleozoic shale of Chongqing area (South China). Part two: Numerical simulation of tectonic stress field and prediction of fractures distribution[J]. Journal of Asian Earth Sciences, 2013, 75(5): 267-279. http://www.sciencedirect.com/science/article/pii/S1367912013003635
    [17] 叶葱林. 金湖凹陷构造应力场模拟[D]. 青岛: 中国石油大学(华东), 2011.

    Ye C L. The simulation of the tectonic stress field in Jinhu Depression[D]. Qingdao: China University of Petroleum (East China), 2011(in Chinese with English abstract).
    [18] Fan J X, Melchin M J, Chen X, et al. Biostratigraphy of ordovician-silurian Longmaxi black graptolite shale in South China[J]. Earth Sciences, 2012, 24: 131-139. http://www.researchgate.net/publication/284147166_Biostratigraphy_of_Ordovician-Silurian_Longmaxi_black_graptolite_shale_inSouth_China
    [19] Ding W L, Zeng W T, Wang R Y, et al. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir[J]. Earth Science Frontiers, 2016, 23(2): 63-74. http://www.researchgate.net/publication/301554987_Method_and_application_of_tectonic_stress_field_simulation_and_fracture_distribution_prediction_in_shale_reservoir
    [20] 刘敬寿, 戴俊生, 徐珂, 等. 构造裂缝产状演化规律表征方法及其应用[J]. 吉林大学学报: 地球科学版, 2017, 47(1): 84-94. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201701008.htm

    Liu J S, Dai J S, Xu K, et al. Method for the charaterization of the evolution of tectonic fracture attitudes and its application[J]. Journal of Jilin University: Earth Science Edition, 2017, 47(1): 84-94(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201701008.htm
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  603
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06

目录

    /

    返回文章
    返回