Mineralogy, geochronology and occurrence state of the Duanfengshan Nb-Ta deposit in Mufushan area
-
摘要: 幕阜山复式花岗岩体位于湖北、湖南和江西三省交界处,在岩体北缘的断峰山和南缘的仁里地区相继发现两个大型铌钽矿床。围绕断峰山铌钽矿床,在野外调查基础上开展矿物学和年代学测试分析,旨在揭示铌钽矿赋存状态、成矿时代和成矿特征,为理解幕阜山地区铌钽矿的矿床成因和指导找矿工作提供基础地质约束资料。断峰山铌钽矿床位于幕阜山复式花岗岩体北缘与冷家溪群接触带的伟晶岩密集区,属于典型花岗伟晶岩型铌钽矿床。铌钽矿主要产出于白云母钠长石伟晶岩中,多以半自形-自形铌锰矿矿物赋存,常见伴生矿物有钠长石、白云母和石英。铌钽矿LA-ICP-MS U-Pb测年数据为136.6~136.2 Ma,反映铌钽矿结晶和成矿年龄。断峰山铌钽矿的形成与幕阜山复式花岗岩体多期次多阶段演化分异作用密切相关,成矿元素可能受到岩浆演化后期熔流体活动和围岩黑云母片岩共同控制。Abstract: The two large niobium-tantalum deposits, Duanfengshan in the north margin and Renli in the south margin, were reported in the Mufushan area located in the junction of Hubei, Hunan and Jiangxi provinces.In this paper, we present field geological survey, mineralogical and geochronological investigations on the Duanfengshan Nb-Ta deposit, which are important to reveal the metallogenic characteristic, ore genesis and prospecting direction of the Nb-Ta deposit in the Mufushan area.The Duanfengshan Nb-Ta deposit is a typical granitic pegmatite type Nb-Ta deposit.It is mainly located in the densely distributed pegmatite area within the contact zone between the northern Mufushan composite granite and Lengjiaxi Group.The Nb and Ta elements are commonly enriched in the muscovite-ablite pegmatite, and are mainly hosted in the independent manganocolumbite minerals which commonly associated with albite, muscovite and quartz.Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb dating of columbotantalite from the Nb-Ta pegmatite yielded concordant ages of 136.6-136.2 Ma, which denotes the Nb-Ta mineralization age.The data indicate that the ore forming elements of Nb and Ta are probably enriched from the evolution and differentiation of Mufushan granite magma, while the crystal nucleation and growth of Nb and Ta bearing minerals are influenced and controlled by many factors especially the fluid melt of late stage magma as well as the host country rock of biotite gneiss.
-
Key words:
- LA-ICP-MS /
- U-Pb dating /
- Duanfengshan Nb-Ta deposit /
- Mufushan
-
图 2 断峰山矿区伟晶岩脉分布图
(据文献[14]修改)
Figure 2. Distribution of the pegmatite dykes in the Duanfengshan mining area
图 5 断峰山含铌钽矿伟晶岩脉的显微图片
a.白云母钠长伟晶岩脉体与围岩黑云母片岩接触边界,正交偏光;b.伟晶岩与细晶岩局部呈带状展布,正交偏光;c.白云母钠长伟晶岩脉中可见铌钽矿颗粒,正交偏光;d.铌钽矿氧化蚀变,核部残留有新鲜铌钽矿,反射光;e.铌钽矿与云母、石英和斜长石共生,正交偏光;f.铌钽矿与云母、石英和长石共生,反射光。CCG.铌钽矿;Kfs.钾长石;Pl.斜长石;Qz.石英;Ms.白云母;Bi.黑云母。20D3-1为样品号
Figure 5. Micrographs of columbotantalite bearing pegmatite in Duanfengshan mine
图 8 铌钽矿电子探针数据的元素比分类图解
断峰山铌钽矿数据为本文测量结果,仁里铌钽矿数据引自文献[10]
Figure 8. Quadrilateral diagrams (Ta/(Ta+Nb) atomic ratio versue Mn/(Mn+Fe) atomic ratio) for the analyzed columbotantalite grains
表 1 幕阜山地区断峰山铌钽矿的电子探针分析结果
Table 1. EPMA data of columbotantalite from the Duanfengshan mine in Mufushan area
元素 DFS-5 DFS-6 DFS-8 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 1 2 3 4 5 8 SiO2 0.62 0.56 0.23 0.75 0.73 0.64 0.22 0.83 0.34 0.28 0.19 0.06 0.05 0.05 0.08 0.05 0.03 1.08 0.71 0.16 0.19 1.26 0.26 TiO2 0.87 0.80 0.98 0.69 1.24 0.74 0.67 0.80 0.93 0.87 0.64 0.55 0.47 0.64 0.62 0.60 0.54 0.69 0.48 0.56 0.46 0.76 0.61 FeO* 3.28 3.39 3.20 3.11 3.19 2.76 3.27 2.76 3.02 2.81 3.69 6.94 6.94 6.76 7.00 6.87 6.96 2.65 2.92 3.06 2.82 2.37 2.50 MnO 12.21 12.53 11.95 11.84 11.96 12.54 12.78 12.27 12.38 12.15 12.95 10.95 11.14 10.03 10.81 10.88 10.94 11.62 12.01 12.04 12.08 11.22 12.23 CaO 0.04 0.04 0.06 0.07 0.04 0.04 0.05 0.05 0.03 0.11 0.04 0.04 0.03 0.01 0.02 0.03 0.03 0.21 0.06 0.04 0.04 0.03 0.03 U2O wB/% 0.19 0.23 0.60 0.10 0.70 0.39 0.23 0.24 0.19 0.25 0.13 0.26 0.21 0.20 0.18 0.33 0.33 1.79 0.28 0.19 0.54 0.23 ThO2 0.09 0.04 0.03 0.06 0.04 PbO 0.02 0.19 0.05 0.09 0.41 0.17 0.08 0.20 0.19 0.30 0.28 0.13 0.19 0.58 0.32 0.26 0.22 0.22 0.13 0.15 0.12 0.36 Nb2O5 45.26 49.80 41.05 40.61 39.54 46.27 45.69 38.36 38.16 34.06 49.31 66.78 66.81 66.68 66.39 66.21 66.57 40.61 43.00 52.23 44.84 27.38 39.93 Ta2O5 34.50 32.39 38.82 39.38 40.85 35.15 35.14 42.27 43.49 45.39 30.84 11.68 12.34 12.27 12.64 11.92 11.45 38.92 37.75 29.72 36.36 54.93 41.03 Y2O3 0.04 0.06 0.10 0.01 0.04 0.06 0.09 0.06 0.12 0.54 0.48 0.52 0.54 0.22 0.16 0.02 0.25 0.14 0.01 Sc2O3 0.15 0.16 0.14 0.16 0.16 0.14 0.17 0.13 0.18 0.17 0.16 0.06 0.06 0.06 0.09 0.08 0.09 0.14 0.15 0.12 0.10 0.20 0.17 SnO2 0.03 0.02 0.01 0.07 0.01 0.06 0.05 0.00 0.02 0.00 0.03 0.09 0.04 ZrO2 0.20 0.25 0.22 0.04 0.29 0.17 0.06 0.15 0.09 0.17 0.05 0.07 0.09 0.18 0.07 0.13 0.09 0.10 0.04 0.09 0.03 0.18 0.08 WO3 0.53 0.42 0.32 0.41 0.52 0.38 0.26 0.49 0.42 0.49 0.37 0.34 0.27 0.25 0.33 0.23 0.31 0.26 0.30 0.29 0.31 0.56 0.51 总计 97.98 100.82 97.69 97.32 99.40 99.68 98.86 98.52 99.52 96.93 98.83 98.56 99.02 97.83 99.35 97.88 97.78 98.28 97.95 98.68 97.69 99.65 97.97 Ta2O5/Nb2O5 0.76 0.65 0.95 0.97 1.03 0.76 0.77 1.10 1.14 1.33 0.63 0.17 0.18 0.18 0.19 0.18 0.17 0.96 0.88 0.57 0.81 2.01 1.03 Si 0.041 0.036 0.015 0.051 0.049 0.041 0.015 0.056 0.023 0.020 0.012 0.003 0.003 0.003 0.005 0.003 0.002 0.073 0.047 0.010 0.013 0.090 0.018 Ti 0.043 0.038 0.050 0.035 0.062 0.036 0.033 0.041 0.047 0.046 0.031 0.025 0.021 0.029 0.028 0.027 0.025 0.035 0.024 0.027 0.023 0.041 0.031 Fe2+ 0.181 0.179 0.181 0.176 0.178 0.150 0.180 0.157 0.171 0.166 0.199 0.347 0.346 0.340 0.349 0.346 0.350 0.150 0.163 0.163 0.158 0.141 0.143 Mn 0.681 0.670 0.687 0.679 0.678 0.690 0.712 0.704 0.710 0.728 0.709 0.554 0.562 0.511 0.545 0.555 0.557 0.666 0.681 0.651 0.684 0.674 0.708 Nb 1.347 1.422 1.260 1.243 1.196 1.358 1.358 1.175 1.168 1.089 1.440 1.804 1.798 1.811 1.786 1.802 1.811 1.243 1.301 1.509 1.356 0.879 1.234 Ta 0.617 0.556 0.717 0.725 0.743 0.621 0.628 0.779 0.801 0.873 0.542 0.190 0.200 0.201 0.205 0.195 0.187 0.717 0.687 0.516 0.662 1.060 0.763 Ca 0.003 0.003 0.004 0.005 0.003 0.003 0.004 0.004 0.002 0.008 0.002 0.002 0.002 0.001 0.002 0.002 0.015 0.004 0.003 0.003 0.002 0.002 U 0.003 0.004 0.010 0.002 0.011 0.006 0.004 0.004 0.003 0.004 0.002 0.004 0.003 0.003 0.003 0.005 0.005 0.030 0.005 0.003 0.009 0.004 Th 0.001 0.001 0.001 Pb 0.003 0.001 0.002 0.007 0.003 0.001 0.004 0.004 0.005 0.004 0.002 0.003 0.009 0.005 0.004 0.004 0.004 0.002 0.003 0.002 0.007 Y 0.001 0.002 0.004 0.001 0.002 0.003 0.002 0.004 0.017 0.015 0.017 0.017 0.007 0.005 0.001 0.008 0.005 Sc 0.008 0.009 0.008 0.010 0.009 0.008 0.010 0.007 0.011 0.010 0.009 0.003 0.003 0.003 0.005 0.004 0.005 0.008 0.009 0.007 0.006 0.013 0.010 Sn 0.001 0.001 0.002 0.002 0.001 0.001 0.003 0.001 Zr 0.006 0.008 0.007 0.001 0.009 0.005 0.002 0.005 0.003 0.006 0.002 0.002 0.003 0.005 0.002 0.004 0.003 0.003 0.001 0.003 0.001 0.006 0.003 W 0.009 0.007 0.006 0.007 0.009 0.006 0.004 0.009 0.007 0.009 0.006 0.005 0.004 0.004 0.005 0.004 0.005 0.004 0.005 0.005 0.005 0.010 0.009 总计 2.941 2.935 2.950 2.939 2.952 2.934 2.956 2.946 2.953 2.964 2.964 2.961 2.961 2.929 2.959 2.960 2.961 2.950 2.932 2.905 2.921 2.930 2.932 Mn/(Mn+Fe) 0.79 0.79 0.79 0.79 0.79 0.82 0.80 0.82 0.81 0.81 0.78 0.61 0.62 0.60 0.61 0.62 0.61 0.82 0.81 0.80 0.81 0.83 0.83 Ta/(Ta+Nb) 0.31 0.28 0.36 0.37 0.38 0.31 0.32 0.40 0.41 0.44 0.27 0.10 0.10 0.10 0.10 0.10 0.09 0.37 0.35 0.25 0.33 0.55 0.38 元素 DFS-8 DFS-9 DFS-10 9 10 11 12 1 2 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 SiO2 0.27 0.88 0.32 0.89 0.28 0.27 0.25 0.25 0.27 0.30 0.77 0.28 0.29 0.14 0.47 0.07 0.29 0.26 0.10 0.28 0.82 0.13 0.16 TiO2 0.83 0.92 1.03 1.06 0.63 0.54 0.54 0.57 0.52 0.48 0.53 0.60 0.53 1.04 1.06 0.47 0.56 0.61 0.60 0.77 0.89 0.67 0.71 FeO* 2.36 2.49 2.66 2.61 3.47 3.20 3.51 3.35 3.46 3.21 3.20 3.32 3.42 5.45 5.36 5.69 5.43 6.08 6.66 6.00 5.80 6.25 5.69 MnO 12.60 11.80 11.30 10.97 10.72 10.54 10.62 10.73 10.70 10.71 10.98 10.67 11.25 11.72 12.07 11.65 10.39 10.32 10.89 10.18 10.05 10.36 10.31 CaO 0.05 0.04 0.02 0.01 0.01 0.01 0.03 0.02 0.02 0.02 0.03 0.02 0.05 0.01 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.02 U2O 0.81 0.71 0.51 0.55 0.14 0.23 0.44 0.04 0.37 0.19 0.18 0.23 0.11 0.80 0.64 0.10 0.27 0.15 0.21 0.20 0.39 0.42 0.33 ThO2 wB/% 0.04 0.04 0.05 0.09 0.02 0.09 0.07 0.01 0.04 0.03 PbO 0.15 0.25 0.14 0.11 0.19 0.11 0.24 0.27 0.10 0.09 0.26 0.13 0.09 0.28 0.09 0.24 0.15 0.24 0.11 0.18 0.18 0.25 0.22 Nb2O5 40.84 38.02 34.70 34.85 39.48 38.73 37.46 41.10 39.18 37.87 39.23 37.99 37.77 53.65 54.13 58.58 39.05 44.16 59.64 38.82 38.98 54.17 52.28 Ta2O5 39.57 42.65 45.76 46.22 41.15 43.05 43.12 40.70 41.96 43.40 42.92 41.99 42.72 25.17 24.83 20.45 42.63 38.46 19.32 42.90 42.65 25.49 29.39 Y2O3 0.02 0.01 0.07 0.02 0.01 0.14 0.12 0.29 0.23 0.04 0.12 0.01 0.02 0.11 0.10 Sc2O3 0.17 0.19 0.19 0.20 0.16 0.17 0.18 0.16 0.17 0.20 0.21 0.19 0.21 0.11 0.11 0.11 0.19 0.15 0.09 0.19 0.16 0.12 0.13 SnO2 0.10 0.16 0.03 0.03 0.00 0.02 0.01 0.04 0.03 0.04 0.08 0.02 0.01 0.01 0.04 ZrO2 0.20 0.47 0.19 0.29 0.32 0.31 0.15 0.32 0.30 0.28 0.34 0.45 0.40 0.35 0.37 0.15 0.19 0.10 0.19 0.14 0.23 0.15 0.14 WO3 0.55 0.60 0.46 0.63 0.56 0.53 0.76 0.58 0.62 0.59 0.59 0.59 0.67 0.37 0.40 0.31 0.46 0.54 0.30 0.50 0.59 0.48 0.46 总计 98.56 99.23 97.35 98.49 97.11 97.69 97.38 98.12 97.77 97.41 99.36 96.48 97.51 99.35 99.85 98.07 99.72 101.09 98.25 100.19 100.81 98.61 99.96 Ta2O5/Nb2O5 0.97 1.12 1.32 1.33 1.04 1.11 1.15 0.99 1.07 1.15 1.09 1.11 1.13 0.47 0.46 0.35 1.09 0.87 0.32 1.10 1.09 0.47 0.56 Si 0.018 0.059 0.023 0.061 0.019 0.019 0.017 0.017 0.018 0.021 0.052 0.020 0.020 0.009 0.029 0.004 0.020 0.017 0.006 0.019 0.054 0.008 0.010 Ti 0.042 0.047 0.054 0.055 0.033 0.028 0.028 0.029 0.027 0.025 0.027 0.032 0.027 0.049 0.050 0.022 0.028 0.030 0.028 0.039 0.045 0.032 0.034 Fe2+ 0.134 0.141 0.156 0.151 0.200 0.184 0.205 0.190 0.199 0.186 0.180 0.194 0.198 0.287 0.279 0.296 0.307 0.331 0.344 0.337 0.322 0.331 0.301 Mn 0.723 0.676 0.674 0.642 0.625 0.616 0.627 0.616 0.623 0.629 0.626 0.631 0.659 0.626 0.636 0.614 0.595 0.569 0.569 0.579 0.564 0.556 0.553 Nb 1.250 1.163 1.104 1.088 1.229 1.207 1.180 1.260 1.219 1.188 1.194 1.198 1.181 1.528 1.522 1.648 1.192 1.300 1.665 1.180 1.169 1.551 1.495 Ta 0.728 0.784 0.876 0.868 0.771 0.807 0.817 0.751 0.785 0.819 0.786 0.797 0.803 0.431 0.420 0.346 0.783 0.681 0.324 0.784 0.769 0.439 0.506 Ca 0.004 0.003 0.002 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.001 U 0.013 0.012 0.009 0.009 0.002 0.004 0.007 0.001 0.006 0.003 0.003 0.004 0.002 0.012 0.010 0.001 0.004 0.002 0.003 0.003 0.006 0.006 0.005 Th 0.001 0.001 0.001 0.001 0.001 0.001 0.001 Pb 0.003 0.005 0.003 0.002 0.003 0.002 0.004 0.005 0.002 0.002 0.005 0.003 0.002 0.005 0.002 0.004 0.003 0.004 0.002 0.003 0.003 0.004 0.004 Y 0.001 0.003 0.001 0.005 0.004 0.010 0.007 0.001 0.004 0.001 0.004 0.003 Sc 0.010 0.011 0.012 0.012 0.010 0.010 0.011 0.009 0.010 0.012 0.012 0.011 0.013 0.006 0.006 0.006 0.011 0.008 0.005 0.011 0.009 0.006 0.007 Sn 0.003 0.004 0.001 0.001 0.001 0.001 0.001 0.002 0.001 Zr 0.007 0.015 0.007 0.010 0.011 0.010 0.005 0.010 0.010 0.010 0.011 0.015 0.013 0.011 0.011 0.004 0.006 0.003 0.006 0.005 0.008 0.005 0.004 W 0.010 0.011 0.008 0.011 0.010 0.010 0.014 0.010 0.011 0.011 0.010 0.011 0.012 0.006 0.006 0.005 0.008 0.009 0.005 0.009 0.010 0.008 0.008 总计 2.945 2.932 2.928 2.913 2.914 2.898 2.922 2.901 2.914 2.907 2.913 2.916 2.932 2.979 2.981 2.961 2.961 2.957 2.964 2.971 2.963 2.952 2.932 Mn/(Mn+Fe) 0.84 0.83 0.81 0.81 0.76 0.77 0.75 0.76 0.76 0.77 0.78 0.76 0.77 0.69 0.70 0.67 0.66 0.63 0.62 0.63 0.64 0.63 0.65 Ta/(Ta+Nb) 0.37 0.40 0.44 0.44 0.39 0.40 0.41 0.37 0.39 0.41 0.40 0.40 0.40 0.22 0.22 0.17 0.40 0.34 0.16 0.40 0.40 0.22 0.25 注:铌钽矿电子探针数据依据6个氧原子计算,FeO*为全铁数据,样品号下面的数字表示测量点号,空值为低于检测限数据 表 2 幕阜山地区断峰山铌钽矿U-Pb年代学数据
Table 2. U-Pb age data of columbotantalite from the Duanfengshan mine in Mufushan area
测点号 同位素比值 年龄/Ma 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ DFS-8_01 0.048 58 0.000 54 0.143 71 0.003 68 0.021 38 0.000 53 127.9 25.9 136.3 3.3 136.3 3.4 DFS-8_02 0.048 39 0.000 63 0.144 05 0.004 16 0.021 62 0.000 57 116.8 31.5 136.6 3.7 137.9 3.6 DFS-8_03 0.050 12 0.000 59 0.149 25 0.002 43 0.021 60 0.000 30 211.2 27.8 141.3 2.2 137.8 1.9 DFS-8_04 0.047 07 0.000 71 0.137 91 0.003 06 0.021 23 0.000 38 53.8 35.2 131.2 2.7 135.4 2.4 DFS-8_05 0.048 07 0.000 76 0.143 63 0.003 24 0.021 53 0.000 38 101.9 37.0 136.3 2.9 137.3 2.4 DFS-8_06 0.050 87 0.000 72 0.151 50 0.002 88 0.021 55 0.000 34 235.3 61.1 143.2 2.6 137.4 2.1 DFS-8_07 0.048 53 0.000 67 0.143 56 0.003 14 0.021 38 0.000 42 124.2 33.3 136.2 2.8 136.4 2.7 DFS-8_08 0.048 95 0.000 70 0.144 72 0.003 30 0.021 37 0.000 42 146.4 33.3 137.2 2.9 136.3 2.7 DFS-8_09 0.047 35 0.000 75 0.140 86 0.003 17 0.021 43 0.000 38 77.9 38.9 133.8 2.8 136.7 2.4 DFS-8_10 0.047 65 0.000 63 0.142 73 0.002 78 0.021 65 0.000 37 83.4 36.1 135.5 2.5 138.1 2.4 DFS-8_11 0.048 53 0.000 62 0.144 11 0.002 90 0.021 40 0.000 35 124.2 29.6 136.7 2.6 136.5 2.2 DFS-8_12 0.048 82 0.000 97 0.147 14 0.004 41 0.021 65 0.000 46 139.0 41.7 139.4 3.9 138.1 2.9 DFS-8_13 0.047 79 0.000 72 0.139 95 0.003 10 0.021 26 0.000 42 87.1 35.2 133.0 2.8 135.6 2.6 DFS-8_14 0.047 22 0.000 79 0.137 93 0.003 94 0.021 17 0.000 52 61.2 38.9 131.2 3.5 135.0 3.3 DFS-8_15 0.048 21 0.000 79 0.141 55 0.003 22 0.021 25 0.000 37 109.4 34.3 134.4 2.9 135.6 2.3 DFS-8_16 0.048 38 0.000 41 0.142 65 0.003 49 0.021 35 0.000 50 116.8 50.9 135.4 3.1 136.2 3.2 DFS-8_17 0.048 02 0.000 39 0.143 66 0.003 88 0.021 68 0.000 57 101.9 20.4 136.3 3.4 138.3 3.6 DFS-8_18 0.048 19 0.000 39 0.143 98 0.004 07 0.021 65 0.000 59 109.4 20.4 136.6 3.6 138.1 3.7 DFS-8_19 0.047 93 0.000 40 0.141 40 0.003 31 0.021 38 0.000 48 94.5 23.2 134.3 3.0 136.4 3.0 DFS-8_20 0.047 89 0.000 36 0.142 78 0.003 25 0.021 59 0.000 47 100.1 23.2 135.5 2.9 137.7 3.0 DFS-10_01 0.048 30 0.000 49 0.143 46 0.002 81 0.021 63 0.000 41 122.3 50.0 136.1 2.5 137.9 2.6 DFS-10_02 0.048 40 0.000 44 0.146 02 0.003 09 0.021 81 0.000 39 120.5 20.4 138.4 2.7 139.1 2.5 DFS-10_03 0.049 32 0.000 47 0.147 31 0.002 57 0.021 73 0.000 35 164.9 24.1 139.5 2.3 138.6 2.2 测点号 同位素比值 年龄/Ma 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ DFS-10_04 0.047 96 0.000 57 0.143 54 0.002 57 0.021 75 0.000 32 98.2 23.2 136.2 2.3 138.7 2.0 DFS-10_05 0.049 33 0.000 57 0.146 03 0.003 21 0.021 43 0.000 39 164.9 4.6 138.4 2.8 136.7 2.5 DFS-10_06 0.048 59 0.000 55 0.144 53 0.003 06 0.021 61 0.000 39 127.9 25.9 137.1 2.7 137.8 2.5 DFS-10_07 0.048 27 0.000 50 0.142 43 0.003 05 0.021 38 0.000 40 122.3 56.5 135.2 2.7 136.4 2.5 DFS-10_08 0.049 11 0.000 53 0.144 51 0.002 49 0.021 35 0.000 29 153.8 30.6 137.1 2.2 136.2 1.9 DFS-10_09 0.048 76 0.000 56 0.141 07 0.002 44 0.021 04 0.000 30 200.1 27.8 134.0 2.2 134.2 1.9 DFS-10_10 0.049 77 0.000 52 0.146 02 0.002 90 0.021 32 0.000 39 183.4 21.3 138.4 2.6 136.0 2.5 DFS-10_11 0.049 90 0.000 98 0.145 16 0.002 90 0.021 13 0.000 19 190.8 46.3 137.6 2.6 134.8 1.2 DFS-10_12 0.049 34 0.000 54 0.143 69 0.002 42 0.021 17 0.000 31 164.9 4.6 136.3 2.2 135.1 1.9 DFS-10_13 0.049 95 0.000 68 0.145 12 0.003 09 0.021 15 0.000 41 190.8 36.1 137.6 2.7 134.9 2.6 DFS-10_14 0.049 82 0.000 57 0.145 05 0.002 91 0.021 18 0.000 39 187.1 23.1 137.5 2.6 135.1 2.5 DFS-10_15 0.049 02 0.000 53 0.142 24 0.004 16 0.021 04 0.000 59 150.1 24.1 135.0 3.7 134.2 3.7 DFS-10_16 0.049 02 0.000 48 0.142 30 0.003 06 0.021 06 0.000 42 150.1 24.1 135.1 2.7 134.4 2.6 DFS-10_17 0.048 47 0.000 52 0.143 89 0.003 17 0.021 57 0.000 44 124.2 24.1 136.5 2.8 137.6 2.8 DFS-10_18 0.048 38 0.000 74 0.141 52 0.003 33 0.021 25 0.000 41 116.8 35.2 134.4 3.0 135.6 2.6 DFS-10_19 0.048 44 0.000 88 0.142 27 0.002 98 0.021 33 0.000 29 120.5 44.4 135.1 2.7 136.0 1.9 DFS-10_20 0.049 69 0.000 78 0.143 79 0.003 45 0.021 01 0.000 42 189.0 37.0 136.4 3.1 134.0 2.7 DFS-10_21 0.048 67 0.000 51 0.140 37 0.002 79 0.021 00 0.000 40 131.6 30.6 133.4 2.5 134.0 2.5 -
[1] 王登红, 孙艳, 代鸿章, 等. 我国"三稀矿产"的资源特征及开发利用研究[J]. 中国工程科学, 2019, 21(1): 119-127. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201901018.htmWang D H, Sun Y, Dai H Z, et al. Characteristics and exploitation of rare earth, rare metal and rare-scattered element minerals in China[J]. Strategic Study of CAE, 2019, 21(1): 119-127(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201901018.htm [2] 王汾连, 赵太平, 陈伟. 铌钽矿研究进展和攀西地区铌钽矿成因初探[J]. 矿床地质, 2012, 31(2): 293-308. doi: 10.3969/j.issn.0258-7106.2012.02.010Wang F L, Zhao T P, Chen W. Advances in study of Nb-Ta ore deposits in Panxi area and tentative discussion on genesis of these ore deposits[J]. Mineral Deposits, 2012, 31(2): 293-308(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.02.010 [3] 王孝磊, 周金城, 陈昕, 等. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报, 2017, 36(5): 714-735. doi: 10.3969/j.issn.1007-2802.2017.05.003Wang X L, Zhou J C, Chen X, et al. Formation and evolution of the Jiangnan orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(5): 714-735(in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2017.05.003 [4] 李建康, 李鹏, 王登红, 等. 中国铌钽矿成矿规律[J]. 科学通报, 2019, 64(15): 1545-1566. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201915002.htmLi J K, Li P, Wang D H, et al. A review of niobium and tantalum metallogenic regularity in China[J]. Chinese Science Bulletin, 2019, 64(15): 1545-1566(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201915002.htm [5] 刘翔, 周芳春, 黄志飚, 等. 湖南平江县仁里超大型伟晶岩型铌钽多金属矿床的发现及其意义[J]. 大地构造与成矿学, 2018, 42(2): 235-243. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201802004.htmLiu X, Zhou C F, Huang Z B, et al. Discovery of Renli superlarge pegmatite-type Nb-Ta polymetallic deposit in Pingjiang, Hunan province and its significances[J]. Geotectonica et Metallogenia, 2018, 42(2): 235-243(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201802004.htm [6] 周芳春, 刘翔, 李建康, 等. 湖南仁里超大型稀有金属矿床的成矿特征与成矿模型[J]. 大地构造与成矿学, 2019, 43(1): 77-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201901007.htmZhou F C, Liu X, Li J K, et al. Metallogenic characteristics and prospecting direction of Renli super-large rare metal deposit in Hunan Province, China[J]. Geotectonica et Metallogenia, 2019, 43(1): 77-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201901007.htm [7] 刘翔, 周芳春, 李鹏, 等. 湖南仁里稀有金属矿田地质特征、成矿时代及其找矿意义[J]. 矿床地质, 2019, 38(4): 771-791. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904007.htmLiu X, Zhou F C, Li P, et al. Geological characteristics and metallogenic age of Renli rare metal orefield in Hunan and its prospecting significance[J]. Mineral Deposits, 2019, 38(4): 771-791(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904007.htm [8] Wang L, Ma C, Zhang C, et al. Genesis of leucogranite by prolonged fractional crystallization: A case study of the Mufushan complex, South China[J]. Lithos, 2014, 206-207: 147-163. doi: 10.1016/j.lithos.2014.07.026 [9] Ji W, Faure M, Lin W, et al. Multiple emplacement and exhumation history of the Late Mesozoic Dayunshan-Mufushan batholith in Southeast China and its tectonic significance: 1. Structural analysis and geochronological constraints[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 689-710. doi: 10.1002/2017JB014597 [10] Li P, Li J, Liu X, et al. Geochronology and source of the rare-metal pegmatite in the Mufushan area of the Jiangnan orogenic belt: A case study of the giant Renli Nb-Ta deposit in Hunan, China[J]. Ore Geology Reviews, 2020, 116: 103237. doi: 10.1016/j.oregeorev.2019.103237 [11] 李鹏, 李建康, 裴荣富, 等. 幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰: 年代学依据[J]. 地球科学, 2017, 42(10): 1684-1696. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201710004.htmLi P, Li J K, Pei R F, et al. Multistage magmatic evolution and cretaceous peak metallogenic epochs of Mufushan composite granite mass: Constrains from geochronological evidence[J]. Earth Science, 2017, 42(10): 1684-1696(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201710004.htm [12] 柏道远, 蒋启生, 李彬, 等. 湘东北冷家溪群沉积岩地球化学特征及其构造意义[J]. 地质科技通报, 2021, 40(1): 1-13. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10087.shtmlBai D Y, Jiang Q S, Li B, et al. Geochemistry and tectonic implication of the sedimentary rocks in Lengjiaxi Group in northeastern Hunan[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 1-13(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10087.shtml [13] Ji W, Lin W, Faure M, et al. Origin of the Late Jurassic to Early Cretaceous peraluminous granitoids in the northeastern Hunan province (middle Yangtze region), South China: Geodynamic implications for the Paleo-Pacific subduction[J]. Journal of Asian Earth Sciences, 2017, 141: 174-193. doi: 10.1016/j.jseaes.2016.07.005 [14] 雷如亮, 赵济晴, 彭景玲, 等. 湖北通城断峰山含钽铌花岗伟晶岩矿区地质勘探报告[R]. 湖北咸宁: 湖北省地质局第四地质大队, 1974: 1-232.Lei R L, Zhao J Q, Peng J L, et al. Geological survey report of Ta-Nb bearing pegmatites in the Duanfengshan mining district in Tongcheng, Hubei province[R]. Xianning Hubei: The Fourth Geological Brigade of Hubei Geological Bureau, 1974: 1-232(in Chinese). [15] Romer R L, Lehmann B. U-Pb columbite age of Neoproterozoic Ta-Nb mineralization in Burundi[J]. Economic Geology, 1995, 90(8): 2303-2309. doi: 10.2113/gsecongeo.90.8.2303 [16] Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43. http://download.xuebalib.com/2npoHvtVycog.pdf?down [17] Abdalla H M, Helba H A, Mohamed F H. Chemistry of columbite-tantalite minerals in rare metal granitoids, Eastern Desert, Egypt[J]. Mineralogical Magazine, 1998, 62(6): 821-836. doi: 10.1180/002646198548197 [18] Belkasmi M, Cuney M, Pollard P J, et al. Chemistry of the Ta-Nb-Sn-W oxide minerals from the Yichun rare metal granite (SE China): Genetic implications and comparison with Moroccan and French Hercynian examples[J]. Mineralogical Magazine, 2000, 64(3): 507-523. doi: 10.1180/002646100549391 [19] Ercit T S, Wise M A, Cerny P. Compositional and structural systematics of the columbite group[J]. American Mineralogist, 1995, 80(5/6): 613-619. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9507243478&site=ehost-live [20] 曹振辉, 崔恒星, 崔继强, 等. 江西黄山铌(钽)矿床中铌钽矿物的矿物学特征及地质意义[J]. 地质科技情报, 2019, 38(3): 52-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903005.htmCao Z H, Cui H X, C J Q, et al. Mineralogy and geological significance of niobium and tantalum minerals in the Huangshan Niobium (tantalum) deposit, Jiangxi Province, South China[J]. Geological Science and Technology Information, 2019, 38(3): 52-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903005.htm [21] 张旭, 李雄伟, 邓杰, 等. 区域地质调查报告: 湖北省1: 5万通城县幅(H49E017024)[R]. 武汉: 湖北省地质调查院, 2013.Zhang X, Li X W, Deng J, et al. 1: 500000 regional geological survey report of Tongcheng area (H49E017024)[R]. Wuhan: Hubei Geological Survey, 2013(in Chinese). [22] Reiners P W. Nonmonotonic thermal histories and contrasting kinetics of multiple thermochronometers[J]. Geochimica et Cosmochimica Acta, 2009, 73(12): 3612-3629. doi: 10.1016/j.gca.2009.03.038 [23] Cerny P, Ercit T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6): 2005-2026. doi: 10.2113/gscanmin.43.6.2005 [24] Cerny P, Moller P, Saupe F. Characteristics of pegmatite deposits of tantalum[M]. New York: Springer Verlag, 1989. [25] Linnen R L. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li + F; constraints for mineralization in rare metal granites and pegmatites[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 1998, 93(7): 1013-1025. doi: 10.2113/gsecongeo.93.7.1013 [26] Linnen R L, Keppler H. Columbite solubility in granitic melts: Consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust[J]. Contributions to Mineralogy and Petrology, 1997, 128(2/3): 213-227. http://lib.gig.ac.cn/local/ejournal/CMP/CMP1997/CMP-1997-128(2&3)-213-227.pdf [27] 李艳军, 魏俊浩, 张文胜, 等. 幕阜山复式岩基西北缘新发现微斜长石伟晶岩型铌钽矿化[J]. 地质科技通报, 2021, 40(2): 208-210. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10131.shtmlLi Y J, Wei J H, Zhang W S, et al. New discovery of microplagioclase pegmatite type Nb-Ta mineralization in the northwestern margin of the Mufushan composite batholith[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 208-210(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10131.shtml [28] Stepanov A, Mavrogenes J A, Meffre S, et al. The key role of mica during igneous concentration of tantalum[J]. Contributions to Mineralogy and Petrology, 2014, 167(6): 1009. doi: 10.1007/s00410-014-1009-3 [29] Van L M, Salvi S, Beziat D, et al. Textural features and chemical evolution in tantalum oxides: Magmatic versus hydrothermal origins for Ta mineralization in the tanco Lower Pegmatite, Manitoba, Canada[J]. Economic Geology, 2007, 102(2): 257-276. doi: 10.2113/gsecongeo.102.2.257 [30] Van L M, Holtz F, Melcher F. The effect of disequilibrium crystallization on Nb-Ta fractionation in pegmatites: Constraints from crystallization experiments of tantalite-tapiolite[J]. American Mineralogist, 2018, 103(9): 1401-1416. doi: 10.2138/am-2018-6441 [31] 李福春, 朱金初, 张林松, 等. 富氟花岗质熔体形成和演化的实验研究[J]. 岩石学报, 2003, 19(1): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200301013.htmLi F C, Zhu J C, Zhang L S, et al. Experimental study on formation and evolution of F-rich granitic melt[J]. Acta Petrologica Sinica, 2003, 19(1): 125-130(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200301013.htm [32] 熊小林, 朱金初, 饶冰. Ta、Nb花岗岩的矿物平衡及岩石成因[J]. 南京大学学报: 自然科学版, 1996, 32(1): 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ601.016.htmXiong X L, Zhu J C, Rao B. Mineral equilibria in Ta, Nb granite and petrologic applications[J]. Journal of Nanjing University: Natural Sciences Edition, 1996, 32(1): 102-107(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ601.016.htm