Numerical simulation of tectonic stress field and prediction of fracture target in the Longmaxi Formation, southeastern Chongqing
-
摘要: 渝东南地区页岩储层发育,以下志留统龙马溪组为主力储层。此类页岩储层以构造裂缝发育为主要特征,是控制研究区油气运移与富集的主要因素。对渝东南地区龙马溪组的裂缝进行预测,可为研究区下一步勘探开发提供重要依据。以野外地质踏勘为基本方法,选取区内典型剖面,对渝东南地区的构造特征进行系统分析;在此基础上,针对研究区龙马溪组页岩储层建立地质模型,利用有限元分析软件ANSYS15.0进行构造应力场数值模拟。以构造应力场数值模拟结果为依据,进一步综合页岩储层的多个影响因素,引入"裂缝综合发育系数IF",定量表征与预测页岩储层的裂缝分布与发育程度。结果表明,裂缝综合发育系数IF越大,页岩储层裂缝越发育。依此将渝东南地区龙马溪组页岩储层划分为Ⅰ类裂缝有利区带(IF ≥ 3.0,裂缝发育)、Ⅱ类裂缝有利区带((3.0,2.0],裂缝较发育)和Ⅲ类裂缝有利区带(2.0,1.0]。构造应力场数值模拟结果恢复再现了喜马拉雅时期的构造应力场,与实际地质构造取得了较高的吻合度。Abstract: Shale reservoirs are well developed in Southeast Chongqing, of which the Longmaxi Formation is the main reservoir.Compared with other types of reservoirs, structural fractures are very well developed in this type of shale reservoirs, making this area potential for shale exploration.In this paper, based on the field survey data and typical regional geological sections, structural characteristics of the study area were analyzed.On this basis, a geological model for the shale reservoir was established.In order to restore the process of structural evolution within the study area of the Himalayan period, further, the finite element analysis software Ansys 15.0 are used.Simulation results fit the actual structural development well.Based on the results as well as Griffith fracture criterion and Coulomb-Moore fracture criterion, multiple influencing factors of shale reservoirs were comprehensively analyzed, and comprehensive fracture development coefficient IF were used to quantification of the fractures distribution prediction in shale reservoirs.The larger comprehensive fracture development coefficient IF is, the more developed the shale reservoir fractures would be.Therefore, shale reservoirs in the study area are classified into three categories: fracture favorable zone Type Ⅰ(IF ≥ 3.0, fracture very well developed), fracture favorable zone Type Ⅱ(3.0, 2.0], fracture good developed) and fracture favorable zone Type Ⅲ(2.0, 1.0].
-
表 1 渝东南地区战略选取拟探井构造特征
Table 1. Structural characteristics of the proposed exploration wells in the strategically selected area of Southeast Chongqing
表 2 研究区龙马溪组各结构单元岩石力学参数
Table 2. Rock mechanics parameters of structural units of the Longmaxi Formation in the study area
介质类型 岩石密度
ρ/(g·cm-3)杨氏模量
E/MPa泊松比μ 沉积地层 2.715 72 860 0.269 褶皱带 隔槽式褶皱 2.747 114 680 0.206 过渡性褶皱 2.751 99 200 0.232 隔档式褶皱 2.745 73 725 0.252 断层带 Ⅰ级断层带 2.657 20 890 0.328 Ⅱ级断层带 2.660 33 285 0.315 Ⅲ级断层带 2.659 36 720 0.308 辅助区域 2.700 72 500 0.200 表 3 页岩储层裂缝有利区带划分标准
Table 3. Classification standard of the favorable zone of fracture development in shale reservoirs
裂缝发育有利区带类型 裂缝综合发育系数IF 裂缝发育程度 Ⅰ类裂缝有利区带 ≥3.0 发育 Ⅱ类裂缝有利区带 (3.0, 2.0] 较发育 Ⅲ类裂缝有利区带 (2.0, 1.0] 不发育 -
[1] 于豪, 黄家强, 兰雪梅, 等. 川西北双鱼石地区栖霞组地震资料优化处理及裂缝预测技术应用[J]. 科学技术与工程, 2020, 20(22): 8934-8942. doi: 10.3969/j.issn.1671-1815.2020.22.012Yu H, Huang J Q, Lan X M, et al. Application of seismic data optimal processing and fracture prediction in the Shuangyushi Block, Northwest Sichuan[J]. Science Technology and Engineering, 2020, 20(22): 8933-8942(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2020.22.012 [2] 孙文峰, 李玮, 李卓, 等. 页岩储层微裂缝发育程度预测方法[J]. 科学技术与工程, 2019, 19(19): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201919019.htmSun W F, Li W, Li Z, et al. Prediction method of micro-fracture development degree of shale reservoir[J]. Science Technology and Engineering, 2019, 19(19): 118-123(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201919019.htm [3] 刘敬寿, 丁文龙, 肖子亢, 等. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展, 2019, 34(6): 2283-2300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htmLiu J S, Ding W L, Xiao Z K, et al. Advances in comprehensive characterization and prediction of reservoir fractures[J]. Progress in Geophysics, 2019, 34(6): 2283-2300(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htm [4] 李梦萍, 戴俊生, 王硕, 等. 渤南洼陷古近纪早中期应力场数值模拟及其与断层发育的关系[J]. 地质科技情报, 2017, 36(4): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704006.htmLi M P, Dai J S, Wang S, et al. Tectonic stress field simulation of early-middle paleogene and its relationship with fault development in Bonan Sub-sag[J]. Geological Science and Technology Information, 2017, 36(4): 42-48(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704006.htm [5] Guo P, Ren D S, Xue Y H. Simulation of multi-period tectonic stress fields and distribution prediction of tectonic fractures in tight gas reservoirs: A case study of the Tianhuan Depression in western Ordos Basin, China[J]. Marine and Petroleum Geology, 2019, 109: 530-546. doi: 10.1016/j.marpetgeo.2019.06.026 [6] Ren Q Q, Jin Q, Feng J W, et al. Simulation of stress fields and quantitative prediction of fractures distribution in upper Ordovician biological limestone formation within Hetianhe field, Tarim Basin, NW China[J]. Journal of Petroleum Science and Engineering, 2018, 173: 1236-1253. doi: 10.1017/s0024282916000463 [7] 张继标, 刘士林, 戴俊生, 等. 塔里木盆地玉北地区奥陶系储层构造裂缝定量预测[J]. 地质力学学报, 2019, 25(2): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201902003.htmZhang J B, Liu S L, Dai J S, et al. The quantitative prediction of structural fractures in Ordovician reservoir in Yubei area, Tarim Basin[J]. Journal of Geomechanics, 2019, 25(2): 177-186(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201902003.htm [8] 张浩然, 姜华, 陈志勇, 等. 四川盆地及周缘地区加里东运动幕次研究现状综述[J]. 地质科技通报, 2020, 39(5): 118-126. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10057.shtmlZhang H R, Jiang H, Chen Z Y, et al. A review of the research status of Caledonian movement stages in Sichuan Basin and surrounding areas[J]. Bulletin of Geological Science and Techonlogy, 2020, 39(5): 118-126(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10057.shtml [9] 胡秋媛, 李理. 鲁西地区晚中生代-古近纪伸展构造的应力场数值模拟[J]. 石油实验地质, 2015, 37(2): 259-266. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201502021.htmHu Q Y, Li L. Numerical simulations of tectonic stress fields for Late Mesozoic-Paleogene extensional tectonics in western Shandong[J]. Petroleum Geology & Experiment, 2015, 37(2): 259-266(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201502021.htm [10] Wang R Y, Ding W L, Gong D J, et al. Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation, southeastern Chongqing-northern Guizhou area[J]. Acta Petrolei Sinica, 2016, 37(7): 832-845. http://d.wanfangdata.com.cn/periodical/syxb201607002 [11] Zhao G, Ding W L, Sun Y X, et al. Fracture development characteristics and controlling factors for reservoirs in the Lower Silurian Longmaxi Formation marine shale of the Sangzhi block, Hunan Province, China-Science Direct[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106470-106470. doi: 10.1016/j.petrol.2019.106470 [12] 张宝一, 刘肖莉, 蒙菲, 等. 红透山铜矿区F8断层构造应力场的有限元数值模拟[J]. 地质找矿论丛, 2021, 36(1): 114-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK202101014.htmZhang B Y, Liu X L, Meng F, et al. Finite element numerical simulation of tectonic stress field of fault F8 in Hongtoushan copper mine[J]. Contributions to Geology and Mineral Resources Research, 2021, 36(1): 114-125(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK202101014.htm [13] Ju W, Wang J, Fang H, et al. Paleotectonic stress field modeling and prediction of natural fractures in the Lower Silurian Longmaxi shale reservoirs, Nanchuan region, South China[J]. Mar. Pet. Geol., 2019, 100: 20-30. doi: 10.1016/j.marpetgeo.2018.10.052 [14] Jing T Y, Zhang J C, Xu S S, et al. Critical geological characteristics and gas bearing controlling factors in Longmaxi shales in southeastern Chongqing, China[J]. Energy Exploit, 2016, 34(1): 42-60. doi: 10.1177/0144598715623666 [15] 赵瞻, 余谦, 周小琳, 等. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报, 2021, 40(3): 67-77. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10139.shtmlZhao Z, Yu Q, Zhou X L, et al. Microscopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10139.shtml [16] Zeng W T, Zhang J C, Ding W T, et al. Fracture development in Paleozoic shale of Chongqing area (South China). Part two: Numerical simulation of tectonic stress field and prediction of fractures distribution[J]. Journal of Asian Earth Sciences, 2013, 75(5): 267-279. http://www.sciencedirect.com/science/article/pii/S1367912013003635 [17] 叶葱林. 金湖凹陷构造应力场模拟[D]. 青岛: 中国石油大学(华东), 2011.Ye C L. The simulation of the tectonic stress field in Jinhu Depression[D]. Qingdao: China University of Petroleum (East China), 2011(in Chinese with English abstract). [18] Fan J X, Melchin M J, Chen X, et al. Biostratigraphy of ordovician-silurian Longmaxi black graptolite shale in South China[J]. Earth Sciences, 2012, 24: 131-139. http://www.researchgate.net/publication/284147166_Biostratigraphy_of_Ordovician-Silurian_Longmaxi_black_graptolite_shale_inSouth_China [19] Ding W L, Zeng W T, Wang R Y, et al. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir[J]. Earth Science Frontiers, 2016, 23(2): 63-74. http://www.researchgate.net/publication/301554987_Method_and_application_of_tectonic_stress_field_simulation_and_fracture_distribution_prediction_in_shale_reservoir [20] 刘敬寿, 戴俊生, 徐珂, 等. 构造裂缝产状演化规律表征方法及其应用[J]. 吉林大学学报: 地球科学版, 2017, 47(1): 84-94. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201701008.htmLiu J S, Dai J S, Xu K, et al. Method for the charaterization of the evolution of tectonic fracture attitudes and its application[J]. Journal of Jilin University: Earth Science Edition, 2017, 47(1): 84-94(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201701008.htm