留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

龙马溪组层状页岩微观非均质性及力学各向异性特征

解经宇 陆洪智 陈磊 金显鹏 王丹 付国强

解经宇, 陆洪智, 陈磊, 金显鹏, 王丹, 付国强. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报, 2021, 40(3): 67-77. doi: 10.19509/j.cnki.dzkq.2021.0302
引用本文: 解经宇, 陆洪智, 陈磊, 金显鹏, 王丹, 付国强. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报, 2021, 40(3): 67-77. doi: 10.19509/j.cnki.dzkq.2021.0302
Xie Jingyu, Lu Hongzhi, Chen Lei, Jin Xianpeng, Wang Dan, Fu Guoqiang. Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77. doi: 10.19509/j.cnki.dzkq.2021.0302
Citation: Xie Jingyu, Lu Hongzhi, Chen Lei, Jin Xianpeng, Wang Dan, Fu Guoqiang. Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77. doi: 10.19509/j.cnki.dzkq.2021.0302

龙马溪组层状页岩微观非均质性及力学各向异性特征

doi: 10.19509/j.cnki.dzkq.2021.0302
基金项目: 

国家重点研发计划 2018YFB1501803-04

国家重点研发计划 2020YFE0201300-05

中国地质调查局能源矿产地质调查项目 DD20190135

详细信息
    作者简介:

    解经宇(1991-), 男, 工程师, 主要从事页岩气、干热岩水力压裂方面的研究。E-mail: xiejingyu@cug.edu.cn

    通讯作者:

    陆洪智(1976-), 男, 副教授, 主要从事地质钻探及非常规能源开发方面的研究。E-mail: 35749653@qq.com

  • 中图分类号: P584

Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation

  • 摘要: 层状页岩的微观非均质性及力学各向异性对研究井壁稳定以及水力裂缝扩展形态具有重要意义。为了向页岩优化钻井、压裂工艺参数提供一定的理论和试验依据,对沿不同角度取心的页岩试样开展单轴压缩实验,配合场发射扫描电镜、原子力显微镜观测实验和波速测试等,研究龙马溪组层状页岩微观非均质性及力学各向异性特征,并讨论这些物理力学特征对水力裂缝形态的影响规律。结果表明:受层理面的影响,龙马溪组页岩呈现出较强的微观非均质性和宏观力学各向异性特征。具体的,微观孔隙结构特征方面,随着观测方向与层理方向之间夹角β的增大,微观孔隙结构的发育程度逐渐增加,说明气体的储集和空间呈增加趋势;宏观力学特征方面,单轴压缩条件下,随着加载方向与层理方向间夹角θ的增加,页岩试样的破坏模式从贯穿层理面的张拉破坏,先转变为剪切破坏,再变为劈裂-剪切混合破坏;龙马溪组层状页岩的单轴抗压强度、泊松比随着θ的增加呈现出先减小后增大的"U"形各向异性模式,弹性模量、横纵波速则逐渐减小,胶结程度较弱的页岩层理面会先于基质体发生破坏,进而显著影响岩石整体的力学性质;页岩微观非均质性及力学各向异性特征在一定程度上影响压裂过程中水力裂缝的扩展行为,以及停泵后压裂液的渗流路径。研究结果可为页岩压裂工艺参数优选提供一定依据。

     

  • 图 1  野外试样采集位置

    a.采样点构造位置示意图;b.采样点

    Figure 1.  Collectionlocation map of the sampling site

    图 2  取样示意图及成品

    a.取心示意图;b.不同取心角度的试样示意图;c.部分加工完成的样品

    Figure 2.  Diagram of the specimen preparation process and the experimental specimens

    图 3  不同取心角度页岩试样的FE-SEM测试结果

    Figure 3.  FE-SEM images of the shale specimens at different coring angles

    图 4  AFM测试结果描述

    a.AFM检测结果界面;b.样品表面观测区域起伏图像

    Figure 4.  Description of AFM test results

    图 5  不同取心角度页岩试样AFM测试结果

    Figure 5.  AFM images of the shale specimens at the different coring angles

    图 6  不同取心角度页岩试样破坏模式及裂缝形态(θ为加载方向和层理方向之间的夹角)

    Figure 6.  Typical failure patterns and fracture geometry of the shale specimens at different coring angles

    图 7  抗压强度、弹性模量、泊松比随θ的变化规律

    Figure 7.  Variation of uniaxial compressive strength, elastic modulus and Poisson′s ratio with the θ

    图 8  横、纵波速随夹角φ的变化规律

    Figure 8.  Variation of P and S wave velocity with the φ

    图 9  页岩各向异性对于裂缝起裂的影响

    a.裂缝起裂后沿近井层理面扩展;b.水力裂缝起裂后直接延伸至试样边界

    Figure 9.  Effect of the shale anisotropy on the initiation of hydraulic fracture

    图 10  页岩各向异性对于裂缝扩展的影响

    a.水力裂缝穿透层理面;b.水力裂缝被层理面“捕获”

    Figure 10.  Effect of the shale anisotropy on the propagation of hydraulic fracture

  • [1] Mayerhofer M J, Lolon E P, Warpinski N R, et al. What is simulated reservoir volume?[M]. Fort Worth: Society of Petroleum Engineers, 2008.
    [2] 苗凤彬, 彭中勤, 汪宗欣, 等. 雪峰隆起西缘下寒武统牛蹄塘组页岩裂缝发育特征及主控因素[J]. 地质科技通报, 2020, 39(2): 31-42. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9972.shtml

    Miao F B, Peng Z Q, Wang Z X, et al. Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation western margin of Xuefeng Uplift[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 31-42(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract9972.shtml
    [3] Tan P, Jin Y, Hou B, et al. Experiments and analysis on hydraulic sand fracturing by an improved true tri-axial cell[J]. Journal of Petroleum Science and Engineering, 2017, 158: 766-774. doi: 10.1016/j.petrol.2017.09.004
    [4] 何柏, 谢凌志, 李凤霞, 等. 龙马溪页岩各向异性变形破坏特征及其机理研究[J]. 中国科学: 物理学力学天文学, 2017, 47(11): 107-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711012.htm

    He B, Xie L Z, Li F X, et al. Anisotropic mechanism and characteristics of deformation and failure of Longmaxi shale[J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2017, 47(11): 107-118(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711012.htm
    [5] 侯振坤, 杨春和, 郭印同, 等. 单轴压缩下龙马溪组页岩各向异性特征研究[J]. 岩土力学, 2015, 36(9): 2541-2550. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509015.htm

    Hou Z K, Yang C H, Guo Y T, et al. Experimental study on anisotropic properties of Longmaxi Formation shale under uniaxial compression[J]. Rock and Soil Mechanics, 2015, 36(9): 2541-2550(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509015.htm
    [6] 汪虎, 郭印同, 王磊, 等. 不同深度页岩储层力学各向异性的试验研究[J]. 岩土力学, 2017, 38(9): 2496-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201709006.htm

    Wang H, Guo Y T, Wang L, et al. An experimental study on mechanical anisotropy of shale reservoirs at different depths[J]. Rock and Soil Mechanics, 2017, 38(9): 2496-2506(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201709006.htm
    [7] 陈天宇, 冯夏庭, 张希巍, 等. 黑色页岩力学特性及各向异性特性实验研究[J]. 岩石力学与工程学报, 2014, 33(9): 1772-1779. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409007.htm

    Chen T Y, Feng X T, Zhang X W, et al. Experimental study on mechanical and anisotropic properties of black shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1772-1779(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409007.htm
    [8] Geng Z, Chen M, Jin Y, et al. Experimental study of brittleness anisotropy of shale in tri-axial compression[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 510-518. doi: 10.1016/j.jngse.2016.10.059
    [9] Wang Y, Li C H. Investigation of the P-and S-wave velocity anisotropy of a Longmaxi Formation shale by real-time ultrasonic and mechanical experiments under uniaxial deformation[J]. Journal of Petroleum Science and Engineering, 2017, 158: 253-267. doi: 10.1016/j.petrol.2017.08.054
    [10] 张福, 黄艺, 蓝宝峰, 等. 正安地区五峰组-龙马溪组页岩储层特征及控制因素[J]. 地质科技通报, 2021, 40(1): 49-56. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10091.shtml

    Zhang F, Huang Y, Lan B F, et al. Characteristics and controlling factors of shale reservoir in Wufeng Formation-Longmaxi Formation of the Zheng'an area[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 49-56(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract10091.shtml
    [11] 田鹤, 曾联波, 舒志国. 页岩横向各向同性地应力预测模型中弹性参数的确定方法[J]. 地质力学学报, 2019, 25(12): 166-176. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201902058.htm

    Tian H, Zeng L B, Shu Z G. Method for determining elastic parameters for the prediction model of shale transversely isotropic geostresss[J]. Journal of Geomechanics, 2019, 25(2): 166-176(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201902058.htm
    [12] 中国水电顾问集团成都勘测设计研究院. DL/T5368-2007水电水利工程岩石试验规程[S]. 北京: 科学出版社, 2007.

    Power China Chengdu Engineering Corporation Limited. DL/T5368-2007 Code for rock tests of hydroelectric and water conservancy engineering[S]. Beijing: Science Press, 2007(in Chinese).
    [13] 张宝鑫, 傅雪海, 张苗, 等. 山西省域煤系泥页岩孔隙分形特征[J]. 地质科技情报, 2019, 38(4): 82-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904010.htm

    Zhang B X, Fu X H, Zhang M, et al. Fractal features of coal measures shale in Shanxi province[J]. Geological Science and Technology Information, 2019, 38(4): 82-92(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904010.htm
    [14] Fu Y H, Jiang Y Q, Wang Z L, et al. Non-connected pores of the Longmaxi shale in southern Sichuan Basin of China[J]. Marine and Petroleum Geology, 2019, 110: 420-433. doi: 10.1016/j.marpetgeo.2019.07.014
    [15] Zhu H H, Zhang T S, Liang X, et al. Insight into the pore structure of Wufeng-Longmaxi black shales in the south Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2018, 171: 1279-1291. doi: 10.1016/j.petrol.2018.08.061
    [16] 苟启洋, 徐尚, 郝芳, 等. 基于成像测井的泥页岩裂缝研究: 以焦石坝区块为例[J]. 地质科技通报, 2020, 39(6): 193-200. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10085.shtml

    Gou Q Y, Xu S, Hao F, et al. Research on mud shale fractures based on image logging: A case study of Jiaoshiba area[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 193-200(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract10085.shtml
    [17] Sundararajan S, Bhushan B, Namazu T, et al. Mechanical property measurements of nanoscale structures using an atomic force microscope[J]. Ultramicroscopy, 2002, 91(1): 111-118. http://www.ncbi.nlm.nih.gov/pubmed/12211458
    [18] 彭力, 宁伏龙, 李维, 等. 用原子力显微镜研究温度和接触界面对THF水合物形貌的影响[J]. 中国科学: 物理学力学天文学, 2019, 49(3): 144-152. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903011.htm

    Peng L, Ning F L, Li W, et al. Investigation on the effect of growth temperature and contact interface on surface characteristics of THF clathrate hydrates by atomic force microscopy[J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2019, 49(3): 144-152(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903011.htm
    [19] 白永强, 刘美, 杨春梅, 等. 基于AFM表征的页岩孔隙特征及其与解析气量关系[J]. 吉林大学学报: 地球科学版, 2016, 46(5): 1332-1341. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201605007.htm

    Bai Y Q, Liu M, Yang C M, et al. AFM based pore characterization of shales and its relation to the analytical gas[J]. Journal of Jilin University: Earth Science Edition, 2016, 46(5): 1332-1341(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201605007.htm
    [20] 蔡潇. 原子力显微镜在页岩微观孔隙结构研究中的应用[J]. 电子显微学报, 2015, 34(4): 326-331. doi: 10.3969/j.issn.1000-6281.2015.04.010

    Cai X. Application of atomic force microscopy in the study of microscopic pore structure of shale[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(4): 326-331(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6281.2015.04.010
    [21] 袁和义, 陈平. 基于波速测量的龙马溪组页岩的各向异性研究[J]. 地下空间与工程学报, 2015, 43(2): 1200-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201705009.htm

    Yuan H Y, Chen P. Study on Longmaxi Formation shale anisotropy based on acoustic wave velocity measurement[J]. Chinese Journal of Underground Space and Engineering, 2015, 43(2): 1200-1205(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201705009.htm
    [22] Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068
    [23] Raef A, Kamari A, Totten M, et al. The dynamic elastic and mineralogical Brittleness of Woodford shale of the Anadarko Basin: Ultrasonic P-wave and S-wave velocities, XRD-Mineralogy and predictive models[J]. Journal of Petroleum Science and Engineering, 2018, 169: 33-43. doi: 10.1016/j.petrol.2018.05.052
    [24] Zhang G Q, Fan T G. A high-stress tri-axial cell with pore pressure for measuring rock properties and simulating hydraulic fracturing[J]. Measurement, 2014, 49: 236-245. doi: 10.1016/j.measurement.2013.11.001
    [25] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001

    Xie H P, Ju Y, Li L Y. Energy analysis and criteria for structural failure of rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.17.001
    [26] Griffith A A. The phenomena of rupture and flow in solid[J]. Philosophical Transactions of the Royal Society of London, 1920, A221: 163-198. http://adsabs.harvard.edu/abs/1921rspta.221..163g
    [27] Xie J Y, Cheng W, Wang R J, et al. Experiments and analysis on the influence of perforation mode on hydraulic fracture geometry in shale formation[J]. Journal of Petroleum Science and Engineering, 2018, 168: 133-147. doi: 10.1016/j.petrol.2018.05.017
    [28] Liu B H, Jin Y, Chen M. Influence of vugs in fractured-vuggy carbonate reservoirs on hydraulic fracture propagation based on laboratory experiments[J]. Journal of Structural Geology, 2019, 124: 143-150. doi: 10.1016/j.jsg.2019.04.007
    [29] 翟松韬, 吴刚, 张渊, 等. 单轴压缩下高温盐岩的力学特性研究[J]. 岩石力学与工程学报, 2014, 33(1): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401012.htm

    Zhai S T, Wu G, Zhang Y, et al. Mechanical characteristics of salt rock subjected to uniaxial compression and high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 105-111(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401012.htm
    [30] Cheng W, Jin Y, Chen M. Reactivation mechanism of natural fractures by hydraulic fracturing in naturally fractured shale reservoirs[J]. Journal of Natural Gas Science and Engineering. 2015, 23: 431-439. doi: 10.1016/j.jngse.2015.01.031
    [31] 陈林, 陈孝红, 张保民, 等. 鄂西宜昌地区五峰组-龙马溪组页岩储层特征及其脆性评价[J]. 地质科技通报, 2020, 39(2): 54-61. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9974.shtml

    Chen L, Chen X H, Zhang B M, et al. Reservoir characteristics and brittleness evaluation of Wufeng Formation-Longmaxi Formation shale in Yichang area, Western Hubei Province[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 54-61(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract9974.shtml
  • 加载中
图(10)
计量
  • 文章访问数:  1075
  • PDF下载量:  711
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-29

目录

    /

    返回文章
    返回